TITLE: GreenLight Laser for the Treatment of Benign Prostatic Hypertrophy: Clinical and Cost-Effectiveness, and Safety

DATE: 29 May 2013

RESEARCH QUESTIONS

1. What is the evidence for the clinical effectiveness of photoselective vaporization of the prostate with GreenLight laser for the treatment of benign prostatic hypertrophy?

2. What is the evidence for the improved safety of photoselective vaporization of the prostate with GreenLight laser for the treatment of benign prostatic hypertrophy compared with transurethral resection of the prostate?

3. What is the evidence for the cost-effectiveness of photoselective vaporization of the prostate with GreenLight laser for the treatment of patients with benign prostatic hypertrophy compared with transurethral resection of the prostate?

KEY MESSAGE

Six systematic reviews and meta-analyses, eight randomized controlled trials, and two economic studies were identified regarding the use of photoselective vaporization of the prostate with GreenLight laser for the treatment of benign prostatic hypertrophy.

METHODS

A limited literature search was conducted on key resources including PubMed, The Cochrane Library (2013, Issue 5), University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No filters were applied to limit the retrieval by study type. The search was also limited to English language documents published between May 1, 2010 and May 15, 2013. Internet links were provided, where available.

The summary of findings was prepared from the abstracts of the relevant information. Please note that data contained in abstracts may not always be an accurate reflection of the data contained within the full article.

Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that CADTH could identify using all reasonable efforts within the time allowed. Rapid responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material and may contain material in which a third party owns copyright. This report may be used for the purposes of research or private study only. It may not be copied, posted on a web site, redistributed by email or stored on an electronic system without the prior written permission of CADTH or applicable copyright owner.

Links: This report may contain links to other information available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
RESULTS

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, and economic evaluations.

Six systematic reviews and meta-analyses, eight randomized controlled trials, and two economic studies were identified regarding the use of photoselective vaporization of the prostate with GreenLight laser for the treatment of benign prostatic hypertrophy. Because of the large volume of relevant literature, non-randomized studies have been included in the appendix.

OVERALL SUMMARY OF FINDINGS

Six systematic reviews and meta-analyses, 1-6 nine randomized controlled trials, 7-15 and two economic studies16,17 were identified regarding the use of photoselective vaporization (PVP) of the prostate with GreenLight laser for the treatment of benign prostatic hypertrophy (BPH).

As compared to transurethral resection of the prostate (TURP), 1-4,7,9-13 holmium laser enucleation, 8 and diode laser vaporization 14 PVP was associated with:

TURP
- less perioperative blood loss1,10,13
- fewer blood transfusions1,3,4
- less capsular perforation1,4
- significantly lower risk of transurethral resection syndrome4
- shorter catheterization time1-4,7,10,12,13
- shorter hospital stay1-4,7,9,12,13
- no significant difference in IPSS scores between groups1,2,4,7,8,10-13
- no significant difference in Q(max) between groups1,2,4,7,9-14
- no significant difference in quality of life between groups1,2,7,8,10,12
- no significant difference in post void residual urine between groups1,2,4,7,10,13
- longer operative time1-4,10
- shorter operating time7
- higher re-intervention rate1,2,4,13
- fewer intraoperative complications7,13
- similar overall complication rate between groups10,12

Holium laser enucleation8
- similar catheterization time
- similar operating time between groups
- inferior functional results as compared to the holmium laser group

Diode laser vaporization14
- no significant difference in IPSS scores between groups
- no significant difference in Q(max) between groups
- no significant difference in quality of life between groups
- no significant difference in post void residual urine between groups
One meta-analysis compared TURP to various other minimally invasive surgical therapies including GreenLight laser PVP. All treatments were statistically comparable in terms of efficacy and overall morbidity. Another systematic review comparing PVP and other minimally invasive surgical procedures to TURP was included, but no outcomes information was provided in the abstract.

One cost-minimization analysis undertaken in Australia compared the costs of PVP and TURP for BPH and determined that there were no significant cost differences between the two treatments when accounting for equipment, training, and re-intervention costs. A comparative cost analysis compared the cost of PVP with a 120W GreenLight laser to TURP from both the Greek National Health Service and public insurance perspectives. From the health service perspective, PVP was preferred over TURP for prostate volumes between 40 cc and 70 cc. From the public insurance perspective, PVP was less costly than TURP only if the patient was part of the workforce, because they could return to work more quickly after the PVP procedure.
REFERENCES SUMMARIZED

Health Technology Assessments
No literature identified.

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Economic Evaluations

APPENDIX – FURTHER INFORMATION:

Costing Report

Non-Randomized Studies

PubMed: PM20562795

Safety

PubMed: PM21834657

PubMed: PM20522311

Review Articles

PubMed: PM23671400

PubMed: PM22026624

PubMed: PM21438974

Additional References

PubMed: PM21381906