
DATE: 13 October 2016

RESEARCH QUESTIONS

1. What is the clinical effectiveness of vein illumination devices for vascular access procedures for neonates in acute care settings?

2. What is the clinical effectiveness of vein illumination devices for vascular access procedures for patients in the emergency department?

3. What is the cost-effectiveness of vein illumination devices?

4. What are the evidence-based guidelines for use of vascular access imaging devices for neonates?

5. What are the evidence-based guidelines for use of vascular access imaging devices for patients in the emergency department?

KEY FINDINGS

One systematic review with meta-analysis, eight randomized controlled trials, and three non-randomized studies were identified regarding vein illumination devices for vascular access procedures for neonates or adults in acute care settings or in the emergency department. In addition, one evidence-based guideline was identified regarding the use of vascular access imaging devices for patients.

METHODS

A limited literature search was conducted on key resources including Embase, Medline, PubMed, The Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No filters were applied to limit retrieval by study type for questions 1, 2 and 3. Methodological filters were applied to limit retrieval to health technology assessments,

Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that the Canadian Agency for Drugs and Technologies in Health (CADTH) could identify using all reasonable efforts within the time allowed. Rapid responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material and may contain material in which a third party owns copyright. This report may be used for the purposes of research or private study only. It may not be copied, posted on a web site, redistributed by email or stored on an electronic system without the prior written permission of CADTH or applicable copyright owner.

Links: This report may contain links to other information available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
systematic reviews, meta-analyses and guidelines for questions 4 and 5. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2011 and September 29, 2016. Internet links were provided, where available.

The summary of findings was prepared from the abstracts of the relevant information. Please note that data contained in abstracts may not always be an accurate reflection of the data contained within the full article.

SELECTION CRITERIA

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Q1 & 4: Neonates (< 4 weeks) in acute care settings</td>
</tr>
<tr>
<td>Q2 & 5: Patients (any age) in the emergency department</td>
</tr>
<tr>
<td>Q3: Patients (any age) requiring vein illumination devices for vascular access procedures</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Vein illumination devices (e.g., vascular access imaging devices such as AccuVein® AV400, Vein Viewer®, Translite [VeinLite LED], TransLite LLC [VeinLite EMS Pro], Christie [also called Vein Viewer Vision])</td>
</tr>
<tr>
<td>Comparators</td>
</tr>
<tr>
<td>Q1-3: Standard clinical practice, including other vascular access imaging devices (e.g., ultrasound, infrared)</td>
</tr>
<tr>
<td>Q4 & 5: No comparator</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Q1 & 2: Clinical effectiveness (e.g., harms, benefits, safety)</td>
</tr>
<tr>
<td>Q3: Cost-effectiveness (e.g., cost per QALY, incremental cost-effectiveness ratio)</td>
</tr>
<tr>
<td>Q4: Guidelines and recommendations for the use of vein illumination devices (e.g., in which patients to use these devices, how best to implement this equipment, training and education needed to use this equipment)</td>
</tr>
<tr>
<td>Study Designs</td>
</tr>
<tr>
<td>Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies, economic evaluations, evidence-based guidelines</td>
</tr>
</tbody>
</table>

RESULTS

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, economic evaluations, and evidence-based guidelines.

One systematic review with meta-analysis, eight randomized controlled trials, and three non-randomized studies were identified regarding vein illumination devices for vascular access procedures for neonates or adults in acute care settings or in the emergency department. In addition, one evidence-based guideline was identified regarding the use of vascular access imaging devices for patients. No health technology assessments or economic evaluations were identified.

Additional references of potential interest are provided in the appendix.
OVERALL SUMMARY OF FINDINGS

One systematic review with meta-analysis,1 eight randomized controlled trials,2-9 and three non-randomized studies10-12 were identified regarding vein illumination devices for vascular access procedures for neonates or adults in acute care settings or in the emergency department (ED). Most studies did not identify a benefit when using near-infrared vein illumination devices for intravenous (IV) cannulation3-6, 8, 10-11 or arterial cannulation11 whether in the ED8-9 or for standard procedures.3-6, 10-11 While one study recognized no benefit in its overall population, a subgroup analysis in children aged zero to two years suggested that the Vein Viewer may decrease the time to peripheral intravenous catheterization placement.7 In addition, the Vein Viewer also improved successful line placement in infants of greater gestational age in one study2 and near-infrared vascular imaging systems were observed as providing promising results in facilitating venipunctures in another study.12 Detailed study characteristics and author conclusions are presented in Table 2.

One evidence-based guideline13 was identified regarding the use of vascular access imaging devices for patients. The Emergency Nurses Association notes that there is inadequate evidence to support the use of infrared light, transillumination, and the Vein Entry Indicator Devices in patients with difficult intravenous access in the emergency department.13

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention(s)</th>
<th>Comparator(s)</th>
<th>Author Findings and Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Parker et al., 20161 | Adult patients in the ED and inpatients (N=3201) | PIVC using the following:
 • AccuVein™
 • AccuCath™ catheter system
 • Ultrasound
 • Safety catheters
 • Topical anesthetics | Limited evidence to support ultrasound to increase success of first attempt
 • Only three studies comparing AutoGuard and Insyte catheters were suitable for MA
 • Nothing specific in the abstract regarding AccuVein™ or AccuCath™ |
| **Randomized Controlled Trials** | | | | |
| **Neonate-Specific Population** | | | | |
| Phipps et al., 20122 | Preterm and term neonates in level 3 NICU (N=115) | Vein Viewer (n=59)
 Control (n=56) | Vein Viewer improved successful line placement with most benefit seen in infants of greater GA |
| **Mixed Pediatric Population (Includes Neonates)** | | | | |
| Cuper et al., 20133 | Mixed pediatric population (0-18 years) receiving IV cannulation in OR (N=770) | VascuLuminator (NIR vascular imaging system)
 Control | VascuLuminator did not improve success rate or time to obtain IV cannulation |
| de Graaff et al., 20134 | Mixed pediatric population (0-18 years) receiving IV | IV cannulation with the following:
 • Vein Viewer
 • AccuVein
 Control | Although vein visibility is enhanced, NIR devices do not improve IV cannulation |
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention(s)</th>
<th>Comparator(s)</th>
<th>Author Findings and Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Woude et al., 2013<sup>5</sup></td>
<td>Mixed pediatric population (0-15 years) with dark skin colour receiving IV cannulation in Curacao in OR (N=88)</td>
<td>VascuLuminator (n=43)</td>
<td>Control (n=45)</td>
<td>VascuLuminator has limited value in improving success at first IV cannulation attempt in children with dark skin colour</td>
</tr>
<tr>
<td>Kaddoum et al., 2012<sup>6</sup></td>
<td>Mixed pediatric population (0.18-17.1 years) receiving IV cannulation under anesthesia (N=146)</td>
<td>AccuVein AV300</td>
<td>Standard Method</td>
<td>AccuVein AV300 was easy to use and improved visualization of veins • However, no evidence that is was superior to standard method of IV cannulation in patients under anesthesia</td>
</tr>
<tr>
<td>Chapman et al., 2011<sup>7</sup></td>
<td>Pediatric population (0-17 years) in the ER receiving nonemergent PIVC (N=323) • Subgroup analysis of 0-2 year old population (n=107)</td>
<td>PIVC with Vein Viewer</td>
<td>Standard PIVC</td>
<td>No results were significant for the overall study group • Subgroup analysis of children aged 0-2 years suggest the Vein Viewer may decrease the time to PIVC placement</td>
</tr>
<tr>
<td>Perry et al., 2011<sup>8</sup></td>
<td>Pediatric population (<20 years) receiving IV catheters in high-volume pediatric ER (N=123)</td>
<td>Vein Viewer (n=61)</td>
<td>Standard (n=62)</td>
<td>First-attempt success rate for IC placement was non-significantly higher with standard than with Vein Viewer • Nurses noted several benefits using the Vein Viewer with specific patient groups</td>
</tr>
<tr>
<td>Aulagnier et al., 2014<sup>9</sup></td>
<td>Adults presenting to ER receiving routine IV catheter insertion (N=266)</td>
<td>AccuVein (n=115)</td>
<td>Routine cannulation (n=157)</td>
<td>Use of AccuVein did not improve IV cannulation in nonselected ER patients</td>
</tr>
<tr>
<td>First Author, Year</td>
<td>Population</td>
<td>Intervention(s)</td>
<td>Comparator(s)</td>
<td>Author Findings and Conclusions</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Non-Randomized Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Pediatric Population (Includes Neonates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rothbart et al., 2015</td>
<td>Mixed pediatric population (0-17 years) receiving venous cannulation prior to surgical interventions (N=238)</td>
<td>AccuVein AV300 (n=114)</td>
<td>Control (n=124)</td>
<td>• Neither time or number of attempts until successful cannulation were reduced using the AccuVein AV300</td>
</tr>
<tr>
<td>Cuper et al., 2012</td>
<td>Mixed pediatric population (0-3 years) undergoing arterial cannulation prior to cardiothoracic surgery (N=77)</td>
<td>NIRVIS (n=39)</td>
<td>Usual method (n=38)</td>
<td>• There was no significant clinical improvement when NIR was used during arterial cannulation in small children</td>
</tr>
<tr>
<td>Cuper et al., 2011</td>
<td>Mixed pediatric population receiving venipuncture for blood withdrawal (N=125)</td>
<td>NIR (n=45)</td>
<td>Usual method (n=80)</td>
<td>• Promising results of an NIR vascular imaging system in facilitating venipunctures</td>
</tr>
</tbody>
</table>

ED = emergency department; IV = intravenous; GA = gestational age; MA = meta-analysis; NICU = neonatal intensive care unit; NIR = near infrared; NIRVIS = near-infrared vascular imaging systems; OR = operating room; PIVC = peripheral intravenous catheterization.
REFERENCES SUMMARIZED

Health Technology Assessments
No literature identified.

Systematic Reviews and Meta-analyses

Adult Population in Emergency Department

Randomized Controlled Trials

Neonate Population

Mixed Pediatric Population (Neonates Included)

Pediatric Population in the Emergency Department

Adult Population in the Emergency Department

Non-Randomized Studies

Mixed Pediatric Population (Neonates Included)

Economic Evaluations
No literature identified.

Guidelines and Recommendations

APPENDIX – FURTHER INFORMATION:

Systematic Reviews and Meta-analyses – Pediatric Population (Neonates Not Specified)

Randomized Controlled Trials

Pediatric Population (Neonates Not Specified or Non-Neonate Population)

Adult Population – Alternate Setting

Non-Randomized Studies

Adult Population – Alternate Setting

Mixed Population with Hemophilia – Alternate Setting

No Patient Outcomes

Clinical Practice Guidelines – Uncertain Methodology

Review Articles

 http://bja.oxfordjournals.org/content/110/6/888.full

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644972
 PubMed: PM23649005

 PubMed: PM23462399

Additional References

Technology Reviews