TITLE: Cryotherapy for Non-Small Cell Lung Cancer: A Review of the Clinical Effectiveness

DATE: 05 November 2008

CONTEXT AND POLICY ISSUES:

Cryotherapy, also called cryosurgery or cryoablation, a technique in which probes inserted into the tissue deliver extremely cold temperatures to destroy target tissue, has received expanding indications for malignant tumor therapy. A review of the clinical effectiveness of cryotherapy in the treatment of non-small cell lung cancer (NSCLC), the most common type of lung cancer, is needed.

RESEARCH QUESTION:

What is the clinical effectiveness of cryotherapy for the treatment of non-small cell lung cancer?

METHODS:

A limited literature search was conducted on key health technology assessment resources, including PubMed, OVID’s Medline and Embase, the Cochrane Library (Issue 4, 2008), University of York Centre for Reviews and Dissemination (CRD) databases, ECRI, EuroScan, international HTA agencies, and a focused Internet search. Results include articles published between 2003 and October 2008, and are limited to English language publications only. No filters were applied to limit the retrieval by study type. Internet links are provided, where available.

SUMMARY OF FINDINGS:

Our literature search identified two recent observational studies on the clinical effectiveness of cryotherapy on NSCLC survival. There were no systematic reviews or randomized controlled trials found.

Disclaimer: The Health Technology Inquiry Service (HTIS) is an information service for those involved in planning and providing health care in Canada. HTIS responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources and a summary of the best evidence on the topic that CADTH could identify using all reasonable efforts within the time allowed. HTIS responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material. It may be copied and used for non-commercial purposes, provided that attribution is given to CADTH.

Links: This report may contain links to other information on available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
The first study included 346 patients with lung cancer treated with cryoablation, of whom 97 underwent post ablation chemotherapy, 82 patients underwent post ablation radiotherapy, and the remaining patients did not have further therapy. The study found cryoablation alone resulted in one, two, and three-year survival rates of 72.46%, 51.49% and 28.15%, respectively. With the addition of post ablation chemotherapy, the survival rates were 73.19% (one year), 49.48% (two year), and 24.19% (three year). With the aid of post ablation radiotherapy, survival rates were 79.27%, 58.53% and 24.19% at one year, two years and three years, respectively. Peripheral blood T-lymphocytes were increased post-operatively, which suggests that cryotherapy may also help through immune system stimulation.

The second study included 253 cases of advanced NSCLC who underwent cryosurgery. After cryosurgery, the tumors were significantly reduced in size and superior vena cava obstructive syndrome was no longer present. This short term efficacy was found in 61% of patients three months after ablation. Median survival time was 11.98 months, and the one- and two-year survival rates were 41.1% and 27.59%, respectively. Side effects of cryotherapy were hemorrhage from the lung (68%), fever (75%), and pneumothorax (25%).

CONCLUSIONS AND IMPLICATIONS FOR DECISION OR POLICY MAKING:

Evidence is not sufficient to determine the benefits and harms of cryotherapy for NSCLC. No studies comparing the effect of cryotherapy with other treatment modalities for NSCLC were identified, and therefore it is difficult to determine the clinical value of the treatment. Longer follow-up to 5 years is also needed to draw a conclusion on the clinical effectiveness of cryotherapy. The combination of cryotherapy and chemotherapy has shown its effects on tumor growth in in vivo and in vitro experiments on human lung cancer models. This points to the possibility of future studies on combination therapy.

PREPARED BY:
Chuong Ho, Research Officer, MD, MSc
Emmanuel Nkansah, Information Specialist, BEng, MLS, MA
Health Technology Inquiry Service
Email: htis@cadth.ca
Tel: 1-866-898-8439
REFERENCES:


