Positron Emission Tomography-Computed Tomography for Rheumatology Indications: Diagnostic Accuracy, Clinical Utility, Cost-Effectiveness, and Evidence-Based Guidelines
Authors: Camille Dulong, Carolyn Spry

Acknowledgments:

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.

CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein are those of CADTH and do not necessarily represent the views of Canada’s federal, provincial, or territorial governments or any third party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.
Research Questions
1. What is the diagnostic test accuracy of positron emission tomography-computed tomography (PET-CT) in patients with Giant Cell Arteritis (GCA) or Takayasu’s vasculitis?
2. What is the clinical utility of positron emission tomography-computed tomography (PET-CT) in patients with Giant Cell Arteritis (GCA) or Takayasu’s vasculitis?
3. What is the cost-effectiveness of positron emission tomography-computed tomography (PET-CT) in patients with Giant Cell Arteritis or Takayasu’s vasculitis?
4. What are the evidence-based guidelines associated with the use of positron-emission tomography-computed tomography (PET-CT) in patients with Giant Cell Arteritis (CGA) or Takayasu’s vasculitis?

Key Findings
Four non-randomized studies were identified regarding fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) for patients with Giant Cell Arteritis (GCA). No evidence was identified for Takayasu’s vasculitis. No economic evaluations or evidence-based guidelines were identified.

Methods
A limited literature search was conducted on key resources including PubMed, The Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No filters were applied to limit retrieval by publication type. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2013 and October 23, 2018. Internet links were provided, where available.

Selection Criteria
One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.
Table 1: Selection Criteria

<table>
<thead>
<tr>
<th>Population</th>
<th>Patients with Giant Cell Arteritis (GCA) or Takayasu’s vasculitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT)</td>
</tr>
<tr>
<td>Comparators</td>
<td>Q1-Q3: Alternative diagnostic modalities (e.g., but not limited to, single photon emission computed tomography [SPECT], magnetic resonance imaging [MRI]; Doppler ultrasound); temporal artery biopsy)</td>
</tr>
<tr>
<td></td>
<td>Q4: No comparator</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Q1: Diagnostic accuracy</td>
</tr>
<tr>
<td></td>
<td>Q2: Clinical Utility</td>
</tr>
<tr>
<td></td>
<td>Q3: Cost-effectiveness</td>
</tr>
<tr>
<td>Study Designs</td>
<td>Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies, economic evaluations, evidence-based guidelines</td>
</tr>
</tbody>
</table>

Results

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, economic evaluations, and evidence-based guidelines.

Four non-randomized studies were identified regarding fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) for patients with Giant Cell Arteritis (GCA). No relevant health technology assessments, systematic reviews, meta-analyses, economic evaluations, or evidence-based guidelines were identified, nor was any evidence on Takayasu’s vasculitis.

Additional references of potential interest are provided in the appendix.

Overall Summary of Findings

Four non-randomized studies¹-⁴ were identified regarding fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) for patients with Giant Cell Arteritis (GCA).

No abstract was obtained for the study by Sammel et al.;¹ therefore, no summary can be provided.

The second non-randomized study² reported on the performance of FDG PET-CT and CT angiography for the detection large-vessel involvement for patients with GCA. The study included 28 patients, of which 19 had large-vessel involvement and 18 of these patients had similar results (large-vessel involvement) through CT angiography. Both FDG PET-CT and CT angiography had similar detection rates for large-vessel involvement; however, FDG PET-CT had higher performance in per-segment analysis of aortitis, particularly in the aortic branches.¹

The third non-randomized study³ investigated the detection rate of aortitis in GCA patients by comparing FDG PET-CT with CT angiography. Seventy-nine patients were included in the study, with 52 of these patients diagnosed with GCA and 27 patients acting as controls. Patients with GCA received a FDG PET CT scan accompanied by a CT angiography.
Overall, researchers observed that both types of diagnostic tools had relatively similar sensitivity pertaining to aortitis in GCA patients.\(^3\)

The fourth non-randomized study\(^4\) also investigated the diagnostic accuracy of FDG PET-CT scan compared to CT angiography for GCA, after which the patients had their diagnoses confirmed with a temporal artery biopsy (TAB). The study included 24 patients suspected of having GCA. The researchers concluded that both diagnostic tests had high sensitivity, with FDG PET-CT being potentially superior toward CT angiography for the diagnosis of CGA.\(^4\)

References Summarized

Health Technology Assessments

No literature identified.

Systematic Reviews and Meta-analyses

No literature identified.

Randomized Controlled Trials

No literature identified.

Non-Randomized Studies

Economic Evaluations

No literature identified.

Guidelines and Recommendations

No literature identified.
Appendix — Further Information

Non-Randomized Studies - No Comparator

Review Articles

