Coated Catheters to Reduce Urinary Tract Infections: Clinical Effectiveness, Cost-Effectiveness, and Guidelines
Authors: Ke Xin Li, Kelly Farrah

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.

CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein do not necessarily reflect the views of Health Canada, Canada’s provincial or territorial governments, other CADTH funders, or any third-party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.

Funding: CADTH receives funding from Canada’s federal, provincial, and territorial governments, with the exception of Quebec.
Research Questions

1. What is the clinical effectiveness of coated catheters compared to standard non-coated catheters for patients requiring long-term urinary catheter use for the prevention of urinary tract infections and blockage?

2. What is the cost-effectiveness of coated catheters compared to standard non-coated catheters for patients requiring long-term catheter use?

3. What are the evidence-based guidelines regarding urinary catheters for patients requiring long-term catheter use?

Key Findings

Three systematic reviews, one randomized controlled trial, and one non-randomized study were identified regarding the effectiveness of coated catheters for the prevention of urinary tract infections and blockage. In addition, five evidence-based guidelines were identified regarding urinary catheters for patients requiring long-term catheter use.

Methods

A limited literature search was conducted on key resources including Ovid MEDLINE, the Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No filters were applied to limit the retrieval by study type for Q1 and Q2. For Q3 a methodological filter was applied to limit retrieval to guidelines. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2007 and April 10, 2019. Internet links were provided, where available.

Selection Criteria

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.
Table 1: Selection Criteria

<table>
<thead>
<tr>
<th>Population</th>
<th>Adults requiring long-term (greater than or equal to 30 days) use of urinary catheters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Coated urinary catheters (e.g., coated either with silver, antimicrobial agents, antiseptic agents, or hydrophilic agents)</td>
</tr>
</tbody>
</table>
| Comparator | Q1-2: Non-coated or standard catheters
Q3: No comparators |
| Outcomes | Q1: Clinical Effectiveness (reduction of urinary tract infections, prevention of urinary tract infections, prevention of blockages)
Q2: Cost effectiveness
Q3: Guidelines |
| Study Designs | Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized trials, economic evaluations, evidence-based guidelines |

Results

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, economic evaluations, and evidence-based guidelines.

Three systematic reviews, one randomized controlled trial, and one non-randomized study were identified regarding the use of coated catheters for the prevention of urinary tract infections and blockage. In addition, five evidence-based guidelines were identified regarding urinary catheters for patients requiring long-term catheter use. No health technology assessment reports, meta-analyses, or economic evaluations were identified.

Additional references of potential interest are provided in the appendix.

Overall Summary of Findings

Three systematic reviews, one randomized controlled trial, and one non-randomized study were identified regarding the use of coated catheters for the prevention of urinary tract infections and blockage. A wide range of health outcomes were reported and the conclusions were inconsistent. Detailed study characteristics are provided in Table 2.

Five evidence-based guidelines were identified. The 2017 National Institute for Health and Care Excellence (NICE) guideline update recommended that clinicians should select the type of an indwelling urinary catheter based on an assessment of the patient’s characteristics, such as age, allergy, gender, history of symptomatic urinary tract infection, patient preference and comfort, previous catheter history, and reason for catheterization. The guideline authors reported the absence of high-quality evidence on the effectiveness of different types of long-term indwelling catheters. The 2015 guideline by European Association of Urology stated that no clear recommendations could be given regarding silver alloy catheters due to the weak evidence and contradictory study results. The 2012 European Association of Urology Nurses guideline recommended that for long-term cauterization of more than two weeks, catheter materials designed for long-term use (100% silicone, hydrogel coating or silicone coating) should be used; antibiotic-impregnated...
catheters were not recommended by the guideline due to lack of evidence on the reduction of symptomatic infection. The 2010 Infectious Disease Society of America (IDSA) guideline reported that there was insufficient data to make a recommendation for silver alloy-coated or antibiotic-coated catheters to reduce catheter-associated bacteriuria or CAUTI in patients with long-term catheterization. The 2009 guideline by Healthcare Infection Control Practices Advisory Committee (HICPAC) recommended clinicians to consider the use of antimicrobial/antiseptic-impregnated catheters if the catheter-associated urinary tract infections (CAUTI) rate was not decreasing after implementing a comprehensive strategy; it also recommended that in long-term catheterized patients who have frequent obstruction, silicone was preferred over other materials to reduce encrustation.

Table 2: Characteristics of Included Literature

<table>
<thead>
<tr>
<th>First Author, Publication Year, Country</th>
<th>Study Designs, Number of Studies Included and Population Characteristics</th>
<th>Intervention and Comparator(s)</th>
<th>Outcomes</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauger Rothenberg, 2012¹</td>
<td>149 articles included N = NR Age: NR</td>
<td>Silver-coated catheters: antibiotic-coated catheters Comparator unclear</td>
<td>Infection rate Cost reduction</td>
<td>“The authors state that the costs of purchasing antibiotic coated catheters and preparing insertion kits cost less than $5,000 per year. No additional information was provided about other costs of implementation, for example, costs of education and supervision.”¹</td>
</tr>
<tr>
<td>Jahn, 2012²</td>
<td>3 trials included N = 102 Age: adults</td>
<td>Silver alloyed vs. silicone coated catheters PVC catheter group vs. latex catheter group vs. silicone catheter Hydrogel coated latex catheter vs. silicone catheter</td>
<td>Urinary tract infection Bacterial biofilm on the surfaces of catheters Encrustation Safety complications Patient satisfaction</td>
<td>“The updated search could not reveal any additional evidence. Very few trials have compared different types of catheter for long-term bladder drainage. All trials were small and showed methodological weaknesses. Therefore, the evidence was not sufficient as a reliable basis for practical conclusions. Further, better quality trials are needed to address the current lack of evidence in this clinically important area.”²</td>
</tr>
<tr>
<td>Beattie, 2011³</td>
<td>11 articles included 8 studies N = NR Age: NR</td>
<td>Silver alloy vs. uncoated urinary catheters</td>
<td>CAUTI</td>
<td>“The collective evidence divulged an emerging pattern favouring the efficacy of silver-alloy urinary catheters to reduce catheter-associated urinary tract infection. Owing to the poor quality of some individual studies included in other systematic reviews and the inability to carry out meta-analysis because of significant heterogeneity, definitive conclusions cannot be drawn from the study.”³</td>
</tr>
<tr>
<td>First Author, Publication Year, Country</td>
<td>Study Designs, Number of Studies Included and Population Characteristics</td>
<td>Intervention and Comparator(s)</td>
<td>Outcomes</td>
<td>Conclusions</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Randomized Controlled Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Sarica, 2010^4 Turkey | N = 25 | Conventional vs. hydrophilic vs. gel-lubricated catheters | • Urethral trauma/urethral cell count
• Number of leucocytes in the urine sediment
• Microhematuri
• Symptomatic urinary tract infection
• Microbiological analysis of urine culture
• Visual Analog Scale | “The hydrophilic-coated catheter and especially the gel-lubricated non-hydrophilic catheter reduce trauma to the urethral surfaces and enable easy and comfortable catheterization…The hydrophilic and gel-lubricated catheters represent an attractive alternative to standard PVC catheters for urological rehabilitation in patients with spinal cord injuries.”^4 |
| **Non-Randomized Studies** | | | | |
| Lederer, 2014^5 US | N = NR | Standard catheter vs. silver-alloy hydrogel catheter | • CAUTI | “Use of a silver-alloy hydrogel urinary catheter reduced symptomatic CAUTI occurrences as defined by both NHSN and clinical criteria.”^5 |

CAUTI = catheter-associated urinary tract infection; N = number of patients; NR = not reported; PCV = polyvinyl chloride; RCT = randomized controlled trial; vs. = versus.

References Summarized

Health Technology Assessments

No literature identified.

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Non-Randomized Studies

Economic Evaluations

No literature identified.

Guidelines and Recommendations

See: 2.3 Intermittent urinary catheters, page 30
2.4 Indwelling urinary catheters: catheter selection, page 31
10 Long term urinary catheters, pages 10-11

See: 3E.5.1.3 Ineffective or counterproductive measures, page 29

Appendix — Further Information

Previous CADTH Reports

Randomized Controlled Trials

Alternative Population – Indwelling Catheter in for Less Than 30 Days

Alternative Population – Unspecified Time for Indwelling Catheter

Non-Randomized Studies – Alternative Population

Unspecified Time for Indwelling Catheter

Clinical Practice Guidelines – Methodology Unclear

Review Articles

Additional References