Rethinking Treatment Model for Type II Diabetes

Cost & Cost-Effectiveness

Scott Klarenbach MD, MSc
University of Alberta

CADTH Symposium
April 2011
Outline

- Principles of economic evaluation
- Self Monitoring of Blood Glucose (SMBG)
 - cost and budget impact
 - cost-effectiveness
- 2nd and 3rd line pharmacotherapy for T2DM
 - cost and budget impact
 - cost-effectiveness
- Other issues
 - optimal use and efficiencies
 - realizing opportunity cost
Principles of Economic Evaluation
Total Drug Expenditure in Canada

- Prescription medications are the fastest growing component of the Canadian health care budget
- Provincial drug plans under increasing financial pressure

CIHI 2010
Economic Evaluation

Relationship between:

- Resource use (numerator)
 - How much does it cost?
- Benefits (denominator)
 - Improved survival, quality of life
 - Does it improve health?
Opportunity Cost

• Relative scarcity
 • not enough resources to meet all the desires of a health care system

• CHOICE
 • Which programs / technologies to fund?
 • Which programs / technologies to forego?

“benefits foregone from program not implemented”
• Economics is **not** primarily about saving money

• **It is** about using scarce resources as **efficiently** as possible

• **Goal of Health Care Systems**

 ➡ Maximizing years of healthy life gained for a population at any given level of resource investment
Self Monitoring of Blood Glucose (SMBG)

Type II DM (not on insulin)
Self Monitoring of Blood Glucose (SMBG)
Type II DM (not on insulin)

Economic Impact:
- >2 million Canadians with diabetes (and growing)
- Test strips in top 5 classes of total expenditure for drug plans
 - >$330 Million (public & private drug plans, 2006)

Significant use in Type II DM not on insulin
- Modest benefit (A1c reduction)
- Optimal frequency unclear
Test Strip use by Treatment of T2DM
Ontario Drug Benefit Program 2006

OAD + Insulin
$18,078,903 (17%)

Insulin
$22,437,720 (21%)

OAD
$56,597,805 (51%)

No Pharmacotherapy for Diabetes
$12,296,937 (11%)
SMBG use by Treatment of T2DM
Private Drug Plans, Canada 2006

- **OAD**
 - $29,791,027 (36%)
- **Insulin + OAD**
 - $11,324,220 (14%)
- **Pharmacotherapy for Diabetes**
 - $7,778,477 (10%)
- **Insulin**
 - $32,910,753 (40%)
Table 4: Summary of Meta-Analytic Results Across RCTs Comparing SMBG Versus No SMBG in Adults With Type 2 Diabetes Treated With Oral Antidiabetes Drugs or No Pharmacotherapy — Overall Results, Sensitivity Analyses, and Subgroup Analyses for Mean A1C (%) (Change From Baseline)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Number of Studies (sample size)</th>
<th>WMD (95% CI) in A1C (%)</th>
<th>I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>7 RCTs (^4,28,29,34,37,39,50) (n = 2,270)</td>
<td>-0.25 (-0.36, -0.15)</td>
<td>0</td>
</tr>
<tr>
<td>Sensitivity analyses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good quality RCTs only</td>
<td>3 RCTs (^34,39,50) (n = 1,247)</td>
<td>-0.21 (-0.34, -0.08)</td>
<td>0</td>
</tr>
<tr>
<td>RCTs in which all subjects used OADs</td>
<td>3 RCTs (^28,34,50) (n = 1,628)(^\ast)</td>
<td>-0.24 (-0.36, -0.11)</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^\ast\) Reference to specific studies not provided in this excerpt.
SMBG in Type II DM
Systematic Review

- Main outcome surrogate (HbA1c)
 - statistically significant although clinically modest effect in subjects not using insulin
- Lack of data on other outcomes
 - Diabetes-related outcomes, mortality
 - Quality of life
 - Subgroups that may benefit more
SMBG in Type II DM (not on insulin):
Economic Evaluation: UKPDS Model

- Intervention: SMBG
- RCT endpoint: A1c
- Association of A1c and DM complications
- Mortality, QOL, Costs
SMBG in Type II DM (not on insulin): Economic Evaluation

United Kingdom Prospective Diabetes Study (UKPDS) Outcomes model

- long-term health outcomes & cost consequences forecast
- estimates risk of diabetes related complications (A1c)
 - cost and quality of life decrements
- validated using published clinical and epidemiological studies

Cameron, Coyle, Ur, Klarenbach CMAJ 2010
SMBG in Type II DM (not on insulin): Economic Evaluation: UKPDS Model

CompuS defines:
- simulation conditions
- cohort characteristics
- treatment regimen SMBG use / frequency

Start Annual Cycle

UKPDS Outcomes Model

Update simulation history (e.g., event history, age, etc.)

Randomly order and run event risk equations:
1. MI
2. Angina
3. IHD
4. Stroke
5. Amputation
6. Blindness
7. Renal failure
8. Diabetes-related mortality
9. Other mortality

Patient dead?

Calculate costs, life-years, QALYs for each cohort

Yes

Mortality, QOL, Costs

No
Table 3: Benefits, costs and incremental cost utility ratios for self-monitoring blood glucose levels among patients with type 2 diabetes not using insulin*

<table>
<thead>
<tr>
<th>Measure</th>
<th>No self-monitoring</th>
<th>Self-monitoring</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life years gained</td>
<td>9.87038</td>
<td>9.89812</td>
<td>0.028</td>
</tr>
<tr>
<td>Quality-adjusted life years gained</td>
<td>7.29806</td>
<td>7.32191</td>
<td>0.024</td>
</tr>
<tr>
<td>Total direct costs, Can$</td>
<td>27 997</td>
<td>30 708</td>
<td>2 711</td>
</tr>
<tr>
<td>Incremental cost per life-year gained</td>
<td></td>
<td></td>
<td>97 729‡</td>
</tr>
<tr>
<td>Incremental cost per quality-adjusted life-year gained</td>
<td></td>
<td></td>
<td>113 643§</td>
</tr>
</tbody>
</table>

Cameron, Coyle, Ur, Klarenbach CMAJ 2010
Economic Evaluation Results: Sensitivity Analysis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>ICUR (Can$/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference case</td>
<td>113 643</td>
</tr>
<tr>
<td>One-way sensitivity analyses</td>
<td></td>
</tr>
<tr>
<td>Lower limit of 95% CI for WMD in HbA({1c}) from 7 RCTs(^{25,31}) ((\Delta HbA{1c}) = 0.39%)</td>
<td>77 706</td>
</tr>
<tr>
<td>Upper limit of 95% CI for WMD in HbA({1c}) from 7 RCTs(^{25,31}) ((\Delta HbA{1c}) = 0.15%)</td>
<td>189 376</td>
</tr>
<tr>
<td>WMD in HbA({1c}) from good-quality RCTs(^{25,28,31}) ((\Delta HbA{1c}) = 0.21%)</td>
<td>133 829</td>
</tr>
<tr>
<td>(\Delta HbA_{1c}) estimate from observational study(^{32}) ((\Delta HbA_{1c}) = 0.57%)</td>
<td>47 512</td>
</tr>
<tr>
<td>WMD in HbA({1c}) from RCTs(^{26,30}) that used intensive education* ((\Delta HbA{1c}) = 0.28%)</td>
<td>99 916</td>
</tr>
<tr>
<td>Price per test strip reduced by 25% (Can$0.55/strip)</td>
<td>86 129</td>
</tr>
<tr>
<td>Price per test strip reduced by 50% (Can$0.36/strip)</td>
<td>58 615</td>
</tr>
<tr>
<td>Price per test strip reduced by 75% (Can$0.18/strip)</td>
<td>31 101</td>
</tr>
<tr>
<td>Lowest price per test strip in Ontario Drug Benefits Program (Can$0.40/strip)</td>
<td>63 892</td>
</tr>
<tr>
<td>Alternative formulary list price (Can$0.81/strip)</td>
<td>123 143</td>
</tr>
<tr>
<td>History of diabetes-related complications reflective of patients in the DICE study and Canadian diabetes atlases(^{19,33})</td>
<td>89 656</td>
</tr>
<tr>
<td>No. of tests per week(^{\dagger})</td>
<td></td>
</tr>
<tr>
<td>1 (0.14/day)(^{34})</td>
<td>6 322</td>
</tr>
<tr>
<td>2 (0.29/day)(^{34})</td>
<td>19 571</td>
</tr>
<tr>
<td>4 (0.57/day)(^{34})</td>
<td>46 445</td>
</tr>
<tr>
<td>7 (1/day)(^{35})</td>
<td>86 168</td>
</tr>
<tr>
<td>12 (1.71/day)(^{28,30})</td>
<td>152 095</td>
</tr>
<tr>
<td>Two-way sensitivity analyses</td>
<td></td>
</tr>
<tr>
<td>Self-monitoring < 1/day, ((\Delta HbA_{1c}) = 0.20%; frequency = 0.77/day)(^{25-27})</td>
<td>81 654</td>
</tr>
<tr>
<td>Self-monitoring 1–2/day, ((\Delta HbA_{1c}) = 0.26%; frequency = 1.46/day)(^{79,31})</td>
<td>122 416</td>
</tr>
<tr>
<td>Self-monitoring > 2/day, ((\Delta HbA_{1c}) = 0.47%; frequency = 3.5/day)(^{28,30})</td>
<td>169 120</td>
</tr>
<tr>
<td>Baseline HbA({1c}) < 8.0% (WMD in HbA({1c}) % = 0.16%, baseline HbA(_{1c}) = 7.5%)</td>
<td>213 503</td>
</tr>
<tr>
<td>Baseline HbA({1c}) 8.0%–10.5% (WMD in HbA({1c}) % = 0.30%, baseline HbA(_{1c}) = 8.7%)</td>
<td>94 443</td>
</tr>
<tr>
<td>Multi-way sensitivity analyses</td>
<td></td>
</tr>
<tr>
<td>Patients using OADs, 3 RCTs(^{26,27,31})(^\dagger)</td>
<td>91 724</td>
</tr>
<tr>
<td>Patients using insulin,(^{34,35}) 1 RCT(^{26,27,31})</td>
<td>91 693</td>
</tr>
<tr>
<td>Patients using diet-only therapy,(^{\dagger\dagger}) 1 RCT(^{13})</td>
<td>292 144</td>
</tr>
</tbody>
</table>
Sensitivity Analysis: HbA1c and Test Frequency

Two-way sensitivity analyses

<table>
<thead>
<tr>
<th></th>
<th>Change in HbA1c</th>
<th>Frequency</th>
<th>Cost Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-monitoring < 1/day</td>
<td>ΔHbA1c = -0.20%; frequency = 0.77/day</td>
<td>ΔHbA1c = -0.20%; frequency = 0.77/day</td>
<td>81,654</td>
</tr>
<tr>
<td>Self-monitoring 1–2/day</td>
<td>ΔHbA1c = -0.26%; frequency = 1.46/day</td>
<td>ΔHbA1c = -0.26%; frequency = 1.46/day</td>
<td>122,416</td>
</tr>
<tr>
<td>Self-monitoring > 2/day</td>
<td>ΔHbA1c = -0.47%; frequency = 3.5/day</td>
<td>ΔHbA1c = -0.47%; frequency = 3.5/day</td>
<td>169,120</td>
</tr>
</tbody>
</table>

Cameron, Coyle, Ur, Klarenbach CMAJ 2010
Sensitivity Analysis:
Cost of Test Strip

Cameron, Coyle, Ur, Klarenbach CMAJ 2010
Blood Glucose Monitoring in Type II DM (not on insulin): Economic Evaluation

- Generally unattractive incremental cost-effectiveness ratios
- May be reasonable value if:
 - price of test strips reduced
 - reduced frequency of use

Reduced utilization of SMBG test strips would lead to significant cost savings
- resources (~$150 M) diverted to more cost-effective interventions
- minimal if any impact on health

Cameron, Coyle, Ur, Klarenbach CMAJ 2010
2nd and 3rd line therapy for T2DM
2nd line therapy for T2DM

- Consensus on 1st line therapy (metformin)
 - clinically effective, low cost
- Numerous 2nd line agents
 - recent introduction of numerous second line agents in Canada
Cost of 2nd and 3rd line therapy for T2DM

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Cost/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyburide — 10 mg/day</td>
<td>$0.12</td>
</tr>
<tr>
<td>Gliclazide — 160 mg/day</td>
<td>$0.19</td>
</tr>
<tr>
<td>Gliclazide modified-release (MR) — 60 mg/day</td>
<td>$0.28</td>
</tr>
<tr>
<td>Glimepiride<sup>*</sup> — 4 mg/day</td>
<td>$0.49</td>
</tr>
<tr>
<td>Acarbose — 200 mg/day</td>
<td>$0.72</td>
</tr>
<tr>
<td>Meglitinide (Repaglinide)<sup>†</sup> — 4 mg/day</td>
<td>$0.76</td>
</tr>
<tr>
<td>Insulin NPH<sup>†</sup> — 40 units/day</td>
<td>$1.09</td>
</tr>
<tr>
<td>Long-acting insulin analogue (glargine)<sup>‡</sup> — 32 units/day</td>
<td>$1.85</td>
</tr>
<tr>
<td>Biphasic human insulin 30/70<sup>‡</sup> — 70 units/day</td>
<td>$1.86</td>
</tr>
<tr>
<td>Biphasic insulin analogue (aspart 30/70)<sup>‡</sup> — 60 units/day</td>
<td>$2.08</td>
</tr>
<tr>
<td>Pioglitazone<sup>‡</sup> — 30 mg/day</td>
<td>$2.20</td>
</tr>
<tr>
<td>Sitagliptin — 100 mg/day</td>
<td>$2.81</td>
</tr>
<tr>
<td>Rosiglitazone — 8 mg/day</td>
<td>$3.09</td>
</tr>
</tbody>
</table>

- Dramatic variation in daily costs
- Recent introduction of newer agents (more costly)
Drug Expenditure Oral Anti-Hyperglycemic Agents

- From 1998 to 2009
 - Private: $7 to $123 M
 - Public (RAMQ): $13 to $55 M
- 4 to 17 x increase in expenditure

What are the drivers of growth?
Drug Expenditure Oral Anti-Hyperglycemic Agents
Private Drug Plans 1998-2009
Drug Expenditure Oral Anti-Hyperglycemic Agents
Quebec public drug plan 1998-2009

- March 2000 - NOC issued for rosiglitazone
- Aug 2000 - NOC issued for pioglitazone
- Jan 2008 - NOC issued for sitagliptin
- Sep 2010 - NOC issued for saxagliptin
Drug Expenditure Oral Anti-Hyperglycemic Agents

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>59%</td>
<td>33%</td>
</tr>
<tr>
<td>Sulphonylureas</td>
<td>23%</td>
<td>10%</td>
</tr>
<tr>
<td>TZDs</td>
<td>11%</td>
<td>38%</td>
</tr>
<tr>
<td>DPP-4 Inhibitors</td>
<td>4%</td>
<td>15%</td>
</tr>
</tbody>
</table>

1 patient treated with TZD or DPP-4 inhibitor = 8-12 patients treated with sulphonylurea.
Drug Expenditure Oral Anti-Hyperglycemic Agents

- Widespread adoption of newer, costlier agents
 - Are the benefits worth the additional cost?
Cost-Effectiveness of 2nd line agents in Type II DM

Clinical evidence / inputs

- \(A1c \rightarrow \) little differences between agents
- Hypoglycemia \(\rightarrow \) differences (low absolute risk)
- Weight change \(\rightarrow \) differences (clinical relevance)
- Side effects \(\rightarrow \) CHF, Fractures, GI symptoms, etc

Costs

- treatment \(\rightarrow \) drug ± test strips
- side effects
- diabetes related complications
Cost-Effectiveness Model of 2nd line agents in Type II DM

COMPUS defines:
- simulation conditions
- cohort characteristics
- treatment regimen
 A. Metformin only
 B. Metformin and:
 1. Sulphonylureas
 2. Meglitinides
 3. AGI
 4. TZD
 5. DPP-4 inhibitors
 6. Basal insulin
 7. Biphasic insulin

Start Annual Cycle

UKPDS Outcomes Model

Update simulation history (e.g., event history, age, etc.)

Patient dead?

Yes: Calculate costs, life-years, QALYs for each cohort

No: Randomly order and run event risk equations:
 1. MI
 2. Angina
 3. IHD
 4. Stroke
 5. Amputation
 6. Blindness
 7. Renal failure
 8. Diabetes-related mortality
 9. Other mortality

Submodels:
- mild/moderate hypoglycemia
- severe hypoglycemia
- CHF/Fractures

For metformin monotherapy vs. metformin and additional therapy COMPUS calculates:
- incremental cost
- incremental QALY
- incremental cost per QALY
- cost-effectiveness acceptability curves
Cost-Effectiveness of 2nd line agents in Type II DM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average costs</th>
<th>Average QALYs</th>
<th>Incremental cost (metformin)</th>
<th>Incremental QALYs (metformin)</th>
<th>Incremental Cost Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>$39,924</td>
<td>8.7194</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulphonylureas</td>
<td>$40,669</td>
<td>8.7777</td>
<td>$745</td>
<td>0.0583</td>
<td>$12,757 per QALY (relative to metformin)</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>$42,269</td>
<td>8.7682</td>
<td>$2,345</td>
<td>0.0488</td>
<td>Meglitinides dominated by sulfonylureas</td>
</tr>
<tr>
<td>α-glucosidase inhibitors</td>
<td>$42,797</td>
<td>8.78</td>
<td>$2,873</td>
<td>0.0606</td>
<td>$939,479 per QALY (relative to sulfonylureas)</td>
</tr>
<tr>
<td>TZDs</td>
<td>$46,202</td>
<td>8.7807</td>
<td>$6,278</td>
<td>0.0614</td>
<td>$4,621,828 per QALY (relative to alpha-glucosidase inhibitors)</td>
</tr>
<tr>
<td>DPP-4 Inhibitors</td>
<td>$47,191</td>
<td>8.7795</td>
<td>$7,267</td>
<td>0.0601</td>
<td>DPP-4 inhibitors dominated by TZD†</td>
</tr>
<tr>
<td>Basal Insulin</td>
<td>$47,348</td>
<td>8.7686</td>
<td>$7,424</td>
<td>0.0492</td>
<td>Basal insulin dominated by TZD†</td>
</tr>
</tbody>
</table>
Cost-Effectiveness Acceptability Curve of 2nd line agents in Type II DM

Results robust in sensitivity / scenario analysis
Cost-Effectiveness of 2nd line agents in Type II DM

- Compared to addition of sulphonylurea
 - little difference in control of diabetes
 - hypoglycemia played small role given low absolute risk in this patient population
 - substantial increase in costs

→ Addition of sulphonylurea as second line agent most cost-effective strategy
3rd Line Agents

• What next after Metformin + sulphonylurea?

• Similar approach taken as 2nd line agents

• Compared addition of:
 • basal insulin (NPH or long acting analogue)
 • biphasic insulin
 • Thiazolidinediones (TZDs)
 • DPP-4 inhibitors
Cost-Effectiveness of 3rd line agents in Type II DM

Clinical evidence / inputs

- A1c \rightarrow\ differences between agents
- Hypoglycemia \rightarrow\ differences (low absolute risk)
- Weight change \rightarrow\ differences (clinical relevance)
- Side effects \rightarrow\ CHF, Fractures, GI symptoms, etc

Costs

- treatment \rightarrow\ drug ± test strips
 - average defined daily dose (oral agents)
 - convenience sample of patients using insulin
- side effects
- diabetes related complications
Average daily cost

<table>
<thead>
<tr>
<th>Class (including test strips)</th>
<th>Average daily cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin NPH</td>
<td>$3.60</td>
</tr>
<tr>
<td>TZD (generic pioglitazone)</td>
<td>$3.81</td>
</tr>
<tr>
<td>Long acting insulin analogues</td>
<td>$4.69</td>
</tr>
<tr>
<td>Biphasic human insulin (lowest cost)</td>
<td>$5.45</td>
</tr>
<tr>
<td>TZD (rosiglitazone)</td>
<td>$5.92</td>
</tr>
<tr>
<td>Biphasic insulin analogue</td>
<td>$5.98</td>
</tr>
<tr>
<td>Treatment versus Placebo plus Metformin plus a Sulfonylurea</td>
<td>Effect Estimates (95% CrI)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>**a) Change from baseline **AIC (%)</td>
<td></td>
</tr>
<tr>
<td>Basal insulin + Met + SU</td>
<td>$-1.17 (-1.57$ to $-0.81)$</td>
</tr>
<tr>
<td>Biphasic insulin + Met + SU</td>
<td>$-1.10 (-1.59$ to $-0.67)$</td>
</tr>
<tr>
<td>TZD + Met + SU</td>
<td>$-0.96 (-1.35$ to $-0.59)$</td>
</tr>
<tr>
<td>DPP-4 (sitagliptin) + Met + SU</td>
<td>$-0.89 (-1.51$ to $-0.26)$</td>
</tr>
<tr>
<td>**b) Change from baseline **body weight (kg)</td>
<td></td>
</tr>
<tr>
<td>Basal insulin + Met + SU</td>
<td>$1.85 (0.54$ to $3.09)$</td>
</tr>
<tr>
<td>Biphasic insulin + Met + SU</td>
<td>$3.35 (1.65$ to $5.03)$</td>
</tr>
<tr>
<td>TZD + Met + SU</td>
<td>$3.10 (1.73$ to $4.43)$</td>
</tr>
<tr>
<td>DPP-4(sitagliptin) + Met + SU</td>
<td>$1.11 (-1.36$ to $3.57)$</td>
</tr>
<tr>
<td>**c) Overall **hypoglycemia</td>
<td></td>
</tr>
<tr>
<td>Basal insulin + Met + SU versus Met + SU + placebo</td>
<td>RR $1.73 (1.10$ to $2.74)$</td>
</tr>
<tr>
<td>TZD + Met + SU versus Basal Insulin + Met + SU</td>
<td>RR $0.65 (0.48$ to $0.88)$</td>
</tr>
<tr>
<td>Biphasic + Met + SU versus Basal Insulin + Met + SU</td>
<td>RR $1.24 (1.14$ to $1.35)$</td>
</tr>
<tr>
<td>DPP-4 inhibitor + Met + SU versus Met + SU + placebo*</td>
<td>RR $18.51 (2.52$ to $135.96)$</td>
</tr>
</tbody>
</table>
Cost-Effectiveness of 3rd line agents in Type II DM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average costs</th>
<th>Average QALYs</th>
<th>Incremental cost (Met+ SU)</th>
<th>Incremental QALYs (Met +SU)</th>
<th>Incremental Cost Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met + SU</td>
<td>39,128</td>
<td>8.2405</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Met + SU + Basal Insulin</td>
<td>44,206</td>
<td>8.3251</td>
<td>$5078</td>
<td>0.085</td>
<td>$60,049 per QALY gained (relative to Met + SU)</td>
</tr>
<tr>
<td>Met + SU + DPP-4 (sitagliptin)</td>
<td>44,717</td>
<td>8.3059</td>
<td>$5580</td>
<td>0.065</td>
<td>Dominated by Met + SU + Basl</td>
</tr>
<tr>
<td>Met + SU + TZD*</td>
<td>45,936</td>
<td>8.2191</td>
<td>$6808</td>
<td>-0.021</td>
<td>Dominated by Met + SU + Basl</td>
</tr>
<tr>
<td>Met + SU + Biphasic Insulin</td>
<td>48,317</td>
<td>8.3198</td>
<td>$9189</td>
<td>0.079</td>
<td>Dominated by Met + SU + Basl</td>
</tr>
</tbody>
</table>

TZD: Thiazolidinediones.
Cost-Effectiveness Acceptability Curve of 3rd line agents in Type II DM
Cost-Effectiveness of 3rd line agents in Type II DM

Sensitivity Analysis

Greater disutility of mild - moderate hypoglycemia
→ DPP-4 inhibitors ($90,000 / QALY gained)

Higher rate of severe hypoglycemia
→ DPP-4 inhibitors ($85,600 / QALY gained)

Disutility of insulin injections
→ DPP-4 inhibitors ($85,600 / QALY gained)

Weight gain leads to disutility
→ basal insulin ($75,500 / QALY gained)

RCT dose of insulin
→ basal insulin ($37,600 / QALY gained)
Cost-Effectiveness of 3rd line agents in Type II DM

Addition of NPH insulin most cost-effective therapy

• limited by quality of evidence

• some scenarios where DPP-4 inhibitors may be preferred

• sensitivity analysis not base case

• lower quality of underlying data

• less known regarding long term safety / side-effects
Conclusions

Thorough analysis of treatment strategies in T2DM

- significant budget impact
- minimal effectiveness
- unfavourable cost-effectiveness for SMBG and newer anti-diabetes agents

Efficiency

- reduction in costly strategies that have little impact on health aligns with health care system sustainability

Opportunity cost

- resources deployed to strategies with much more favourable impact on health