Dans ce numéro
Ce numéro du Tour d’horizon des technologies de la santé présente de brèves informations touchant à différentes technologies touchant aux enjeux relatifs aaux milieux ruraux et éloignés — des drones médicaux aux sytèmes de télééchographie robotisés. Le service d’analyse prospective de l’ACMTS a relevé ces technologies parce qu’elles pourraient intéresser les décideurs du domaine des soins de la santé au Canada.
- Systèmes intelligents d’imagerie rétinienne dans le télédépistage de la rétinopathie diabétique
- MELODY : Un système de télééchographie robotisée
- Surveillance virtuelle du traitement de la tuberculose
- Analyse délocalisée pour différencier les infections bactériennes des infections virales aigües des voies respiratoires supérieures
- Le point sur l’utilisation des drones dans les soins de santé
- Minicompilation : rapports d’analyse prospective de récents de l’ACMTS et d’autres organismes
Vos commentaires
Vous avez entendu parler d’une technologie en émergence qui pourrait avoir des répercussions sur la santé au Canada, pouvez communiquer avec nous à cette adresse : analyseprospective@cadth
De nouvelles technologies facilitant la prestation de soins de santé dans les régions rurales et les régions éloignées
Bien souvent, les habitants des régions rurales et des régions éloignées du Canada se heurtent à des obstacles lorsqu’ils cherchent à se faire soigner. Parmi ceux-ci, on retrouve la distance géographique, la disponibilité limitée de professionnels de la santé ainsi que les facteurs logistiques, économiques et socioculturels qui rendent le transport pour raison médicale difficile1,2. Depuis de nombreuses années, des provinces et territoires du Canada misent sur la technologie pour améliorer l’accès aux soins de santé des régions rurales ou éloignées3-7. Dans le présent numéro du Tour d’horizon des technologies de la santé, nous vous présentons cinq technologies émergentes susceptibles d’intéresser ceux qui cherchent à remédier aux problèmes d’accès aux soins de santé dans les régions rurales et les régions éloignées.
L’amélioration de l’accès aux soins de santé grâce à la technologie
En 2011, plus de 6,3 millions de personnes, soit 19 % de la population au pays, vivaient dans des régions rurales ou des régions éloignées8, et des données probantes nous révèlent que les habitants de ces régions ont tendance à être en moins bonne santé que ceux des milieux urbains9. Dans les régions rurales ou éloignées, l’accès aux médecins et aux autres prestataires de soins de santé demeure un problème. À titre d’exemple, mentionnons que moins de 8 % des médecins canadiens travaillent dans une région rurale10, sans parler du fait que les résidents de ces collectivités doivent parfois consacrer beaucoup de temps et assumer des couts considérables pour se rendre aux endroits qui offrent les services médicaux dont ils ont besoin1.
Les technologies abordées dans ce numéro pourraient améliorer l’accès à certains services de santé dans les régions rurales et les régions éloignées du Canada. L’une de ces technologies, la plateforme des systèmes intelligents d’imagerie rétinienne (SIIR), pourrait permettre de faciliter le dépistage de la rétinopathie diabétique dans les régions où l’accès aux professionnels de la vue est restreint. Une autre, celle des véhicules aériens sans pilote (ou drones), peut aider à surmonter les obstacles qui entravent les modes de transport usuels et permettre la livraison en temps opportun de fournitures médicales aux collectivités éloignées. FebriDx, une analyse hors laboratoire rapide, pourrait aider les prestataires de soins de santé des régions rurales et des régions éloignées qui traitent des patients atteints d’infections aigües des voies respiratoires supérieures à différencier les infections bactériennes des infections virales, et ainsi mener à une utilisation plus judicieuse des antibiotiques. Le traitement en observation directe par vidéo (TOD-V), quant à lui, permet aux patients de s’enregistrer eux-mêmes lors de la prise de médicaments, au travail ou à la maison, et d’envoyer la vidéo à leurs prestataires de soins de santé, peu importe l’heure ou la distance. Dans le présent numéro, le TOD-V est abordé dans le cadre de la supervision de l’adhésion au traitement de la tuberculose dans les collectivités canadiennes éloignées. Enfin, nous examinons un bras robotique qui permet à un clinicien se trouvant à une certaine distance d’une collectivité éloignée de commander un système par ultrasons, ce qui pourrait faciliter l’accès de l’imagerie ultrasonore aux habitants de collectivités dépourvues de spécialistes. Cette nouvelle technologie pourrait également contribuer à améliorer l’accès de l’imagerie échographique spécialisée aux cliniques de petites collectivités où la demande est faible.
Qui pourrait en bénéficier?
Comme il est mentionné plus haut, 19 % de la population canadienne réside dans des régions rurales ou éloignées et pourrait profiter de technologies qui facilitent l’accès des services de soins de santé. Concrètement, celles-ci peuvent contribuer à réduire la nécessité pour les patients de se déplacer loin de leur collectivité pour recevoir des soins de santé. On estime qu’en 2010, la prestation de services de soins de santé par la télésanté a permis aux résidents des régions rurales et des régions éloignées du Canada d’éviter 47 millions de kilomètres en déplacement et 70 millions de dollars en dépenses personnelles connexes3.On mentionne souvent les économies de couts pour le système de soins de santé et une prestation plus efficace des soins de santé aux collectivités touchées au titre d’avantages potentiels des initiatives qui favorisent l’accès des soins de santé dans les collectivités rurales ou éloignées4,6,11,12.
Auteur: Bert Dolcine
Références
- Brundisini F, Giacomini M, DeJean D, Vanstone M, Winsor S, Smith A. Chronic disease patients' experiences with accessing health care in rural and remote areas: a systematic review and qualitative meta-synthesis. Ont Health Technol Assess Ser. 2013;13(15):1-33.
- Bosco C, Oandasan I. Review of family medicine within rural and remote Canada: education, practice, and policy. Mississauga (ON): College of Family Physicians of Canada; 2016: http://www.cfpc.ca/uploadedFiles/Publications/News_Releases/News_Items/ARFM_BackgroundPaper_Eng_WEB_FINAL.pdf. Accessed 2018 Apr 27.
- Praxia Information Intelligence, Gartner. Telehealth benefits and adoption - connecting people and providers across Canada. Toronto (ON): Canada Health Infoway; 2011: https://www.infoway-inforoute.ca/en/component/edocman/resources/reports/334-telehealth-benefits-and-adoption-connecting-people-and-providers-summary. Accessed 2018 Apr 27.
- Liddy C, McKellips F, Armstrong CD, Afkham A, Fraser-Roberts L, Keely E. Improving access to specialists in remote communities: a cross-sectional study and cost analysis of the use of eConsult in Nunavut. Int J Circumpolar Health. 2017;76(1):1323493.
- O'Gorman LD, Hogenbirk JC, Warry W. Clinical telemedicine utilization in Ontario over the Ontario Telemedicine Network. Telemed J E Health. 2016;22(6):473-479.
- Evaluating the benefits telehealth – teleophthalmology Inter Tribal Health Authority and the Ministry of Health Services. Victoria (BC): British Columbia Ministry of Health Services; 2011: https://www.infoway-inforoute.ca/en/component/edocman/1742-evaluating-the-benefits-telehealth-teleophthalmology-inter-tribal-health-authority-and-the-ministry-of-health-services/view-document%20Accessed%202014%20Sept%2024. Accessed 2018 Apr 27.
- 2013 Canadian telehealth report: based on the 2012 telehealth survey. Toronto (ON): Canada's Health Informatics Association (COACH); 2013: https://www.coachorg.com/en/communities/resources/TeleHealth-Public-FINAL-web-062713-secured.pdf. Accessed 2018 Apr 27.
- Statistics Canada. Population, urban and rural, by province and territory (Canada). http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo62a-eng.htm. Accessed 2018 Apr 27.
- How healthy are rural Canadians? An assessment of their health status and health determinants. Ottawa (ON): Canadian Institute for Health Information; 2006: https://secure.cihi.ca/free_products/rural_canadians_2006_report_e.pdf. Accessed 2018 Apr 27.
- Canadian Medical Association. Basic physician facts. 2017; https://www.cma.ca/En/Pages/basic-physician-facts.aspx. Accessed 2018 Apr 27.
- Thaker DA, Monypenny R, Olver I, Sabesan S. Cost savings from a telemedicine model of care in northern Queensland, Australia. Med J Aust. 2013;199(6):414-417.
- Kruse CS, Bouffard S, Dougherty M, Parro JS. Telemedicine use in rural native american communities in the era of the ACA: a systematic literature review. J Med Syst. 2016;40(6):145.
Les systèmes intelligents d’imagerie rétinienne dans le télédépistage de la rétinopathie diabétique
Les données probantes ont révélé que la détection précoce et le traitement rapide de la rétinopathie diabétique (RD) s’avèrent efficaces pour réduire le risque de progression de la maladie vers des complications graves comme la déficience visuelle1,2, ce qui vient confirmer la nécessité de procéder régulièrement et en temps opportun à un dépistage de la RD chez les diabétiques.
La téléophtalmologie, qui consiste à fournir des soins oculaires à distance à l’aide des technologies de l’information et de la communication, est une approche bien implantée au Canada ayant été mise à l’essai ou mise en œuvre dans plusieurs communautés rurales du pays aux fins de dépistage et d’évaluation de la progression des maladies oculaires, telles que la RD2-4. Selon les données probantes disponibles, le recours à la téléophtalmologie peut représenter une solution de rechange appropriée aux méthodes conventionnelles d’examen de la vue et contribuer à améliorer l’accès au dépistage de la RD, à en réduire les couts et à éviter les visites et les aiguillages inutiles vers des spécialistes des soins de la vue5-9. Dans le présent article, nous vous présentons la plateforme des systèmes intelligents d’imagerie rétinienne (SIIR), une des technologies récentes qui vise à faciliter et à améliorer le dépistage de la RD dans le cadre de la téléophtalmologie.
Fonctionnement
La plateforme des SIIR est un logiciel infonuagique qui se veut une solution complète pour le dépistage et le diagnostic des RD ainsi que la coordination des tâches connexes telles que l’aiguillage des patients et la facturation10,11. Le logiciel est compatible avec les modèles de caméra qui captent des images non mydriatiques (pupilles non dilatées) du fond de la rétine12. Il est possible d’intégrer le dépistage de la RD au moyen de la plateforme des SIIR dans un établissement de soins primaires et d’autres établissements de soins de santé. Au début du processus de dépistage, un professionnel de soins primaires ou une personne qualifiée saisit des images de l’œil et des renseignements sur le patient, qui sont ensuite téléchargés dans l’application infonuagique des SIIR en toute sécurité. Le logiciel génère également une image améliorée de la version originale, mettant en évidence les vaisseaux et la couche de fibres nerveuses de la rétine12, ce qui, selon l’entreprise, offre une meilleure vision de la rétine et facilite la détection des anomalies potentielles de l’œil12,13. Une fois les images et les informations nécessaires téléchargées, le dossier est confié à un spécialiste de la rétine autorisé ou à un ophtalmologiste, qui accède à l’application des SIIR par Internet afin d’examiner les images et poser un
D’après les données du Système canadien de surveillance des maladies chroniques, environ 3 millions de personnes (soit 8,1 % de la population) ont reçu un diagnostic de diabète entre 2013 et 201414. Le modèle des couts du diabète au Canada prévoit que cette proportion grimpera à 11,4 % d’ici 202515 et estime qu’environ 20 % des cas de diabète ne sont toujours pas diagnostiqués. La RD, une complication fréquente du diabète, est l’une des principales causes de perte de vision et de cécité au Canada et ailleurs dans le monde2,16. On estime que la prévalence de la RD est de l’ordre de 23 % parmi les patients aux prises avec un diabète de type 1 et de 14 % parmi ceux atteints du diabète de type 2 traités par insuline16. Cependant, on croit que la quasi-totalité des personnes atteintes de diabète de type 1 et la plupart de celles atteintes de diabète de type 2 seront touchées par une forme ou une autre de RD au cours de leurs 20 premières années de vie en tant que diabétiques2,17.
Trente-deux pour cent des patients atteints du diabète de type 2 se sont soumis au dépistage des RD à la fréquence recommandée2. On peut s’attendre à des taux plus faibles de dépistage de la RD dans les régions rurales et éloignées où l’accès aux soins oculaires conventionnels peut être réduit en raison des longues distances à parcourir et des couts associés à la visite des centres qui offrent des services de dépistage. De plus, on estime que la prévalence de la RD chez les patients diabétiques des communautés autochtones se situe entre 28,5 % et 40 %2. Les programmes de téléophtalmologie reposant sur des technologies comme la plateforme des SIIR peuvent contribuer à améliorer l’accès au dépistage de la RD dans ces communautés.
Accessibilité au Canada
Pour l’instant, la plateforme des SIIR n’est ni approuvée ni disponible au Canada. En 2015, le produit a été homologué aux États-Unis en tant qu’instrument de classe II et serait utilisé dans plus de 250 cliniques du pays10,11. Rien ne porte à croire que les SIIR n’ont été instaurés hors des États-Unis et on ignore si le fabricant prévoit s’étendre au Canada dans l’avenir.
What Does It Cost?
Specific cost information for the IRIS platform could not be found in the various sources consulted, including the company’s website and other documents published on the technology. The manufacturer did not provide this information upon request. Information available on the manufacturer’s website suggests that IRIS implementation can be customized and the final cost may be based on the needs of the buyer.11
Several studies have compared the costs of DR screening using teleophthalmology to the conventional screening method performed by an eye care professional.5,7,8
Current Practice
The Canadian Ophthalmological Society published new evidence-based guidelines for the management of DR in 2017.2 The guidelines recommend that DR screening be initiated five years after the diagnosis of type 1 diabetes if a person is diagnosed after puberty. Screening should start at puberty in the case of type 1 diabetes diagnosed before puberty. For type 2 diabetes, the guidelines state that DR screening should start when the disease is diagnosed. The frequency of screening is to be determined based on the severity of retinopathy. Otherwise, in patients who do not have retinopathy, recommended screening intervals are one year for type 1 diabetes and one to two years for type 2 diabetes. The guidelines also support the use of teleophthalmology programs for providing and improving access to DR screening, particularly in populations where cultural, economic, and geographic factors may prevent diabetes patients from getting regularly screened for DR.
(La suite est en anglais)
What Is the Evidence?
No published studies that evaluated the performance of the IRIS platform in the specific context of DR screening were identified. Three case studies are available on the manufacturer’s website regarding the implementation of the IRIS system in health care institutions in the US.18 It should be noted that performance data were not required for this product to be approved by the US FDA because it showed “substantial equivalence” to other licensed devices.10 Further, the IRIS system is not currently approved for diagnosing eye disease but rather for facilitating the administration of eye examinations and care within the health care system.19 This may help explain the lack of relevant evidence on performance.
Safety
No studies that assessed the safety of the IRIS system were identified.
Issues to Consider
The IRIS platform can be integrated into primary care facilities and various other care settings. Minimal training is purportedly required to perform the front-end part of the screening process — capturing the retinal images and patient information for uploading to the IRIS application.13 The ease of operation and availability of the system in the primary care setting allow providers to offer DR screening to patients at any suitable opportunity.
Implementation of the IRIS platform in a rural or remote setting does not appear to come with any considerations compared to other teleopthalmology systems. The provision of adequate training to local staff recruited from the community is noted as a key factor that can help in delivering effective teleophthalmology programs in rural and remote areas.3,5 Reliable Internet service is also an important consideration.
Related Developments
The IRIS system is one of several options currently available to provide and manage screening for DR under the teleophthalmology approach.20
Systems like the IRIS may be described as “assistive” in that they support and facilitate the work of eye care professionals in diagnosing eye disease. Of note, other products currently being developed or readied to enter the market are leveraging artificial intelligence to perform the automated diagnosis of DR and other eye diseases.19,21-23 These future systems would be autonomous and require no involvement of an eye care specialist in the diagnostic process.
Looking Ahead
Technologies that support the teleophthalmology care approach are growing in numbers and rapidly evolving. There are reasons to believe that automated diagnostic systems, such as the recently FDA-cleared IDx-DR,21 may occupy an important place in DR screening in the future. Consideration of the IRIS system should take account of this context.
Author: Bert Dolcine
References
- Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Experiment Ophthalmol. 2016;44(4):260-277.
- Hooper P, Boucher MC, Cruess A, et al. Excerpt from the Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of diabetic retinopathy. Can J Ophthalmol. 2017;52 Suppl 1:S45-s74.
- Caffery LJ, Taylor M, Gole G, Smith AC. Models of care in tele-ophthalmology: A scoping review. J Telemed Telecare. 2017:1357633X17742182.
- Kanjee R, Dookeran RI. Tele-ophthalmology for diabetic retinopathy in Canada—meeting the needs of a growing epidemic. Can J Ophthalmol. 2016;51(3):133-134.
- Evaluating the benefits: Telehealth – teleOphthalmology Inter Tribal Health Authority and the Ministry of Health Services. Victoria (BC): British Columbia Ministry of Health Services; 2011: https://www.infoway-inforoute.ca/en/component/edocman/1742-evaluating-the-benefits-telehealth-teleophthalmology-inter-tribal-health-authority-and-the-ministry-of-health-services/view-document%20Accessed%202014%20Sept%2024. Accessed 2018 May 9.
- Labiris G, Panagiotopoulou EK, Kozobolis VP. A systematic review of teleophthalmological studies in Europe. Int J Ophthalmol. 2018;11(2):314-325.
- Rodriguez Villa S, Alonso Alvarez C, de Dios Del Valle R, et al. Five-year experience of tele-ophthalmology for diabetic retinopathy screening in a rural population. Arch Soc Esp Oftalmol. 2016;91(9):426-430.
- Invernizzi A, Bevilacqua MT, Cozzi M, et al. Diabetic retinopathy screening: the first telemedical approach in an Italian hospital. Eur J Ophthalmol. 2016;26(4):369-374.
- Daskivich LP, Vasquez C, Martinez C, Jr., Tseng CH, Mangione CM. Implementation and evaluation of a large-scale teleretinal diabetic retinopathy screening program in the Los Angeles County Department of Health Services. JAMA Intern Med. 2017;177(5):642-649.
- 510(k) premarket notification: IRIS Intelligent Retinal Imaging System. Silver Spring (MD): U.S. Food and Drug Administration; 2015 Feb 27: https://www.accessdata.fda.gov/cdrh_docs/pdf14/K141922.pdf. Accessed 2018 May 9.
- Intelligent Retinal Imaging Systems. The IRIS solution at work in your practice. http://www.retinalscreenings.com/solution. Accessed 2018 May 8.
- Naik S, Wykoff CC, Ou WC, Stevenson J, Gupta S, Shah AR. Identification of factors to increase efficacy of telemedicine screening for diabetic retinopathy in endocrinology practices using the Intelligent Retinal Imaging System (IRIS) platform. Diabetes Res Clin Pract. 2018;140:265-270.
- Intelligent Retinal Imaging Systems. Harris Health. [2014]; http://www.retinalscreenings.com/customers/case-studies/harris-health. Accessed 2018 May 9.
- Government of Canada. Diabetes in Canada: Highlights from the Canadian Chronic Disease Surveillance System. 2017; https://www.canada.ca/en/public-health/services/publications/diseases-conditions/diabetes-canada-highlights-chronic-disease-surveillance-system.html. Accessed 2018 May 9.
- Diabetes Canada. 2015 report on Diabetes: Driving change. 2015; http://www.diabetes.ca/publications-newsletters/advocacy-reports/2015-report-on-diabetes-driving-change. Accessed 2018 May 9.
- Diabetes Canada. Eye damage (diabectic retinopathy). http://www.diabetes.ca/diabetes-and-you/complications/eye-damage-diabetic-retinopathy. Accessed 2018 May 7.
- Fraser CE, D'Amico DJ. Diabetic retinopathy: Classification and clinical features. In: Post TW, ed. UpToDate. Waltham (MA): UpToDate; 2018: https://www.uptodate.com/contents/diabetic-retinopathy-classification-and-clinical-features/print?search=diabetic%20retinopathy&source=search_result&selectedTitle=. Accessed 2018 Apr 2.
- Intelligent Retinal Imaging Systems. IRIS drives real results for our customers and their patients. http://www.retinalscreenings.com/customers. Accessed 2018 May 9.
- Walton OBt, Garoon RB, Weng CY, et al. Evaluation of automated teleretinal screening program for diabetic retinopathy. JAMA Ophthalmol. 2016;134(2):204-209.
- BlueCross BlueShield of Tennessee. Retinal telescreening for diabetic retinopathy. 2018; https://www.bcbst.com/mpmanual/Retinal_Telescreening_for_Diabetic_Retinopathy_.htm. Accessed 2018 May 14.
- IDx LLC. FDA permits marketing of IDx-DR for automated detection of diabetic retinopathy in primary care. 2018; https://www.eyediagnosis.net/single-post/2018/04/12/FDA-permits-marketing-of-IDx-DR-for-automated-detection-of-diabetic-retinopathy-in-primary-care. Accessed 2018 May 10.
- Koh JEW, Ng EYK, Bhandary SV, Hagiwara Y, Laude A, Acharya UR. Automated retinal health diagnosis using pyramid histogram of visual words and Fisher vector techniques. Comput Biol Med. 2018;92:204-209.
- Valverde C, Garcia M, Hornero R, Lopez-Galvez MI. Automated detection of diabetic retinopathy in retinal images. Indian J Ophthalmol. 2016;64(1):26-32.
MELODY : Un système de télééchographie robotisée
Pour ce qui est des collectivités de faible densité ou mal desservies (où les déplacements sont souvent nécessaires pour bénéficier d’examens échographiques courants ou spécialisés), un réseau de cliniques de télééchographie robotisée pourrait assurer des services aux patients ou faciliter la prestation de services après les heures d’ouverture1,4. Dans les grandes collectivités, un tel réseau pourrait élargir l’accès à l’échographie surspécialisée aux cliniques où la demande est faible1.
Disponibilité au Canada
Le système MELODY n’a pas encore été homologué au Canada, mais le fabricant prévoit son autorisation à l’été 2018 (Philippe Homsi, responsable des exportations de l’entreprise : communication personnelle, le 2 mai 2018). La Food and Drug Administration aux États-Unis a accordé l’autorisation de commercialisation du dispositif en 2017 en vertu de l’article 510(k)5.
De plus, la Saskatchewan prévoit mettre sur pied une clinique d’échographie à distance dotée du système MELODY, qui comprendrait des points de service dans les collectivités éloignées de toute la province1. Dans le cadre du projet pilote, deux systèmes ont été installés, l’un à La Loche et l’autre à Stony Rapids (Philippe Homsi : communication personnelle, le 30 mai 2018).
(La suite est en anglais)
What Does It Cost?
We did not find any studies evaluating the cost of implementing the MELODY System. The manufacturer reports the purchase cost for a complete installation (MELODY System, ultrasound system, and videoconferencing system) is between C$150,000 and C$250,000, depending on the configuration, and includes a one-year warranty, maintenance, and training (Philippe Homsi: personal communication, 2018 May). In Saskatchewan, a complete MELODY System installation was deployed using a grant of C$300,000.6
A presentation by the manufacturer on a French study reported monthly leasing costs of €3,200 for the system.7 Other costs considered included patient site employees and payments to the operator at the expert site.7
Current Practice
Diagnostic ultrasound has wide applications including fetal imaging, cardiovascular disease, and soft-tissue injury.8 The use of ultrasound (i.e., number of examinations, devices, and locations) in Canada is not well-documented. Portable ultrasound systems that can be used at the point of care have emerged as a diagnostic tool in emergency departments and other out-of-hospital or remote locations.9,10 However, use in Canada may be limited by barriers such as lack of equipment, funding, and training; and the inability of clinicians to maintain ultrasound skills in low-volume settings.11
What Is the Evidence?
We found six observational studies of the MELODY System (or its predecessors)1,4,12-15 and six observational studies of telerobotic ultrasound systems in which the specific model used was unclear.16-21 Two presentations that included information on the use of the MELODY System were also identified.7,22 The studies were conducted in Saskatchewan1,4 (and also reported in a presentation23), France,7,12,14,16,17,19-22 Cyprus,13 the UK,15 and Sweden.18 To date, the system has been used for a variety of ultrasound examinations including abdominal sonography,1,12,17,19,21,23 echocardiography,13,14,18 obstetrics,4,19,20 and other small structures.12,17 It has also been tested over cellular networks.13,15 To focus on the Canadian context, a more detailed discussion of Saskatchewan’s implementation of the MELODY System follows.
Saskatchewan Studies
Researchers in Saskatchewan recruited adult patients scheduled for routine abdominal ultrasound examinations to assess the feasibility of deploying the MELODY System in the province.1,23 Image quality, duration of examination, and patient and clinician acceptance were compared with conventional ultrasound.1,23 Eighteen patients were included in the pilot study. The patient site was located at a Saskatoon imaging clinic 2.75 km away from the expert site at the city’s academic health sciences centre.
A second study, published in 2018, evaluated the feasibility of using the MELODY System to perform routine prenatal ultrasound examinations. Thirty women received both a conventional and a telerobotic ultrasound exam. Image quality and acceptability of the system by patients and clinicians compared with conventional ultrasound was evaluated. The patient site was a clinic room next to the expert site.4
Safety
No studies about the safety of the MELODY System were identified.
Issues to Consider
Telecommunication Infrastructure
To function correctly, a telerobotic system relies on a telecommunications network of sufficient quality and bandwidth to allow real-time transmission of force feedback, video, and other data (e.g., device settings).3 Even then, most telerobotic systems operating over long distances will experience communications delays. As well, many rural and remote Canadian communities do not have access to broadband Internet, although efforts are being made to narrow this gap.3,24,25
Training Requirements
Clinicians in Saskatchewan were provided with a 90-minute training session before using the ultrasound system and MELODY System.1
Staffing Needs
An assistant is required to help operate the system at the patient site.3 This may exceed the usual number of staff required to perform an exam.1 In Saskatchewan, an assistant with no prior health care experience was employed at the patient site.1
Examination Time
Two studies observed a longer examination time for the MELODY System than conventional ultrasound.1,12 Researchers in Saskatchewan note that increased examination times should be accounted for in future cost studies.1
Other Considerations
A 2016 review of medical telerobotic systems identified potential concerns including liability and responsibility should complications arise, network security, and patient privacy.3
Related Developments
A trans-Atlantic telerobotic ultrasound system has been tested between Munich, Germany and Boston.26 The state of its development and commercialization is unclear.
Hand-held ultrasound devices27,28 and novel ways of connecting clinicians with distant experts using FaceTime and Skype29,30 have been explored and may offer solutions for rural and remote communities.
Telerobotic systems used over short distances are common in specialties such as surgery and ophthalmology.3 Long-distance telerobotic systems, like the MELODY, are also emerging in fields such as general surgery and orthopedics.3
Looking Ahead
Improvements in our ability to transmit video and images over cellular networks are expected to expand the use of telerobotic systems.3 Currently, studies of the MELODY System have been limited to reported distances of under 50 km between sites.1,12,14 How longer distances, common in Canada, may affect the performance of the system is unknown.
Author: Jeff Mason
References
- Adams SJ, Burbridge BE, Badea A, et al. Initial experience using a telerobotic ultrasound system for adult abdominal sonography. Can Assoc Radiol J. 2017;68(3):308-314.
- AdEchoTech. MELODY, a remote, robotic ultrasound solution. 2016; http://www.adechotech.com/products/. Accessed April 18, 2018.
- Avgousti S, Christoforou EG, Panayides AS, et al. Medical telerobotic systems: current status and future trends. Biomed Eng Online. 2016;15(1):96.
- Adams SJ, Burbridge BE, Badea A, et al. A crossover comparison of standard and telerobotic approaches to prenatal sonography. J Ultrasound Med. 2018.
- FDA. MELODY, remote control system for ultrasound probe. 2017; https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161354.pdf. Accessed April 18, 2018.
- Modjeski M. Gift helps push Sask to forefront of remote ultrasound imaging. 2017; http://thestarphoenix.com/news/local-news/gift-helps-push-u-of-s-to-forefront-of-ultrasound-imaging. Accessed April 30, 2017.
- AdechoTech. Introduction of tele-ultrasonography on the island of Belle Isle: feedback June 2016 http://www.adechotech.com/wp-content/uploads/2016/03/161002-01-V01-C-NLE-EN_RetourExp%C3%A9rienceCHBI.pdf. Accessed April 18, 2018.
- Society of Diagnostic Medical Sonography. Understanding sonography. 2018; http://www.sdms.org/resources/what-is-sonography/understanding-sonography. Accessed May 7, 2018.
- Nelson BP, Sanghvi A. Out of hospital point of care ultrasound: current use models and future directions. Eur J Trauma Emerg Surg. 2016;42(2):139-150.
- Buerger AM, Clark KR. Point-of-care ultrasound: a trend in health care. Radiol Technol. 2017;89(2):127-138.
- Micks T, Sue K, Rogers P. Barriers to point-of-care ultrasound use in rural emergency departments. CJEM. 2016;18(6):475-479.
- Georgescu M, Sacccomandi A, Baudron B, Arbeille PL. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: a 1-year study. Telemed J E Health. 2016;22(4):276-281.
- Avgousti S, Panayides AS, Jossif AP, et al. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot. Healthc Technol Lett. 2016;3(3):212-217.
- Arbeille P, Provost R, Zuj K, Dimouro D, Georgescu M. Teles-operated echocardiography using a robotic arm and an internet connection. Ultrasound Med Biol. 2014;40(10):2521-2529.
- Garawi S, Istepanian RSH, Abu-Rgheff MA. 3G wireless communications for mobile robotic tele-ultrasonography systems. IEEE Commun Mag. 2006;44(4):91-96.
- Arbeille P, Zuj K, Saccomandi A, Andre E, De La Porte C, Georgescu M. Tele-operated echography and remote guidance for performing tele-echography on geographically isolated patients. J Clin Med. 2016;5(58).
- Arbeille P, Zuj K, Saccomandi A, et al. Teleoperated echograph and probe transducer for remote ultrasound investigation on isolated patients (study of 100 cases). Telemed J E Health. 2016;22(7):599-607.
- Boman K, Olofsson M, Berggren P, Sengupta PP, Narula J. Robot-assisted remote echocardiographic examination and teleconsultation: a randomized comparison of time to diagnosis with standard of care referral approach. J Am Coll Cardiol. 2014;7(8):799-803.
- Arbeille P, Capri A, Ayoub J, Kieffer V, Georgescu M, Poisson G. Use of a robotic arm to perform remote abdominal telesonography. Am J Roentgenol. 2007;188(4):W317-322.
- Arbeille P, Ruiz J, Herve P, Chevillot M, Poisson G, Perrotin F. Fetal tele-echography using a robotic arm and a satellite link. Ultrasound Obstet Gynecol. 2005;26(3):221-226.
- Martinelli T, Bosson JL, Bressollette L, et al. Robot-based tele-echography: clinical evaluation of the TER system in abdominal aortic exploration. J Ultrasound Med. 2007;26(11):1611-1616.
- Assessment of the robotic tele-ultrasonography pilot study at Lannemezan Hospital. 2014; http://www.adechotech.com/wp-content/uploads/2016/03/Lannemezan-Bilan-EN-2016.pdf. Accessed April 18, 2018.
- Adams SJ. Initial Canadian experience using a telerobotic ultrasound system to perform adult abdominal examinations. https://car.ca/uploads/Education%20Lifelong%20Learning/Meetings/ASM2016_Speakers_Pres/SE/SE013_Initial_Canadian_Experience_Using_a_Telerobotic_Ultrasound_System_to_Perform_Adult_Abdominal_Examinations_Adams.pdf. Accessed April 18, 2018.
- Canadian Radio-television and Telecommunications Commission. Telecom regulatory policy CRTC 2016-496. 2016; https://crtc.gc.ca/eng/archive/2016/2016-496.htm. Accessed May 9, 2018.
- Canadian Radio-television and Telecommunications Commission. CRTC establishes fund to attain new high-speed Internet targets. 2016; https://www.canada.ca/en/radio-television-telecommunications/news/2016/12/crtc-establishes-fund-attain-new-high-speed-internet-targets.html. Accessed May 9, 2018.
- Sengupta PP, Narula N, Modesto K, et al. Feasibility of intercity and trans-Atlantic telerobotic remote ultrasound: assessment facilitated by a nondedicated bandwidth connection. J Am Coll Cardiol. 2014;7(8):804-809.
- Wright J, Noriega O, Ho H. The application of hand-held ultrasound scanner in teaching of telemedicine and rural medicine. DSJUOG. 2014;8(1):87-91.
- Evangelista A, Galuppo V, Mendez J, et al. Hand-held cardiac ultrasound screening performed by family doctors with remote expert support interpretation. Heart. 2016;102(5):376-382.
- Levine AR, Buchner JA, Verceles AC, et al. Ultrasound images transmitted via FaceTime are non-inferior to images on the ultrasound machine. J Crit Care. 2016;33:51-55.
- Lin JC, Crutchfield JM, Zurawski DK, Stevens C. Implementation of a virtual vascular clinic with point-of-care ultrasound in an integrated health care system. J Vasc Surg. 2018.
La surveillance virtuelle du traitement de la tuberculose
Pour guérir la tuberculose (TB), l’adhésion au traitement médicamenteux est essentielle1,2. Une thérapie incomplète pourrait entrainer l’apparition de maladies pharmacorésistantes qui nécessiteront un traitement plus long, plus couteux et plus toxique, sans compter que le risque de transmission de la maladie sera accru2-5.
Les patients aux prises avec une TB active ont des signes de la maladie, alors que ceux qui sont atteints d’une TB latente n’en ont pas et ne sont pas contagieux, bien qu’ils soient porteurs d’une infection qui pourrait évoluer en maladie active6,7. Chez de nombreux patients, la tuberculose est d’une forme non respiratoire qui touche les os, les articulations, les nœuds lymphoïdes ou le système nerveux central8,9.
On recommande, dans la mesure du possible, la thérapie en observation directe (TOD) pour améliorer l’adhésion au traitement médicamenteux1,8,10,11. Dans le cadre de la TOD, un prestataire de soins supervise chacune des prises du médicament du patient, ce qu’il fait généralement à domicile ou dans une clinique communautaire2. Comme le traitement de la TB peut s’échelonner sur plusieurs mois, voire plus, la TOD requiert la mobilisation de ressources et exige temps et déplacements de la part des patients et du personnel3,4,12, ce qui est peut être particulièrement problématique pour ceux qui habitent en région éloignée.
Fonctionnement
Les technologies mobiles pourraient atténuer certains des inconvénients de la TOD et en réduire les couts en permettant aux patients d’enregistrer par vidéo à domicile l’ingestion de leurs médicaments, puis de transmettre la vidéo aux prestataires de soins de santé au moyen d’une tablette, d’un ordinateur doté d’une webcaméra ou d’un téléphone intelligent4,5,13. Différents termes désignent cette approche, y compris la thérapie en observation directe électronique(TODe), la thérapie en observation virtuelle (TOV), la thérapie en observation directe sans fil et la thérapie en observation directe par vidéo (TOD-V)13, soit celui que nous avons choisi pour le présent article.
Les deux principaux types de TOD-V sont les suivants :
- Synchrone —la vidéo du patient est diffusée « en direct » et le prestataire de soins de santé supervise le traitement en temps réel.
- Asynchrone — (ou « par stockage et retransmission ») la vidéo du patient est enregistrée, puis transmise aux prestataires de soins de santé pour consultation immédiate ou ultérieure1,14.
Qui pourrait en bénéficier?
La tuberculose touche davantage les populations défavorisées sur le plan socioéconomique en raison de facteurs tels qu’un logement inadéquat, la malnutrition, des taux élevés de tabagisme et la comorbidité7,15-17. Les défis associés à l’éloignement géographique (ex. : le manque d’accès routier, une population dispersée, la pénurie de personnel en soins de santé) ont des répercussions sur la prestation des soins antituberculeux dans le Nord canadien7,8,16. Dans les communautés inuites, où les taux d’infection sont presque 300 fois plus élevés qu’ailleurs au Canada, la tuberculose constitue un grave problème de santé7,9,16.
En 2016, 1737 cas de TB active ont été signalés au Canada18, et 70 % des cas étaient des immigrants et 19 % des Autochtones18.
Les personnes atteintes de tuberculose latente qui courent un risque élevé de développer une tuberculose active ont, elles aussi, besoin d’un traitement médicamenteux8. Les plus à risque sont les nourrissons, les personnes immunovulnérables, les diabétiques, les résidents d’établissement correctionnel ou de soins de longue durée, les travailleurs de la santé, les sans-abris et les consommateurs de drogues injectables7-9.
Disponibilité au Canada
Il existe des produits de santé mobiles qui rendent la TOD-V accessible, notamment les programmes de vidéoconférence, tels que Skype et FaceTime, ainsi que des plateformes spécialisées dans la surveillance de l’adhésion thérapeutique, comme SureAdhere VDOT (SureAdhere Mobile Technology), emocha (emocha Mobile Health) et AiCure13.
Un programme pilote de TOD-V lancé par Santé publique Toronto en 201119, s’est élargi depuis et utilise aujourd’hui le réseau de télémédecine de l’Ontario (Ontario Telemedicine Network). Les patients peuvent se servir de leurs propres appareils mobiles (téléphones intelligents, tablettes ou ordinateurs) pour établir une liaison télévisuelle sécurisée avec des employés de Santé publique Toronto. Le programme de traitement de la TB peut actuellement assurer le soutien de 40 patients par la TOD-V, ce qui représente environ 20 % du nombre total de patients à qui l’on offre des services de TOD. Le personnel médical qui fournit des services de TOD-V peut superviser en moyenne 18 patients stables par jour, alors que le personnel soignant de la collectivité peut en superviser en moyenne 10 par jour, selon la complexité des soins aux patients (Theresa Samarita, Santé publique Toronto, Toronto, ON : communication personnelle, le 11 avril 2018). Ailleurs en Ontario, la municipalité régionale de Peel utilise également le réseau de télémédecine de l’Ontario pour offrir la TOD-V à certains patients aux prises avec la TB (Sheryll Gordon, la municipalité régionale de Peel, Brampton, ON : communication personnelle, le 4 mai 2018) et le Bureau de santé de Middlesex-London prévoit faire pareil à l’avenir (Jody Paget, Bureau de santé de Middlesex-London, London, ON : communication personnelle, le 8 mai 2018)2.0.
(La suite est en anglais)
What Does It Cost?
In a Maryland study using emocha, the costs of accessing the software were estimated at US$50 per patient, per month.21 For developed countries, the cost of SureAdhere VDOT is US$35 per patient, per month (Kelly Collins, SureAdhere Mobile Technology, San Diego, CA: personal communication, 2018 Apr 30).
Current Practice
TB treatment may require multiple drug therapies, usually taken for months, or longer for drug-resistant TB.2,8,22 DOT is recommended for monitoring compliance with therapy, particularly for patients at risk for not completing treatment.2,3,8,21
What is the Evidence?
A systematic review23 of digital technologies in the management of TB identified two observational studies that compared the effectiveness of VDOT to standard DOT4,24 These studies reported on the adherence to scheduled treatment sessions,4 treatment completion,4 and the rate of missed observations.24
Two additional observational studies were also identifed21,25 that compared VDOT and in-person DOT, or evaluated VDOT with no comparator. The studies looked at medication adherence21,25 and user acceptance.21 In addition, a conference abstract was identified that reported on a UK randomized controlled trial.26 It reported on adherence to scheduled treatment and treatment completion.
Cost Considerations
Several small US studies of cost considerations were identified,3-5,21,27-29 as well as one study from Australia24 and the aforementioned UK conference abstract.26 These studies assessed potential cost-savings with VDOT compared to DOT — considering factors such as staff travel and time. The New York City study found that, with VDOT, health care staff were able to observe up to 25 patients per day — similar to the number seen in a clinic but double the number seen using community visits.4 No Canadian cost studies were identified.
Safety
None of the studies reported any direct patient safety concerns with VDOT.
Issues to Consider
Technical Issues
In one study, over a one-year period, 95% of VDOT individual sessions were successfully completed. Technical problems included slow Internet connections, smartphone problems, and computer or software issues.4 In another study, more than half of the patients had at least one rejected video (2.1% of all videos), mainly because of poor quality of the video.21 A US/Mexico study found that most patients (89%) were able to record videos without problems, but lost, stolen, or broken phones were an issue for six patients (12%), and some patient videos were lost due to technical issues.25
Connectivity
High bandwidth Internet access or smartphones with a data plan access are needed to ensure image quality and file transfer in VDOT.30 Many remote Canadian communities do not have broadband Internet or cell phone network access.31 About half of the communities in Nunavut do not currently have cell phone service, although new satellite infrastructure to resolve this should be in place by 2019.32
In the Puerto Rico study of VDOT for long-term care residents with cognitive impairments and TB, investigators noted that synchronous (live) VDOT was not feasible because of poor Internet reception but that asynchronous VDOT could be used.27
Privacy and Data Security
Ensuring the security and confidentiality of health data in mobile health technologies that use cloud-based technology is complex.33,34 In the US, companies must meet the requirements of the Health Insurance Portability and Accountability Act (HIPAA). In Canada, health privacy regulations vary between jurisdictions and HIPAA compliance does not address all provincial health data privacy requirements, particularly when the data are stored outside of Canada.33,34
Training
Patients may need training on using the smartphone or other videoconferencing platforms. A US study that used Skype on patients’ personal smartphones or computers estimated that nursing staff spent about one hour on training for each patient.5 Maryland study patients all reported VDOT was “easy to use.”21
Patient Perspectives
The relationship between the health providers and the patient is an important part of medication adherence, but some evidence suggests this can be maintained with VDOT.2,4,5,24
Patients have reported that VDOT is more convenient and this contributes to patient-centred care.4,5,21,23,24,35,36 Patients have also reported that VDOT offered greater privacy than in-home DOT,24,25 and that they prefer VDOT to in-person DOT.5,21,25,35 However, other investigators caution that patient acceptability of mobile health should not be assumed2,14 — not all patients are able to use the technology, and this option is not suitable for all patients with TB.5,13,25
Ethical Considerations
Two US researchers have outlined four elements of an ethical framework for assessing mobile health technologies in managing TB therapy adherence.2 These elements include accuracy of the technology in monitoring compliance, stigmatization and intrusiveness of monitoring, use of incentives, and balancing the good of the individual with that of the public.2
Related Developments
Another smartphone development for VDOT incorporates artificial intelligence for the automated assessment of medication adherence — alleviating the need for the DOT of each patient.37,38 The smartphone app sends patients reminders for each dosage and walks them through the steps involved. Each dose is recorded by video and the data transmitted to a central, cloud-based dashboard. Software algorithms detect missed or incorrect doses and send reminders to nursing staff for follow-up.37 The technology AiCure was used in a pilot study of patients with active and latent TB patients in Los Angeles37 and is now in use in TB programs in California and Illinois (Ted Kirby, AiCure, New York, NY: personal communication, 2018 Apr 24). The AiCure technology is currently being used to monitor medication adherence in drug trials in Canada but has not yet been used for TB patients here (Ted Kirby: personal communication, 2018 Apr 24).
Digitized medications for WOT incorporate ingestible sensors into drug capsules.12,39 The ingestible component transmits data to a wearable sensor and mobile device to monitor and support adherence.2,12 Technology platforms for digitized medications include the Proteus (Proteus Digital Health) and ID-Cap (etectRx).2
Earlier innovations, such as electronic medication monitors or “smart pill boxes,” use sensors to detect the opening of the pill container by the patient and relay this information to a remote server — although this may not accurately reflect drug ingestion.12,23 At-home urine testing to measure drug levels is another method of assessing adherence to therapy.2
Looking Ahead
In both urban and rural areas, VDOT achieved similar treatment adherence to standard DOT, and with cost-savings in staff time and travel costs.2,23 Possibly, VDOT may improve treatment adherence where DOT is not currently effectively delivered.23 For patients in rural and remote areas, VDOT may remove some of the geographic barriers to receiving TB care.2 It may also be useful in managing treatment for patients with latent TB, where treatments are not usually monitored with DOT.23,25
Mobile health technologies, including new ways of providing DOT, are expected to facilitate the World Health Organization’s End TB Strategy.22,23 These technologies could also be used to help manage other health concerns for people with TB, such as the promotion of smoking cessation or compliance with HIV or hepatitis treatments.5,22
Indigenous Services Canada and the Inuit Tapiriit Kanatami non-profit organization are developing a framework for eliminating TB in Inuit populations,16 and earlier this year the Public Health Agency of Canada released a report calling for collaborative efforts to eliminate TB in Canada.7
For more information, the US Centers for Disease Control and Prevention (CDC) has produced a free toolkit to help implement VDOT into clinical practice in different settings.13
Author: Leigh-Ann Topfer
References
- Using telehealth for directly observed therapy in treating tuberculosis. Sacramento (CA): Center for Connected Health Policy; 2015: http://www.cchpca.org/using-telehealth-directly-observed-therapy-treating-tuberculosis. Accessed 2018 May 2.
- DiStefano MJ, Schmidt H. mHealth for tuberculosis treatment adherence: a framework to guide ethical planning, implementation, and evaluation. Glob Health Sci Pract. 2016;4(2):211-221.
- Buchman T, Cabello C. A new method to directly observe tuberculosis treatment: Skype observed therapy, a patient-centered approach. J Public Health Manag Pract. 2017;23(2):175-177.
- Chuck C, Robinson E, Macaraig M, Alexander M, Burzynski J. Enhancing management of tuberculosis treatment with video directly observed therapy in New York City. Int J Tuberc Lung Dis. 2016;20(5):588-593.
- Mirsaeidi M, Farshidpour M, Banks-Tripp D, Hashmi S, Kujoth C, Schraufnagel D. Video directly observed therapy for treatment of tuberculosis is patient-oriented and cost-effective. Eur Respir J. 2015;46(3):871-874.
- Giles S. Canadians must hold government accountable in Nunavut's tuberculosis outbreak. CBC News 2018; http://www.cbc.ca/news/canada/north/nunavut-tuberculosis-outbreak-1.4633882. Accessed 2018 Apr 25.
- The time is now - Chief Public Health Officer spotlight on eliminating tuberculosis in Canada. Ottawa: Public Health Agency of Canada; 2018: https://www.canada.ca/en/public-health/corporate/publications/chief-public-health-officer-reports-state-public-health-canada/eliminating-tuberculosis.html. Accessed 2018 May 10.
- Canadian tuberculosis standards. 7th ed. Ottawa: Public Health Agency of Canada; 2014: https://www.canada.ca/en/public-health/services/infectious-diseases/canadian-tuberculosis-standards-7th-edition.html. Accessed 2018 Apr 29.
- Kitai I, Morris SK, Kordy F, Lam R. Diagnosis and management of pediatric tuberculosis in Canada. CMAJ. 2017;189(1):E11-e16.
- Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. Geneva: World Health Organization (WHO); 2017: http://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf;jsessionid=1EDB81CF1CA6207401B509B58BC4F663?sequence=1. Accessed 2018 May 2.
- Nahid P, Dorman SE, Alipanah N, et al. Executive summary: official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clinical Infectious Diseases. 2016;63(7):853-867.
- Browne SH, Peloquin C, Santillo F, et al. Digitizing medicines for remote capture of oral medication adherence using co-encapsulation. Clin Pharmacol Ther. 2018;103(3):502-510.
- Implementing an electronic Directly Observed Therapy (eDOT) program: a toolkit for tuberculosis (TB) programs. Atlanta (GA): U.S. Center for Disease Control and Prevention; 2017: https://www.cdc.gov/tb/publications/guidestoolkits/tbedottoolkit.htm. Accessed 2018 May 2.
- Digital health for the End TB strategy: progress since 2015 and future perspectives. Meeting report 7-8 February 2017. (WHO/HTM/TB/2017.02). Geneva: World Health Organization (WHO); 2017: http://www.who.int/tb/publications/digitalhealth-meetingreport2017/en/. Accessed 2018 Apr 20.
- Long R, Heffernan C, Gao Z, Egedahl ML, Talbot J. Do "virtual" and "outpatient" public health tuberculosis clinics perform equally well? A program-wide evaluation in Alberta, Canada. PLoS One. 2015;10(12):e0144784.
- Patterson M, Finn S, Barker K. Addressing tuberculosis among Inuit in Canada. Can Commun Dis Rep. 2018;44(3/4):82-85.
- Falzon D, Raviglione M, Bel EH, Gratziou C, Bettcher D, Migliori GB. The role of eHealth and mHealth in tuberculosis and tobacco control: a WHO/ERS consultation. Eur Respir J. 2015;46(2):307-311.
- Vachon J, Gallant V, Siu W. Tuberculosis in Canada, 2016. Can Commun Dis Rep. 2018;44(3/4):75-81.
- Gassanov MA, Feldman LJ, Sebastian A, Kraguljac MJ, Rea E, Yaffe B. The use of videophone for directly observed therapy for the treatment of tuberculosis. Can J Public Health. 2013;104(3):e272.
- Aitchison A, Gordon S, Samarita T, Sebastian A. Here's looking at you! Video technology - an innovative approach to providing directly observed therapy to TB cases. Tuberculosis Conference 2012: https://10012.thankyou4caring.org/document.doc?id=1463. Accessed 2018 May 2.
- Holzman SB, Zenilman A, Shah M. Advancing patient-centered care in tuberculosis management: a mixed-methods appraisal of video directly observed therapy. Open Forum Infect Dis. 2018;5(4):1-8.
- Falzon D, Migliori G, Jaramillo E, Raviglione M. Digital health technology for the end TB strategy: Developing priority products and making them work. European Respiratory Journal Conference: European Respiratory Society Annual Congress. 2016;48(Supplement 60).
- Ngwatu BK, Nsengiyumva NP, Oxlade O, et al. The impact of digital health technologies on tuberculosis treatment: a systematic review. Eur Respir J. 2018;51(1).
- Wade VA, Karnon J, Eliott JA, Hiller JE. Home videophones improve direct observation in tuberculosis treatment: a mixed methods evaluation. PLoS One. 2012;7(11):e50155.
- Garfein RS, Collins K, Munoz F, et al. Feasibility of tuberculosis treatment monitoring by video directly observed therapy: a binational pilot study. Int J Tuberc Lung Dis. 2015;19(9):1057-1064.
- Story A, Aldridge R, Smith C, et al. A randomised controlled trial comparing smartphone enabled remote video observation with direct observation of treatment for tuberculosis. Thorax. 2017;72 (Supplement 3):A21.
- Olano-Soler H, Thomas D, Joglar O, et al. Notes from the field: use of asynchronous video directly observed therapy for treatment of tuberculosis and latent tuberculosis infection in a long-term-care facility - Puerto Rico, 2016-2017. MMWR Morb Mortal Wkly Rep. 2017;66(50):1386-1387.
- Holzschuh EL, Province S, Johnson K, et al. Use of video directly observed therapy for treatment of latent tuberculosis infection - Johnson County, Kansas, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(14):387-389.
- Krueger K, Ruby D, Cooley P, et al. Videophone utilization as an alternative to directly observed therapy for tuberculosis. Int J Tuberc Lung Dis. 2010;14(6):779-781.
- Denkinger CM, Grenier J, Stratis AK, Akkihal A, Pant-Pai N, Pai M. Mobile health to improve tuberculosis care and control: a call worth making. Int J Tuberc Lung Dis. 2013;17(6):719-727.
- Digital Canada 150. 2016; https://www.ic.gc.ca/eic/site/028.nsf/eng/50010.html. Accessed 2018 Apr 30.
- Frizzell S. Competitive cell service coming to all Nunavut communities by 2019. CBC News 2017; http://www.cbc.ca/news/canada/north/cell-service-nunavut-communities-1.4296826. Accessed 2018 Apr 30.
- How to protect Canadian health data: Canadian healthcare and U.S. cloud services: is HIPAA compliance good enough for Canadian health data? 2017; https://waelhassan.com/from-hipaa-to-phipa-baa/. Accessed 2018 Apr 30.
- Thorogood A, Simkevitz H, Phillips M, Dove ES, Joly Y. Protecting the privacy of Canadians' health information in the cloud. CJLT. 2016;14:173-213.
- Sinkou H, Hurevich H, Rusovich V, et al. Video-observed treatment for tuberculosis patients in Belarus: findings from the first programmatic experience. Eur Respir J. 2017;49(3).
- Story A, Garfein RS, Hayward A, et al. Monitoring therapy adherence of tuberculosis patients by using video-enabled electronic devices. Emerging Infectious Diseases. 2016;22(3):538-540.
- Shafner L, Chang AH, Hernandez AD, Hanina A. Evaluating the use of an artificial intelligence (AI) platform on mobile devices to measure and support tuberculosis medication adherence. 21st Conference of the Union North America Region, 22-25 February 2017. [Vancouver, BC]2017: https://aicure.com/pdf_downloads/evaluating-the-use-of-an-artificial-intelligence-ai-platform-on-mobile-devices-to-measure-and-support-tuberculosis-medication-adherence/. Accessed 2018 Apr 29.
- Doshi R, Falzon D, Thomas BV, et al. Tuberculosis control, and the where and why of artificial intelligence. ERJ open res. 2017;3(2).
- mHealth UCSD. NCT01960257: Wirelessly observed therapy in comparison to directly observed therapy for the treatment of tuberculosis.. Bethesda, MD: ClinicalTrials.gov; 2017: https://clinicaltrials.gov/ct2/show/NCT01960257. Accessed 2018 Apr 4.
Une analyse de biologie délocalisée permet de différencier les infections bactériennes des infections virales aigües des voies respiratoires supérieures
Les infections aigües des voies respiratoires supérieures, qui comprennent le simple rhume, la rhinosinusite, la pharyngite et la bronchite, sont des motifs de consultation fréquents en soins de santé primaires1,2. Comme les patients aux prises avec des
FebriDx est un test complémentaire qui n’est pas destiné à être utilisé comme test de diagnostic unique ou à remplacer les autres tests, mais plutôt à être combiné à des évaluations cliniques et d’autres évaluations diagnostiques, le cas échéant11.
Ce test à usage unique de sang prélevé par ponction capillaire digitale produit des résultats en 10 minutes7,12. L’immunoessai permet de déceler la présence dans le sang de deux protéines (biomarqueurs) dont le taux est élevé lorsque l’organisme combat une infection par une réponse immunitaire :
- La protéine C-réactive (CRP), un biomarqueur de l’infection bactérienne (le seuil étant : CRP ≥ 20 mg/l)7
- La protéine de résistance aux orthomyxovirus (MxA), un biomarqueur de l’infection virale (le seuil étant : MxA ≥ 40 ng/ml).10
La combinaison des deux biomarqueurs accroit l’utilité clinique du test, comparativement à l’utilisation d’un seul biomarqueur, tel que la CRP13,14. Les résultats apparaissent sous forme de lignes sur la carte de test (noir pour un taux de CRP élevé, rouge pour un taux de MxA élevé et bleu pour un résultat négatif, lorsque ni l’un ni l’autre n’est élevé)11. Ainsi, un taux élevé de MxA, avec ou sans un taux élevé de CRP, est considéré comme une infection virale. Inversement, un taux de CRP élevé sans hausse du taux de MxA est considéré comme une infection bactérienne. On estime que la coinfection, où les deux types d’infections sont présents, se produit dans moins de 2 % des cas2.
Qui pourrait en bénéficier?
FebriDx est conçu pour être utilisé chez des patients âgés de plus de deux ans, dans les trois jours suivant l’apparition de la fièvre et dans les sept jours suivant le début des symptômes respiratoires11,15. Cependant, on doit interpréter les résultats en tenant compte du contexte clinique; par exemple, il est possible que les résultats soient influencés par l’altération des réponses immunitaires chez les personnes qui prennent des immunosuppresseurs ou des antibiotiques, les patients traumatisés ou les personnes aux prises avec une affection chronique qui a des répercussions sur leur réponse immunitaire10,11,16.
Les infections respiratoires aigües représentent le principal motif de prescription d’antibiotiques en soins primaires4, et les taux d’infections des voies respiratoires et d’hospitalisations qui en découlent sont plus élevés dans les populations autochtones que dans les populations non autochtones du Canada17.
Disponibilité au Canada
FebriDx (RPS Diagnostics, Sarasota, Floride) a été homologué par Santé Canada en décembre 201518. Le fabricant est à la recherche de distributeurs canadiens et le test n’est pas encore utilisé dans la pratique clinique au pays. (Dr Robert Sambursky, RPS Diagnostics, Sarasota, Floride : communication personnelle, le 6 avril 2018).
(LA suite est en anglais)
What Does It Cost?
FebriDx comes in a box of 25 disposable test kits. Each individual test includes an all-in-one retractable lancet, blood collection and transfer tube, and push-button buffer delivery mechanism (Dr. Robert Sambursky: personal communication, 2018 May).12 Each test costs approximately US$15 to US$18 (Dr. Robert Sambursky: personal communication, 2018 April). This would be an additional cost to current practice.
Current Practice
Depending on the patient’s symptoms and clinical assessment, the diagnosis of upper respiratory infection may involve throat swab and culture, point-of-care rapid antigen detection tests, chest X-ray, or other diagnostic tests.10,14,19
Table 1: FebriDx Studies
Study | Patients Setting Study Type | Intervention Comparator | Results | ||||
---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value | Other | |||
Shapiro et al. (2018)7 US |
|
FebriDx compared with clinical algorithm of standard testsb | Full population Bacterial: 85% Viral: 90% Confirmed febrile (n = 121) Bacterial: 95% Viral: 90% |
Full population Bacterial: 93% Viral: 76% Confirmed febrile (n = 121) Bacterial: 94% Viral: 78% |
Full population Bacterial: 69% Viral: 83% Confirmed febrile (n = 121) Bacterial: 76% Viral: 89% |
Full population Bacterial: 97% Viral: 85% Confirmed febrile (n = 121) Bacterial: 99% Viral: 80% |
|
Self et al. (2017)10 US |
|
FebriDx compared with clinical algorithm of standard reference testsc | Bacterial: 80% Viral: 87% |
Bacterial: 93% Viral:83% |
Bacterial: 63% Viral: 64% |
Bacterial: 97% Viral: 95% |
|
Davidson (2017)3 UK |
|
FebriDx with clinical assessment versus clinical assessment alone (within subject) | Change in clinical management = 10/21 (48%); Reduced antibiotics = 8/10 (80%) |
||||
Sambursky and Shapiro (2015)13 US |
|
[FebriDx] immunoassay compared with standard reference testsd | Bacterial: 80% Viral: 70%f |
92%f |
a Three patients excluded (two because of incomplete reference standard tests and one because of an invalid FebriDx test).
b Reference tests include: bacterial cultures, respiratory polymerase chain reaction panels, procalcitonin, white blood cell count, with expert physician override in patients presenting with confirmed fever (55%) versus history of fever (45%) within the prior three days.
c Reference tests include: bacterial cultures, polymerase chain reaction test using the FilmArray Respiratory Panel, Epstein-Barr virus testing, polymerase chain reaction panels, white blood cell count, with MxA protein enzyme-linked immunosorbent assay & CRP immunoassay testing) with expert physician override.
d Results available for 54 patients; 6 invalid/indeterminate tests because of sample problems.
e For example: viral PCR, bacterial cell culture, ELISA measurement of C-reactive protein and MxA, urine samples, and white blood cell count.
f Results for pharyngitis and lower respiratory tract infection combined.
What Is the Evidence
Four studies of the FebriDx test were identified.3,7,10,13 This includes three US diagnostic test accuracy studies that looked at the agreement between FebriDx and various reference standard tests, and test sensitivity, specificity, and positive and negative predictive value.7,10,13 One UK retrospective chart review studied the impact of using FebriDx on patient management and antibiotic prescribing.3 There is currently no gold standard test for differentiating between bacterial and viral respiratory infections.10 Consequently, the comparator reference standard tests used in the studies varied. Study characteristics and findings are presented in Table 1.
In addition, a July 2017 briefing by the UK National Institute for Health and Care Excellence (NICE) concluded that “… there was very limited evidence in terms of quantity and quality to assess the FebriDx test.”14 This brief was published before the 2018 US,7 and the 2017 US10 and UK,3 study results were available.
Safety
The main concern with any diagnostic test is the impact on patient care as a result of a missed, delayed, or incorrect test result.20 Untreated bacterial infections may be self-limiting or may cause serious illness, while the ineffective treatment of viral infections with antibiotics can cause adverse reactions, as well as contributing to antimicrobial resistance.13 No clinical adverse events were reported in the studies of FebriDx.3
Issues to Consider
The cost of the FebriDx test, and staff time providing the test, may be offset by the reduced use of unnecessary antibiotics and their associated adverse effects.14 One UK specialist commented that it could reduce hospital stays through the more timely administration of antibiotics to patients with pneumonia.14 A recent US review speculated that using FebriDx in primary care may decrease the need for point-of-care streptococcus and flu tests and reduce these costs.4
A European commentary on point-of-care tests for respiratory tract infections suggested that incentives to primary care physicians may be needed to encourage the adoption of these first-generation technologies.8
Unlike other rapid tests for bacterial infection, the FebriDx does not require laboratory access or equipment, such as a benchtop analyzer.4,14
The FebriDx test cannot identify which particular bacteria or virus is causing the infection.4,13 FebriDx is not intended to provide a final diagnosis but is rather an additional decision aid for the primary care practitioner. One UK specialist comment in the NICE briefing was that C-reactive protein testing had been shown to reduce prescriptions for antibiotics, but that the benefit of adding MxA still needed to be demonstrated.14
Most of the evidence to date has been in adult populations and more studies in children are needed.7
In the UK, where the FebriDx test is available, training is provided by the distributor.14 One specialist commentator for the UK NICE briefing noted that the FebriDx test is “… simpler than benchtop analyser tests and can therefore be used by health care assistants with minimal training.”14 The use of the test may lengthen the patient-health provider consult time (to accommodate the wait for test results); however, unlike with benchtop analyzers, multiple tests could be run concurrently.14
Related Developments
Other studies of FebriDx are planned or underway. One UK study, expected to be completed in July 2018, is assessing its use in urgent care. A UK health technology assessment, which will compare FebriDx to stand-alone CRP testing, is planned to start in the summer of 2018 (Dr. Robert Sambursky: personal communication, 2018 April). A further study, using a new quantitative version of FebriDx, will begin in the fall of 2019 (Dr. Robert Sambursky: personal communication, 2018 May 15).
Other investigators and manufacturers are assessing single biomarkers (such as CRP or procalcitonin) or different combinations of biomarkers to differentiate bacterial and viral respiratory infections.4,21 Other rapid point-of-care tests for respiratory infections are also entering primary care practice; for example, the cobas Liat System (Roche Molecular Diagnostics) and Alere i (Abbott) tests for influenza.22
Looking Ahead
Using point-of-care tests to differentiate between bacterial and viral respiratory infections may improve the appropriate prescribing of antibiotics in primary care and contribute to antibiotic stewardship.14 A recent US study found that the majority of patients with respiratory tract infections in six primary care clinics would be willing to have a blood test to help determine whether antibiotic treatment could be avoided.23
Author: Leigh-Ann Topfer
References
- Aabenhus R, Jensen JU, Jorgensen KJ, Hrobjartsson A, Bjerrum L. Biomarkers as point-of-care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care. Cochrane Database Syst Rev. 2014(11):CD010130.
- Harris AM, Hicks LA, Qaseem A. Appropriate antibiotic use for acute respiratory tract infection in adults: advice for high-value care from the American College of Physicians and the Centers for Disease Control and Prevention. Ann Intern Med. 2016;164(6):425-434.
- Davidson M. FebriDx point-of-care testing to guide antibiotic therapy for acute respiratory tract infection in UK primary care: a retrospective outcome analysis. J Infect Dis Preve Med. 2017;5.
- Joseph P, Godofsky E. Outpatient antibiotic stewardship: a growing frontier-combining myxovirus resistance protein A with other biomarkers to improve antibiotic use. Open Forum Infect Dis. 2018;5(2):ofy024.
- Science M, Bitnun A, McIsaac W. Identifying and treating group A streptococcal pharyngitis in children. Can Med Assoc J. 2015;187(1):13-14.
- Guideline for the diagnosis and management of acute pharyngitis. Edmonton (AB): Alberta Medical Association; 2008.
- Shapiro NI, Self WH, Rosen J, et al. A prospective, multi-center US clinical trial to determine accuracy of FebriDx point-of-care testing for acute upper respiratory infections with and without a confirmed fever [draft]. Ann Med. 2018.
- Kaman WE, Elshout G, Bindels PJ, Mitsakakis K, Hays JP. Current problems associated with the microbiological point-of-care testing of respiratory tract infections in primary care. Future Microbiol. 2016;11:607-610.
- Silverman M, Povitz M, Sontrop JM, Shariff SZ. Antibiotic prescribing for nonbacterial acute upper respiratory infections in elderly persons. Ann Intern Med. 2017;167(10):758-759.
- Self WH, Rosen J, Sharp SC, et al. Diagnostic accuracy of FebriDx: a rapid test to detect immune responses to viral and bacterial upper respiratory infections. J Clin Med. 2017;6(10).
- FebriDx quick reference guide. 2018; https://www.rpsdetectors.com/wp-content/uploads/2016/03/FORM-MKT-319.2_FebriDx-QRG-EU.pdf. Accessed April 3, 2018.
- RPS Diagnostics partners with Atomo Diagnostics to develop next generation FebriDx blood tests for antibiotic stewardship in the outpatient setting [press release]. 2018; http://www.prweb.com/releases/2018/02/prweb15225059.htm. Accessed May 3, 2018.
- Sambursky R, Shapiro N. Evaluation of a combined MxA and CRP point-of-care immunoassay to identify viral and/or bacterial immune response in patients with acute febrile respiratory infection. Eur Clin Respir J. 2015;2:28245.
- FebriDx for C-reactive protein and Myxovirus resistance protein A testing in primary care. London: National Institute for Health and Care Excellence (NICE); 2017.
- Godkin D. Viral or bacterial? Febridx differentiates to mitigate antibiotic overuse. Med Device Dly. 2016;20(25):1,8.
- FebriDx package insert. 2015; https://www.rpsdetectors.com/wp-content/uploads/2015/05/SPEC-MKT-044.2_FebriDx-Package-Insert-CE-Mark.pdf. Accessed May 24, 2018.
- Statistics Canada. Housing conditions and respiratory hospitalizations among First Nations people in Canada. 2017; https://www150.statcan.gc.ca/n1/pub/82-003-x/2017004/article/14789-eng.htm. Accessed April 24, 2018.
- Medical devices active licences search. Health Canada. https://health-products.canada.ca/mdall-limh/prepareSearch-preparerRecherche.do;jsessionid=4BE0FE0B866F40855C18AB038D3DFE4C?type=active. Accessed May 3, 2018.
- Lean WL, Arnup S, Danchin M, Steer AC. Rapid diagnostic tests for group A streptococcal pharyngitis: a meta-analysis. Pediatrics. 2014;134(4):771-781.
- Singh H, Schiff GD, Graber ML, Onakpoya I, Thompson MJ. The global burden of diagnostic errors in primary care. BMJ Qual Saf. 2017;26(6):484-494.
- ImmunoXpert(TM) for diagnosing bacterial and viral infections. Birmingham (UK): University of Birmingham. NIHR Horizon Scanning Research & Intelligence Centre;2016.
- Mason J. Point-of-care testing for influenza. Ottawa: CADTH; 2016.
- Schwartz M, Hardy V, Keppel GA, et al. Patient willingness to have tests to guide antibiotic use for respiratory tract infections: from the WWAMI Region Practice and Research Network (WPRN). J Am Board Fam Med. 2017;30(5):645-656.
Le point sur l’utilisation des drones dans les soins de santé
Les véhicules aériens sans pilote (UAV), communément appelés drones, sont issus du monde militaire1. Des versions commerciales sont aujourd’hui facilement accessibles aux entreprises et aux particuliers1. La technologie des drones, qui évolue constamment, pourrait offrir des solutions permettant d’élargir la prestation des services de santé aux Canadiens qui habitent dans des collectivités où l’accessibilité de ces services est restreinte en raison de longues distances et de l’accès routier limité ou saisonnier.
La technologie des drones
Un drone est un véhicule qui peut être conduit sans passager à bord, et dans certains cas, de manière autonome1,2. La plupart des gens connaissent bien les drones aéroportés utilisés à des fins récréatives, de recherche ou commerciales (on peut penser à la photographie aérienne)1. Bien que la forme, la taille, la vitesse et d’autres caractéristiques des drones varient, on fait généralement une distinction selon que leur mode de sustentation est à voilure fixe (tel un petit avion) ou à voilure tournante (tel un petit hélicoptère)1. Leur propulsion peut se faire par projection, catapultage, lancement par canon pneumatique (à air comprimé ou à essence) ou par des systèmes de pistes classiques2. Bien souvent, les drones peuvent voler plus longtemps que les aéronefs traditionnels pilotés par quelqu’un à bord et on peut les personnaliser en y intégrant des capteurs ainsi que de l’équipement (tel que des caméras et des coffres de rangement), ce qui les rend attrayants pour des fins de recherche ou commerciales1.
Au Canada, on prévoyait que le nombre de drones utilisés à des fins non récréatives dépasserait 87 000 en 20171. À l’échelle mondiale, des entreprises comme Zipline3, Drone Delivery Canada4, Matternet5, et Vayu6 déploient actuellement des drones pour assurer la livraison de fournitures médicales et d’échantillons pour laboratoire.
Son utilisation potentielle dans le domaine des soins de santé
Bien que la recherche sur l’utilisation des drones dans les soins de santé soit abondante, la documentation scientifique que nous avons relevée se limite actuellement aux simulations, études de faisabilité et modèles théoriques, et n’évalue pas les résultats en matière de santé7-20. Des rapports sur les organisations qui ont recours aux drones pour fournir des services de soins de santé sont également très nombreux21-25.
Utilisations réelles ou simulées
Le transport du matériel médical, des fournitures et des échantillons biologiques
Au Canada, des ambulanciers paramédicaux du Comté de Renfrew, tout près d’Ottawa, mettent à l’essai des drones à plusieurs voilures pour la distribution de défibrillateurs externes automatiques (DEA) aux résidents des régions rurales depuis 201621. En Suède, des chercheurs ont effectué des simulations réelles en acheminant des DEA, au moyen de drones, à des passants témoins d’un arrêt cardiaque extrahospitalier7,8.
La Première nation Moose Cree du Nord de l’Ontario procède à des expérimentations de livraison par drone de l’approvisionnement essentiel, notamment des fournitures médicales, pour franchir les 2,5 km d'eau qui sépare la communauté insulaire du continent22.
Au Rwanda, on a recours à des drones à voilure fixe depuis 2011 pour effectuer la livraison de réserves de sang dans des terrains montagneux dépourvus de routes pavées23, alors qu’au Madagascar et au Malawi, on procède à des essais sur des drones et on s’en sert pour acheminer des échantillons aux laboratoires centraux24,25. Dans le cadre d’une série d’études de faisabilité et de démonstrations de faisabilité, des chercheurs de l’Université Johns-Hopkins à Baltimore ont étudié les effets de la livraison par drone sur les analyses de laboratoire courantes9, les échantillons de sang10 et les produits sanguins11, ainsi que les microbes dans le sang et les échantillons d’expectorations12.
Soins aux très nombreux blessés et médecine de catastrophe
Des chercheurs de l'Île-du-Prince-Édouard ont comparé les délais nécessaires pour repérer sept dangers présents lors d’un incident de masse simulé chez des groupes d’étudiants paramédicaux qui ont examiné la scène à l’aide d’un drone ou en en se rendant sur place13. De même, en Norvège, on a étudié la faisabilité de l’utilisation de drones pour faciliter l’échange d’information dans le cas d’un accident de la route simulé14, et en Italie, pour la cartographie aérienne en cas de catastrophe naturelle15.
Études théoriques
Des chercheurs de Toronto16 et de Salt Lake City17 ont créé des modèles pour optimiser l’implantation des drones dans les milieux urbains et ruraux, l’objectif étant de réduire au minimum le délai d’intervention de la livraison de DEA à des passants témoins d’un arrêt cardiaque extrahospitalier.
On a également créé des modèles pour examiner comment les drones pouvaient contribuer à la distribution des produits sanguins18, venir se greffer aux réseaux de transport médical existants19 et effectuer la collecte et le dépôt de fournitures médicales pour les personnes atteintes de maladies chroniques vivant en région rurale20.
La règlementation des drones au Canada
Transports Canada est responsable de l’exploitation des drones commerciaux en vertu du Règlement de l’aviation canadien26. Les Canadiens qui souhaitent utiliser un drone à des fins non récréatives doivent d’abord obtenir un certificat d’opérations aériennes spécialisées de Transport Canada27. Pour pouvoir piloter un drone au-dessus de la ligne d’observation directe, les pilotes de drones canadiens doivent également se procurer un certificat d’opérations aériennes spécialisées pour exploitants d’UAV conformes27.
Depuis 2014, Transports Canada accorde des dérogations qui permettent à certains drones non récréatifs d’être exploités sans certificat d’opérations aériennes spécialisées1; toutefois, on exige généralement que le drone vole dans le champ de vision de l’opérateur1. En 2018, de nouveaux règlements relatifs à l’utilisation des drones devraient éliminer la distinction entre l’usage récréatif et non récréatif, en la remplaçant par une méthodologie fondée sur l’analyse des risques en fonction de la taille du drone et du milieu d’utilisation (par exemple, une zone rurale par rapport à une zone urbaine)1.28.
(La suite est en anglais)
What Does It Cost?
The costs of using and maintaining a drone or network of drones to transport medical supplies are not well-understood.29 Early research modelling potential costs has been conducted.20,30 In these studies, costs considered included initial drone purchases, the set-up of deployment centres, operation, maintenance, labour, and replacement purchases. A formal cost-effectiveness study is underway in Toronto (Dr. Timothy Chan, Associate Professor, University of Toronto, Toronto, ON: personal communication, 2018 May 7).
Implementation Issues
Were a drone or a network of drones to be implemented and used for health care purposes in Canada, decision-makers would have to consider a number of issues including safe operation, effects on biological samples, infrastructure, training, practitioner acceptance, and privacy.
Safe Operation
Transport Canada’s regulation of drones exist largely to ensure public safety.1 Risks posed by drones include collisions with other aircraft or obstacles, crashes, and injury to bystanders retrieving items from a landed drone.1,7,14
Compared to conventional aircraft, the small size and light weight of drones makes them more vulnerable to turbulence, icing, and extreme cold, which can lead to loss of control and crashes.31
Effects on Biological Samples
How conditions such as altitude, acceleration, and temperature changes associated with flight affect biological samples must be considered and has been explored in early research, including how these samples can be best packaged for delivery.9-12
Infrastructure
One study that considered how best to implement an AED drone delivery network identified specific infrastructure considerations.17 For example, in order for a drone network to provide maximum coverage, new launch locations may need to be built; existing buildings, such paramedic or ambulance stations, could be retrofitted; or some combination of both approaches may make sense.17
Training
While exceptions can be made, it is likely the proposed drone applications in health care discussed earlier would require a Special Flight Operations Certificate or Compliant UAV Operator Special Flight Operations Certificate.1,27 Obtaining these certificates requires the operator to meet a number of skill and knowledge requirements.32
Practitioner Acceptance
Buy-in from practioners may also be necessary before deploying drones. A pilot study by researchers in the Boston area evaluated the acceptability of using drones to provide real-time support to mass critical incident commanders using qualitative interviews after a simulated incident.33 Participants were asked to consider how the technology affected the overall management of the scene, resource allocation, and patient triage.
Privacy
Using drones to deliver medical supplies or patient lab samples, or take pictures or record videos, may have implications for patient privacy if operators are not a part of the circle of care.14,29,34 Caution must be taken to prevent unauthorized access to live or recorded video, and picture or other health information contained within or transmitted by the drone.14,34 Clear ownership of data captured by drones must also be established to ensure that secondary use of the content (e.g., for research) is used ethically.14
Looking Ahead
Other proposed health care applications include military medical evacuation,35 patient transportation,36-38 locating potential drowning victims,39 delivery of portable DNA sequencing equipment for infectious diseases,40 remote detection and monitoring of vital signs,41 and mapping infectious disease areas.42
A systematic review to identify real-life and simulated applications of drones in health care is currently underway.43
Author: Jeff Mason
References
- Chong JS, Nicole. Civilian drone use in Canada. 2017; https://lop.parl.ca/Content/LOP/ResearchPublications/2017-23-e.html?cat=science#a3. Accessed April 12, 2018.
- Balasingam M. Drones in medicine-the rise of the machines. Int J Clin Pract. 2017;71(9).
- Zipline. 2018; http://www.flyzipline.com/. Accessed April 12, 2018.
- Drone delivery Canada. 2018; http://www.dronedeliverycanada.com/. Accessed April 12, 2018.
- Matternet. 2018; http://mttr.net/. Accessed April 12, 2018.
- Vayu. 2018; https://www.vayu.us/. Accessed April 12, 2018.
- Claesson A, Fredman D, Svensson L, et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand J Trauma Resusc Emerg Med. 2016;24(1):124.
- Claesson A, Backman A, Ringh RNM, et al. Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services. J Am Med Assoc. 2017;317(22):2332-2334.
- Amukele TK, Hernandez J, Snozek CLH, et al. Drone transport of chemistry and hematology samples over long distances. Am J Clin Pathol. 2017;148(5):427-435.
- Amukele TK, Sokoll LJ, Pepper D, Howard DP, Street J. Can unmanned aerial systems (drones) be used for the routine transport of chemistry, hematology, and coagulation laboratory specimens? PLoS One. 2015;10(7):e0134020.
- Amukele T, Ness PM, Tobian AAR, Boyd J, Street J. Drone transportation of blood products. Transfusion. 2017;57(3):582-588.
- Amukele TK, Street J, Carroll K, Miller H, Zhang SX. Drone transport of microbes in blood and sputum laboratory specimens. J Clin Microbiol. 2016;54(10):2622-2625.
- Jain T, Sibley A, Stryhn H, Hubloue I. Comparison of unmanned aerial vehicle technology versus standard practice in identification of hazards at a mass casualty incident scenario by primary care paramedic students. Disaster Med Public Health Prep. 2018:1-4.
- Abrahamsen HB. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study. BMC Emerg Med. 2015;15:12.
- Boccardo P, Chiabrando F, Dutto F, Tonolo FG, Lingua A. UAV deployment exercise for mapping purposes: evaluation of emergency response applications. Sensors (Basel, Switzerland). 2015;15(7):15717-15737.
- Boutilier JJ, Brooks SC, Janmohamed A, et al. Optimizing a drone network to deliver automated external defibrillators. Circulation. 2017;135(25):2454-2465.
- Pulver A, Wei R, Mann C. Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp Emerg Care. 2016;20(3):378-389.
- Wen T, Zhang Z, Wong KK. Multi-objective algorithm for blood supply via unmanned aerial vehicles to the wounded in an emergency situation. PLoS One. 2016;11(5):e0155176.
- Scott JES, Carlton H. Drone delivery models for healthcare. Proc Int Conf Syst Sci. 2017:3297-3304. https://pdfs.semanticscholar.org/622a/d97506e882bf30ba4dab9c0748ce540ecee3.pdf. Accessed April 12, 2018.
- Kim SJ, Lim GJ, Cho J, Cote MJ. Drone-aided healthcare services for patients with chronic diseases in rural areas. J Intell Robot Syst. 2017;88(1):163-180.
- CTV Ottawa. Paramedic drone giving patients in Renfrew County help from above. 2018; https://ottawa.ctvnews.ca/paramedic-drone-giving-patients-in-renfrew-county-help-from-above-1.3755565. Accessed April 6, 2018.
- McQuigge M. First Nation in Ontario using drones to help lower costs, create jobs. 2017; https://www.thestar.com/news/canada/2017/10/18/first-nation-in-ontario-using-drones-to-help-lower-costs-create-jobs.html. Accessed April 6, 2018.
- Glauser W. Blood-delivering drones saving lives in Africa and maybe soon in Canada. Can Med Assoc J. 2018;190(3):E88-e89.
- Bochkovsky A. Vayu drone delivers blood, stool samples from patients in remote Madagascar villages. 2016; https://www.medgadget.com/2016/08/vayu-drone-delivers-blood-stool-samples-patients-remote-madagascar-villages.html. Accessed April 12, 2018.
- Look! Up in the sky! It's a bird. It's a plane. It's a medical drone! Lancet Haematol. 2017;4(2):e56.
- Government of Canada. Canadian Aviation Regulations. 2017; http://laws-lois.justice.gc.ca/eng/regulations/SOR-96-433/FullText.html. Accessed April 12, 2018.
- Transport Canada. Applying for a special flight operations certificate. 2018; https://www.tc.gc.ca/eng/civilaviation/opssvs/applying-special-flight-operations-certificate.html. Accessed April 13, 2018.
- Transport Canada. Proposed rules for drones in Canada. 2018; http://www.tc.gc.ca/eng/civilaviation/opssvs/proposed-rules-drones-canada.html. Accessed April 12, 2018.
- Bhatt K, Pourmand A, Sikka N. Targeted applications of unmanned aerial vehicles (drones) in telemedicine. Telemed J E Health. 2018.
- Haidari LA, Brown ST, Ferguson M, et al. The economic and operational value of using drones to transport vaccines. Vaccine. 2016;34(34):4062-4067.
- DeGarmo MT. Issues concerning integration of unmanned aerial vehicles in civil airspace 2004; https://www.mitre.org/sites/default/files/pdf/04_1232.pdf. Accessed April 12, 2018.
- Transport Canada. TP 15263 – Knowledge requirements for pilots of unmanned air vehicle systems (UAV) 25 kg or less, operating within visual line of sight. 2017; https://www.tc.gc.ca/eng/civilaviation/publications/page-6557.html. Accessed April 13, 2018.
- Hart A, Chai PR, Griswold MK, Lai JT, Boyer EW, Broach J. Acceptability and perceived utility of drone technology among emergency medical service responders and incident commanders for mass casualty incident management. Am J Disaster Med. 2017;12(4):261-265.
- Lin CA, Shah K, Mauntel LCC, Shah SA. Drone delivery of medications: review of the landscape and legal considerations. Am J Health Syst Pharm. 2018;75(3):153-158.
- Handford C, Reeves F, Parker P. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts. J R Army Med Corps. 2018.
- Williams M. The evolution of UAVs: the ambulance drone. 2018; https://www.herox.com/crowdsourcing-news/189-the-evolution-of-uavs-the-ambulance-drone. Accessed May 3, 2018.
- Lin J, Singer PW. This people-moving drone has completed more than 1,000 test flights. 2018; https://www.popsci.com/ehang-passenger-carrying-drone. Accessed May 3, 2018.
- Jalal AH, Umasankar Y, Christopher F, Pretto EA, Bhansali S. A model for safe transport of critical patients in unmanned drones with a ‘watch’ style continuous anesthesia sensor. J Electrochem Soc. 2018;165(8):B3071-B3077.
- Claesson A, Svensson L, Nordberg P, et al. Drones may be used to save lives in out of hospital cardiac arrest due to drowning. Resuscitation. 2017;114:152-156.
- Priye A, Wong S, Bi Y, et al. Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem. 2016;88(9):4651-4660.
- Al-Naji A, Perera AG, Chahl J. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle. Biomed Eng Online. 2017;16(1):101.
- Fornace KM, Drakeley CJ, William T, Espino F, Cox J. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends Parasitol. 2014;30(11):514-519.
- Carrillo R, Moscoso M, Taype-Rondán A, Ruiz A, Bernabe-Ortiz A. The use of unnamed aerial vehicles or drones for health purposes and clinical-related outcomes: a systematic review of experimental or simulation studies. 2017; http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017072194. Accessed March 21, 2018.
Minicompilation de rapports récents de l’ACMTS et d’autres organismes
Ressources documentaires de l’ACMTS au sujet des soins de santé en région rurale ou éloignée
- Détection et diagnostic de la septicémie dans les régions rurales et éloignées : analyse de l’environnement (projet en cours)
- Les rapports de l’ACMTS concernant les soins de santé dans les régions rurales ou éloignées sont répertoriés dans une nouvelle page : Les preuves par thème de l’ACMTS : Les preuves au sujet des soins de santé en région rurale ou éloignée
Compilation d’analyses prospectives 2017 de l’ACMTS
- La deuxième partie de la Compilation d’analyses prospectives 2017 est maintenant disponible. Cette liste fait état des rapports sur des technologies nouvelles et émergentes publiés par l’ACMTS et d’autres organismes au cours du deuxième semestre de 2017.
Rapports récents d’analyse prospective d’autres organismes
Organismes compris dans la minicompilation ci-après :
- Agency for Healthcare Research and Quality (AHRQ), États-Unis
- Cleveland Clinic, États-Unis
- National Institute for Health and Care Excellence (NICE), Royaume-Uni
- The Medical Futurist
- Sax Institute, Australie
- ECRI Institute (ECRI), États-Unis
Appareil endocrinien, nutrition et métabolisme
- Mobile Health Applications for Self-Management of Diabetes (AHRQ) (disponible en anglais seulement)
Maladies infectieuses et lutte contre les infections
- Point-of-Care Diagnostic Testing in Primary Care for Strep A Infection in Sore Throat (NICE) (disponible en anglais seulement)
Soins palliatifs ou de longue durée
- The Patient Centred Medical Home: Barriers and Enablers to Implementation (Sax Institute) (disponible en anglais seulement)
Autres
- Rating Portable Diagnostic Devices That Make Patients the Point-Of-Care (The Medical Futurist) (disponible en anglais seulement)
- The Future of Emergency Medicine: Innovations Making Patients the Point-of-Care (The Medical Futurist) (disponible en anglais seulement)
Tendances et prévisions
- Top 10 Medical Innovations for 2018 (Cleveland Clinic) (disponible en anglais seulement)
(See: #5, The Emergence of Distance Health.) (disponible en anglais seulement) - 2018 Top 10 Hospital C-Suite Watch List (ECRI) (disponible en anglais seulement)
Projets stratégiques
- Rapport final : Sommet pour améliorer l’accès aux soins de santé et l’équité dans les communautés rurales du Canada (le Collège des médecins de famille du Canada)
- Looking Forward: Improving Rural Health Care, Primary Care, and Addiction Recovery Programs (le Comité permanent de la santé, Colombie-Britannique) (disponible en anglais seulement)
About This Document
Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policymakers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.
While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.
CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.
This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.
Subject to the aforementioned limitations, the views expressed herein do not necessarily reflect the views of Health Canada, Canada’s provincial or territorial governments, other CADTH funders, or any third-party supplier of information.
This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.
This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.
The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.
About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.
Funding: CADTH receives funding from Canada’s federal, provincial, and territorial governments, with the exception of Quebec.
Contact requests@cadth.ca with inquiries about this notice or legal matters relating to CADTH services.
ISSN: 1715-555X