Propofol for Conscious Sedation During Endoscopies: Clinical Effectiveness, Cost-Effectiveness, and Guidelines
SUMMARY OF ABSTRACTS Propofol for Conscious Sedation During Endoscopies 2

Authors: Charlotte Wells, Charlene Argáez

Acknowledgments:

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.

CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein are those of CADTH and do not necessarily represent the views of Canada’s federal, provincial, or territorial governments or any third party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.
Research Questions

1. What is the comparative clinical effectiveness of propofol versus fentanyl or midazolam for conscious sedation during endoscopy procedures?

2. What is the cost-effectiveness of propofol versus fentanyl or midazolam for conscious sedation during endoscopy procedures?

3. What are the evidence-based guidelines for the use of propofol for conscious sedation during endoscopy procedures?

Key Findings

One systematic review, three randomized controlled trials, and two non-randomized studies were identified regarding propofol for conscious sedation during endoscopies. Additionally, two evidence-based guidelines were identified.

Methods

A limited literature search was conducted on key resources including PubMed, The Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No methodological filters were applied to limit the retrieval by study type. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2012 and November 1, 2017. Internet links were provided, where available.

Selection Criteria

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Comparator</td>
</tr>
</tbody>
</table>
| **Outcomes** | Q1: Clinical benefit and harms (e.g., safety, pain control, complications)
| | Q2: Cost-effectiveness outcomes (e.g., QALYs, ICERs, ICURs) |
Results

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, economic evaluations, and evidence-based guidelines.

One systematic review, three randomized controlled trials, and two non-randomized studies were identified regarding propofol for conscious sedation during endoscopies. Additionally, two evidence-based guidelines were identified. No health technology assessments or economic evaluations were identified.

Additional references of potential interest are provided in the appendix.

Overall Summary of Findings

One systematic review,\(^1\) three randomized controlled trials (RCTs),\(^2,4\) and two non-randomized studies\(^5,6\) were identified regarding propofol for conscious sedation during endoscopies. The identified systematic review\(^1\) compared adverse events associated with propofol and non-propofol agents (including midazolam or fentanyl) during endoscopy procedures, including esophagogastroduodenoscopy, colonoscopy, and sigmoidoscopy. The odds of developing hypoxia or hypotension were lower with propofol than the odds of developing hypoxia or hypotension when compared with the traditional sedative agents for endoscopy, but these odds were not significant. However, in the non-advanced endoscopic procedures group, patients who received propofol were 39% less likely to develop complications. There were no differences in the advanced endoscopic procedures group.\(^1\)

The authors of the first identified RCT\(^2\) compared the use of propofol and midazolam during esophagogastroduodenoscopies patients being screened for gastric cancer. No differences were found between the two sedation methods for sedation level and tolerability. The authors of the second RCT\(^3\) randomly assigned patients who were receiving endoscopic submucosal dissection to propofol or midazolam as the sedation method. The number of patient requiring a supply of oxygen was significantly lower in the propofol group than in the midazolam group.\(^3\) The authors found that although propofol appeared to perform better in terms of effectiveness and safety, none of the chosen endpoints were significantly different.\(^3\) The authors of the third RCT\(^4\) examined the sedation efficacy of propofol compared to a combination of midazolam and fentanyl during endomicroscopic procedures. The number of adverse events did not differ between the two sedation methods, with the exception of more frequent intraprocedural recall with midazolam/fentanyl. Recovery from the procedure was faster in all three identified RCTs when compared to midazolam\(^2,3\) or midazolam/fentanyl.\(^4\)

Two non-randomized studies (NRSs) were identified.\(^5,6\) The authors of the first retrospective NRS examined cardiac arrests in patients who underwent endoscopies sedated with either propofol or midazolam combined with fentanyl. The incidence of cardiac arrest was approximately 10 times higher in propofol based sedation when compared to
midazolam/fentanyl based sedation. The authors of the final NRS compared propofol with midazolam during esophagogastroduodenoscopy in children and found no serious adverse events with either method. The recovery time was noted to be much shorter in the propofol group when compared to the midazolam group, but localized pain was more common in the propofol group when compared to the midazolam group.

Finally, two evidence-based guidelines were identified. The first guideline published by European Society of Gastrointestinal Endoscopy (ESGE) and the European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) suggests propofol monotherapy when propofol is used by non-anesthesiologists. The guideline suggests that there is higher patient satisfaction (with various endoscopy procedures but not including esophagogastroduodenoscopy), shorter recovery times, and fewer cardiopulmonary complications with propofol when compared to “traditional” sedative methods. No differences between propofol and traditional sedation were found for hypoxemia and hypotension.

The second guideline published by the American Society for Gastrointestinal Endoscopy (SAGES) states that adequate sedation during esophagogastroduodenoscopy can be achieved using an opioid in combination with a benzodiazepine. The routine use of propofol during upper endoscopy and colonoscopy in average-risk patients is not endorsed by SAGES, as definitive, clinically important benefits have not been demonstrated.

No relevant economic evaluations were identified, therefore no information on costs or cost-effectiveness can be provided.

References Summarized

Health Technology Assessments
No literature identified.

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Non-Randomized Studies

Economic Evaluations
No literature identified.

Guidelines and Recommendations

Appendix — Further Information

Previous CADTH Reports

Systematic Review – Unclear Comparator

Randomized Controlled Trials – Alternative Population

Review Articles

Additional References

Systematic Review Protocol

Note: This publication is forthcoming and is yet to be published.

Available from:
http://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42017057305