Cost-Effectiveness of Therapy with Combinations of Long-Acting Bronchodilators and Inhaled Steroids for Treatment of COPD

An Economic Evaluation of the OPTIMAL Study

Mehdi Najafzadeh, M.Sc., M.A.
Carlo A. Marra, Pharm.D. Ph.D.
Mohsen Sadatsafavi, M.D., M.H.Sc.
Shawn D. Aaron, M.D., M.Sc., FRCPC
Sean D. Sullivan, Ph.D.
Katherine L. Vandemheen, R.N., B.S.N.
Paul W. Jones, Ph.D., F.R.C.P.
J. Mark Fitzgerald, M.D., FRCPC

2008 CADTH Symposium
Edmonton, AB, April 28, 2008
Background

- Chronic Obstructive Pulmonary Disease (COPD) has a high burden to society*:
 - >800,000 are diagnosed with COPD
 - $3,196 CAD$ (2003) total annual costs/patient
 - 4th and 6th leading cause of death in men and women, respectively

- Several classes of medications for COPD (short and long-acting anticholinergics, short- and long-acting beta-agonists, oral or inhaled corticosteroids, theophylline)

- Little is known about combination therapy.
 GOLD recommendations: Consider adding a second bronchodilator treatment rather than prescribing high dose bronchodilator mono-therapy to mitigate adverse effects #

Global Strategy for the Diagnosis, Management and Prevention of COPD. 2006, Global initiative for Chronic Obstructive Lung Disease (GOLD)
Optimal Clinical Trial*

• Multi-center, randomized, double-blind, controlled clinical trial
 • >=1 exacerbation of COPD requiring treatment with steroids/antibiotics in the past year.
 • Age > 35 years;
 • >=10 pack-years of cigarette smoking
 • documented FEV1/FVC<0.70 + postbronchodilator FEV1<65% of the predicted value

• One-year treatment of COPD with three treatment regimens
 1. TP: tiotropium 18 µg once daily + placebo twice daily
 2. TS: tiotropium 18 µg once daily + salmeterol 25 µg/puff, 2 puffs twice daily
 3. TFS: tiotropium 18 µg once daily + fluticasone/salmeterol 250/25 µg/puff, 2 puffs twice daily

Optimal RCT cont.

• # of patients: TP=156, TS=148, TFS=145

• Primary outcome: Proportion of exacerbation-free patients at the end of one-year follow-up:
 TP:62.8%, TS:64.8%, TFS:60.0% \((P=NS)\)

 – Secondary outcomes:
 # of exacerbations: TP=222, TS=226, TFS=188 \((P=NS)\)
 # of hospitalizations due to exacerbations: TP=49, TS=38 \((P=0.04)\), TFS=26 \((P=0.01)\)
 Change in SGRQ scores: TP=-4.5 \((P=NS)\), TS=-6.3 \((P=0.02)\), TFS=-8.6 \((P=0.01)\)

 – Discontinuation of study drugs:
 TP=47%, TS=43%, TFS=26% \((P=0.001)\)

Methods

• Prospective economic analysis:
 – Both resource use and effectiveness outcomes were collected during the trial

• Outcomes:
 – Incremental cost per exacerbation avoided,
 – Incremental cost per quality-adjusted life year (QALY) gained

• Unit costs for each item of resource utilization

• SGRQ scores converted to EQ5D scores (Meguro 2006), QALYs adjusted for difference in baseline utilities

• Only COPD-related hospitalization included

• Rigorous sensitivity analysis: nested imputation and bootstrap

• Two sources of uncertainty: incomplete follow-up and finite sample size of the study
 - Incomplete follow-up - imputation
 - Finite sample size - bootstrapping

• Follow-up period divided into 13 periods (period length=28 days)
Mortalities

• 14 died during the trial
 TP=3, TS=6, TSF=5

• By definition, all costs and utilities after death were set to zero.

• For the exacerbation outcome-
 • Setting zero effectiveness after death is problematic as the treatment arm had excess mortality.

• For exacerbations, death was treated as attrition (forced dropout)

• Sensitivity analysis
 0 exacerbation for each period after death, and 1 exacerbation for each period after death
Unit costs (2006 CAN$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value* (2006 CAN$)</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone to MD/healthcare professional</td>
<td>14.6</td>
<td>Per call</td>
<td>Medical Services Plan (MSP) Payment Schedule 2007</td>
</tr>
<tr>
<td>Urgent respiratory care visit in home</td>
<td>67.4</td>
<td>Per visit</td>
<td>MSP Payment Schedule 2007</td>
</tr>
<tr>
<td>Urgent MD visit</td>
<td>85.1</td>
<td>Per visit</td>
<td>MSP Payment Schedule 2007</td>
</tr>
<tr>
<td>Urgent ED visit</td>
<td>255.8</td>
<td>Per visit</td>
<td>Chapman, 2003</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>593.2</td>
<td>Per day</td>
<td>Vancouver General Hospital (VGH) fully allocated cost model</td>
</tr>
<tr>
<td>ICU admission</td>
<td>2337.5</td>
<td>Per day</td>
<td>VGH fully allocated cost model</td>
</tr>
<tr>
<td>Tiotropium 18 mcg</td>
<td>2.25</td>
<td>Per capsule</td>
<td>Pharmanet Drug Master List, 2008</td>
</tr>
<tr>
<td>Salmeterol 25 mcg</td>
<td>0.44</td>
<td>Per puff</td>
<td>Pharmanet Drug Master List, 2008</td>
</tr>
<tr>
<td>Fluticasone/Salmeterol 250/25 mcg</td>
<td>1.16</td>
<td>Per puff</td>
<td>Pharmanet Drug Master List, 2008</td>
</tr>
</tbody>
</table>
Results (outcomes)

<table>
<thead>
<tr>
<th></th>
<th>TP</th>
<th>TS</th>
<th>TFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (2006 CAN$)</td>
<td>2678 (1950 - 3536)</td>
<td>2801 (2306 – 3362)</td>
<td>4042 (3228 - 4994)</td>
</tr>
<tr>
<td>Exacerbations per year</td>
<td>1.56 (1.34 - 1.81)</td>
<td>1.69 (1.47 - 1.94)</td>
<td>1.35 (1.16 - 1.55)</td>
</tr>
<tr>
<td>QALY</td>
<td>0.7092 (0.6953-0.7228)</td>
<td>0.7124 (0.6931-0.7310)</td>
<td>0.7217 (0.7034-0.7389)</td>
</tr>
<tr>
<td>Adjusted Incremental QALY †</td>
<td>0 (reference)</td>
<td>-0.0052 (-0.0088 - 0.0032)</td>
<td>0.0056 (-0.0142 - 0.0251)</td>
</tr>
<tr>
<td>ICER (exacerbation avoided)</td>
<td>reference</td>
<td>dominated</td>
<td>$6,510</td>
</tr>
<tr>
<td>ICER QALY</td>
<td>reference</td>
<td>dominated</td>
<td>$243,180</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

Cost-effectiveness plane
Sensitivity Analysis

Cost-effectiveness acceptability curve

Cost per exacerbation avoided

Cost per QALY gained
One-way sensitivity analysis

<table>
<thead>
<tr>
<th>Scenario †</th>
<th>Outcomes</th>
<th>TS vs. TP</th>
<th>TFS vs. TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-COPD related Hospitalizations included</td>
<td>Cost/Exacerbation avoided Cost/QALY</td>
<td>2,958 342,484</td>
<td>5,463 96,271</td>
</tr>
<tr>
<td>Zero exacerbations after death</td>
<td>Cost/Exacerbation avoided</td>
<td>dominated</td>
<td>4,123</td>
</tr>
<tr>
<td>One exacerbation for each period after death ‡</td>
<td>Cost/Exacerbation avoided</td>
<td>dominated</td>
<td>47,768</td>
</tr>
<tr>
<td>Severe COPD (FEV1 < 50% predicted)</td>
<td>Cost/Exacerbation avoided Cost/QALY</td>
<td>19,750 128,709</td>
<td>7,812 252,291</td>
</tr>
<tr>
<td>Moderate COPD (50% < FEV1 < 65% predicted)</td>
<td>Cost/Exacerbation avoided Cost/QALY</td>
<td>dominated 289,509</td>
<td>18,591 139,218</td>
</tr>
<tr>
<td>Disutility during exacerbation</td>
<td>Cost/QALY</td>
<td>dominated</td>
<td>139,459</td>
</tr>
</tbody>
</table>
Shortcomings

- Algorithm for converting SGRQ to utility is not externally validated

- Indirect costs not included
 -(though productivity loss are minimal in >65 y/o)

- Determining a hospitalization as COPD-related is subjective

- The *clean* setting of an RCT vs. the *chaotic* reality
 - *example: patients waiting for scheduled visit refrain from an unscheduled one*

- Time horizon of one year
 - *extrapolation of results unlikely to change conclusions*

- Drug dispensing costs not included
Conclusions

- TFS had significantly better quality of life + fewer hospitalizations
- However, these improvements in health outcomes were associated with increased costs.
- Neither TFS nor TS are cost-effective alternatives for monotherapy with T
- Uncertainty in findings
 At WTP of 50,000$/QALY, the probability that T is the most cost-effective choice is 80%
- TS is cost effective in severe COPD