Thrombolytics for Patients with Acute or Massive Pulmonary Embolisms: Clinical Effectiveness and Guidelines
Authors: Christopher Freige, Robin Featherstone

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH. CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein do not necessarily reflect the views of Health Canada, Canada’s provincial or territorial governments, other CADTH funders, or any third-party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.

Funding: CADTH receives funding from Canada’s federal, provincial, and territorial governments, with the exception of Quebec.

Questions or requests for information about this report can be directed to requests@cadth.ca
Research Questions

1. What is the clinical effectiveness of thrombolytics for the treatment of adults with acute or emergent massive pulmonary embolism?

2. What are the evidence-based guidelines regarding thrombolytics in managing adult patients with acute or emergent massive pulmonary embolism?

Key Findings

Three systematic reviews with meta-analyses, seven meta-analyses, five randomized controlled trials, and one non-randomized study were identified regarding the clinical effectiveness of thrombolytics for the treatment of adults with acute or emergent massive pulmonary embolism. Three evidenced-based guidelines were identified regarding thrombolytics in managing adult patients with acute or emergent massive pulmonary embolism.

Methods

A limited literature search was conducted by an information specialist on key resources including PubMed, the Cochrane Library, the University of York Centre for Reviews and Dissemination (CRD) databases, the websites of Canadian and major international health technology agencies, as well as a focused Internet search. The search strategy was comprised of both controlled vocabulary, such as the National Library of Medicine’s MeSH (Medical Subject Headings), and keywords. The main search concepts were thrombolytics and pulmonary embolism. Search filters were applied to limit retrieval to health technology assessments, systematic reviews, meta-analyses, or network meta-analyses, randomized controlled trials, controlled clinical trials, or any other type of clinical trial, and guidelines. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2014 and August 14, 2019.

Selection Criteria

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
</tbody>
</table>
| **Comparator** | Q1: Usual care or standard care
Q2: Not applicable |
| **Outcomes** | Q1: Clinical effectiveness (e.g., length of hospital stay, neurologic recovery), safety or harms/benefits (e.g., neurologic deterioration, bleeding complications, reperfusion)
Q2: Guidelines |
| **Study Designs** | Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies, evidence-based guidelines |
Results

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, and evidence-based guidelines.

Three systematic reviews with meta-analyses, seven meta-analyses, five randomized controlled trials, and one non-randomized study were identified regarding the clinical effectiveness of thrombolytics for the treatment of adults with acute or emergent massive pulmonary embolism. Three evidenced-based guidelines were identified regarding thrombolytics in managing adult patients with acute or emergent massive pulmonary embolism. No relevant health technology assessments were identified.

Additional references of potential interest are provided in the appendix.

Overall Summary of Findings

Three systematic reviews with meta-analyses, seven meta-analyses, five randomized controlled trials, and one non-randomized study were identified regarding the clinical effectiveness of thrombolytics for the treatment of adults with acute or emergent massive pulmonary embolism.

The identified systematic reviews with meta-analyses differed with their conclusions when comparing thrombolytic therapy to anticoagulation for a variety of outcomes. Overall, two systematic reviews with meta-analyses suggested that thrombolytic therapy decreased the risk of mortality while another study suggested there was no statistically significant difference in the risk of mortality between thrombolytic therapy and anticoagulation alone in patients with acute pulmonary embolism.

Similarly, the identified meta-analyses measured a variety of outcomes and had differing conclusions with regards to thrombolytic therapy compared to anticoagulation. Three meta-analyses suggested thrombolytic therapy decreased the risk of mortality whereas another three meta-analyses suggested there was no statistically significant difference in the risk of mortality between thrombolytic therapy compared to anticoagulation alone in patients with acute pulmonary embolism.

The identified randomized controlled trials also differed in their conclusions with regards to thrombolytic therapy compared to anticoagulation in patients with acute pulmonary embolism. For instance, three of the randomized controlled trials showed no difference in mortality between thrombolytic therapy and anticoagulation alone.

Lastly, the identified non-randomized study, a small retrospective trial in patients with acute pulmonary embolism, suggested that there was no difference between thrombolytic therapy and anticoagulation in terms of the clinical cure rate.

Three evidenced-based guidelines were identified regarding thrombolytics in managing adult patients with acute or emergent massive pulmonary embolism. The American College of Chest Physicians CHEST guideline suggests that systemic thrombolytic therapy be administered to low bleeding risk patients with an acute pulmonary embolism and hypotension (blood pressure< 90 mmHg) or to low bleeding risk patients with an acute pulmonary embolism who deteriorate after starting anticoagulant therapy regardless of hypotension being present. However, the guideline also recommends against
administering systemic thrombolytic therapy in patients with an acute pulmonary embolism not associated with hypotension. The Royal College of Obstetricians & Gynaecologists guideline\(^{18}\) recommends that pregnant women or women in the puerperium period who experience a massive, life-threatening pulmonary embolism should be managed on an individual basis with either intravenous unfractionated heparin, thrombolytic therapy or surgical embolectomy. The guideline\(^{18}\) also states thrombolytic therapy should be considered, in combination with intravenous unfractionated heparin, for the treatment of massive, life-threatening pulmonary embolisms with hemodynamic compromise. Lastly, the European Society of Cardiology guideline\(^{19}\) recommends thrombolytic therapy be administered to patients with high-risk pulmonary embolisms and hypotension/shock. Furthermore, the guideline\(^{19}\) recommends considering thrombolytic therapy administration to patients with intermediate to high-risk pulmonary embolisms without the presence of hypotension or shock.

Detailed study characteristics are included in Table 2.

Table 2: Study and Patient Characteristics of Included Studies

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Study Characteristics</th>
<th>Population</th>
<th>Intervention vs Comparator</th>
<th>Relevant Outcomes Assessed</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Reviews and Meta-Analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hao, 2018(^1)</td>
<td>• SR and MA
• 18 RCTs
• N= 2,197</td>
<td>• Patients with acute PE</td>
<td>• Thrombolytic therapy plus heparin vs heparin alone or heparin plus placebo</td>
<td>• Mortality
• Recurrence of PE
• Minor hemorrhagic events
• Major hemorrhagic events
• Length of hospital stay
• Quality of life</td>
<td>• Thrombolytic therapy plus heparin reduced the risk of mortality and recurrence of PE compared to control group
• Thrombolytic therapy plus heparin increased the risk of major and minor hemorrhagic events compared to control group
• No statistically significant differences in length of hospital stay and quality of life between thrombolytic therapy plus heparin and control group</td>
</tr>
<tr>
<td>Marti, 2015(^2)</td>
<td>• SR and MA
• 15 RCTs
• N= 2,057</td>
<td>• Patients with acute PE</td>
<td>• Thrombolytic therapy plus anticoagulant vs anticoagulant alone</td>
<td>• Overall mortality
• Combined death or treatment escalation
• PE related mortality
• PE recurrence
• Major hemorrhage
• Fatal or intracranial bleeding</td>
<td>• Thrombolytic therapy plus anticoagulant reduced the risk of overall mortality, combined death or treatment escalation, PE related mortality, and PE recurrence compared to heparin alone
• Thrombolytic therapy plus anticoagulant increased the risk of major hemorrhage and fatal or intracranial bleeding compared to heparin alone</td>
</tr>
<tr>
<td>First Author, Year</td>
<td>Study Characteristics</td>
<td>Population</td>
<td>Intervention vs Comparator</td>
<td>Relevant Outcomes Assessed</td>
<td>Conclusions</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cao 2014<sup>3</sup></td>
<td>• SR and MA • Seven RCTs • N= 594</td>
<td>• Patients with acute, submassive PE</td>
<td>• Thrombolytic therapy vs heparin alone</td>
<td>• Mortality • PE recurrence • Major hemorrhage • Minor hemorrhage</td>
<td>• No statistically significant differences in mortality, PE recurrence, or incidence of major hemorrhage between thrombolytic therapy and heparin alone • Thrombolytic therapy increased the risk of minor hemorrhage compared to heparin alone</td>
</tr>
<tr>
<td>Gao, 2015<sup>4</sup></td>
<td>• MA • Eight RCTs • N= 1,755</td>
<td>• Patients with acute, intermediate-risk PE</td>
<td>• Thrombolytic therapy vs anticoagulation</td>
<td>• Mortality • Major bleeding • Minor bleeding • PE recurrence</td>
<td>• Thrombolytic therapy decreased the risk of mortality and PE recurrence compared to anticoagulation treatment • Thrombolytic therapy increased the risk of major and minor bleeding compared to anticoagulation treatment</td>
</tr>
<tr>
<td>Xu, 2015<sup>5</sup></td>
<td>• MA • Seven RCTs • N= 1,631</td>
<td>• Patients with acute, intermediate-risk PE</td>
<td>• Thrombolytic therapy vs anticoagulation</td>
<td>• 30-day, all-cause mortality • Clinical deterioration • PE recurrence • Minor bleeding • Major bleeding</td>
<td>• No statistically significant differences in 30-day, all-cause mortality and major bleeding between thrombolytic therapy and anticoagulation • Thrombolytic therapy decreased the risk of clinical deterioration and PE recurrence compared to anticoagulation treatment • Thrombolytic therapy increased the risk of minor bleeding compared to anticoagulation treatment</td>
</tr>
<tr>
<td>Chatterjee, 2014<sup>6</sup></td>
<td>• MA • 16 RCTs • N= 2,115</td>
<td>• Patients with acute PE • Subanalysis in hemodynamically stable patients with RVD</td>
<td>• Thrombolytic therapy vs anticoagulant therapy</td>
<td>• All-cause mortality • Major bleeding • PE recurrence</td>
<td>• Thrombolytic therapy decreased all-cause mortality and PE recurrence compared to anticoagulant therapy • Thrombolytic therapy increased the risk of major bleeding compared to anticoagulant therapy • Thrombolytic therapy in patients with RVD decreased mortality and</td>
</tr>
</tbody>
</table>

Meta-Analyses

<table>
<thead>
<tr>
<th>Meta-Analyses</th>
<th>Study Characteristics</th>
<th>Population</th>
<th>Intervention vs Comparator</th>
<th>Relevant Outcomes Assessed</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gao, 2015<sup>4</sup></td>
<td>• MA • Eight RCTs • N= 1,755</td>
<td>• Patients with acute, intermediate-risk PE</td>
<td>• Thrombolytic therapy vs anticoagulation</td>
<td>• Mortality • Major bleeding • Minor bleeding • PE recurrence</td>
<td>• Thrombolytic therapy decreased the risk of mortality and PE recurrence compared to anticoagulation treatment • Thrombolytic therapy increased the risk of major and minor bleeding compared to anticoagulation treatment</td>
</tr>
<tr>
<td>Xu, 2015<sup>5</sup></td>
<td>• MA • Seven RCTs • N= 1,631</td>
<td>• Patients with acute, intermediate-risk PE</td>
<td>• Thrombolytic therapy vs anticoagulation</td>
<td>• 30-day, all-cause mortality • Clinical deterioration • PE recurrence • Minor bleeding • Major bleeding</td>
<td>• No statistically significant differences in 30-day, all-cause mortality and major bleeding between thrombolytic therapy and anticoagulation • Thrombolytic therapy decreased the risk of clinical deterioration and PE recurrence compared to anticoagulation treatment • Thrombolytic therapy increased the risk of minor bleeding compared to anticoagulation treatment</td>
</tr>
<tr>
<td>Chatterjee, 2014<sup>6</sup></td>
<td>• MA • 16 RCTs • N= 2,115</td>
<td>• Patients with acute PE • Subanalysis in hemodynamically stable patients with RVD</td>
<td>• Thrombolytic therapy vs anticoagulant therapy</td>
<td>• All-cause mortality • Major bleeding • PE recurrence</td>
<td>• Thrombolytic therapy decreased all-cause mortality and PE recurrence compared to anticoagulant therapy • Thrombolytic therapy increased the risk of major bleeding compared to anticoagulant therapy • Thrombolytic therapy in patients with RVD decreased mortality and</td>
</tr>
<tr>
<td>First Author, Year</td>
<td>Study Characteristics</td>
<td>Population</td>
<td>Intervention vs Comparator</td>
<td>Relevant Outcomes Assessed</td>
<td>Conclusions</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Chen, 2014⁷ | • MA
• 15 RCTs
• N=1,247 | • Patients with moderate PE | • Thrombolytic therapy vs heparin therapy | • Mortality
• PE recurrence
• Major bleeding
• Non-major bleeding | • Thrombolytic therapy decreased the risk of death and PE recurrence compared to heparin therapy
• No statistically significant difference in major bleeding between thrombolytic therapy and heparin therapy
• Thrombolytic therapy increased the risk of non-major bleeding compared to heparin therapy |
| Liu, 2014⁸ | • MA
• Seven RCTs
• N= 594 | • Hemodynamically stable patients with acute PE | • Alteplase vs heparin | • Mortality
• PE recurrence
• Major bleeding
• Escalation of care | • No statistically significant differences in mortality, PE recurrence, and major bleeding between alteplase and heparin
• Alteplase decreased the incidence of the escalation of care in patients compared to heparin |
| Nakamura, 2014⁹ | • MA
• N= 1,510 | • Patients with acute, submassive PE | • Adjunctive thrombolytic therapy vs heparin alone | • Composite endpoint of all-cause death or recurrent PE
• Composite endpoint of all-cause death or clinical deterioration
• Major bleeding | • No statistically significant differences in the incidence of the composite endpoint of all-cause death or recurrent PE and major bleeding between adjunctive thrombolytic therapy and heparin alone
• Adjunctive thrombolytic therapy decreased the risk of the composite endpoint of all-cause death or clinical deterioration compared to heparin alone |
| Riera-Mestre, 2014¹⁰ | • MA
• 11 RCTs
• N= 1,833 | • Hemodynamically stable patients with acute PE | • Thrombolytic therapy (alteplase, tenecteplase, and urokinase) vs heparin therapy | • Major bleeding
• Intracranial hemorrhage
• Fatal bleeding
• All-cause death
• PE recurrence | • Thrombolytic therapy increased the risk of major bleeding compared to heparin therapy
• No statistically significant differences in intracranial hemorrhage, fatal bleeding and all-cause death between thrombolytic therapy and heparin therapy |
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Study Characteristics</th>
<th>Population</th>
<th>Intervention vs Comparator</th>
<th>Relevant Outcomes Assessed</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang, 201811</td>
<td>• RCT • N= 66</td>
<td>• Patients with acute, intermediate-risk PE</td>
<td>• Alteplase vs LMWH</td>
<td>• Mortality • VTE recurrence • Major bleeding • Minor bleeding • Hemodynamic decompensation</td>
<td>• “At 90 days, there was no difference in mortality, recurrent venous thromboembolism and major bleeding as a safety outcome, but increased minor bleeding and decreased hemodynamic decompensation occurred in the rt-PA group.”</td>
</tr>
<tr>
<td>Konstantinides, 201712</td>
<td>• RCT • N= 1,006</td>
<td>• Patients with acute PE</td>
<td>• Tenecteplase plus anticoagulation vs placebo plus anticoagulation</td>
<td>• Overall mortality</td>
<td>• No statistically significant difference in overall mortality between tenecteplase plus anticoagulation and placebo plus anticoagulation</td>
</tr>
<tr>
<td>Sinha, 201713</td>
<td>• RCT • N= 86</td>
<td>• Patients with acute, submassive PE</td>
<td>• Tenecteplase plus heparin vs placebo plus heparin</td>
<td>• Hemodynamic decompensation • Mean hospital stay • Mortality • Major bleeding • Minor bleeding</td>
<td>• Tenecteplase plus heparin decreased hemodynamic decompensation and mean hospital stay compared to placebo plus heparin • No statistically significant differences in mortality and major bleeding between tenecteplase plus heparin and placebo plus heparin • Tenecteplase plus heparin increased minor bleeding compared to placebo plus heparin</td>
</tr>
<tr>
<td>Kline, 201414</td>
<td>• RCT • N= 83</td>
<td>• Patients with submassive PE</td>
<td>• Tenecteplase plus LMWH vs placebo plus LMWH</td>
<td>• Composite patient-oriented outcome</td>
<td>• Trial terminated prematurely • “Treatment of patients with submassive pulmonary embolism with tenecteplase was associated with increased probability of a favorable composite outcome.”</td>
</tr>
<tr>
<td>Taherkhani, 201415</td>
<td>• RCT • N= 50</td>
<td>• Patients with acute, submassive PE</td>
<td>• Alteplase or streptokinase plus enoxaparin vs</td>
<td>• Composite of in-hospital death or</td>
<td>• Thrombolytic therapy decreased the incidence of the composite of in-hospital death or clinical</td>
</tr>
<tr>
<td>First Author, Year</td>
<td>Study Characteristics</td>
<td>Population</td>
<td>Intervention vs Comparator</td>
<td>Relevant Outcomes Assessed</td>
<td>Conclusions</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fei, 2014<sup>16</sup></td>
<td>• Retrospective trial • N= 50</td>
<td>• Patients with acute, submassive PE</td>
<td>• Thrombolytic therapy vs anticoagulation</td>
<td>• Clinical cure • Hemorrhage</td>
<td>• No statistically significant difference in clinical cure rates between thrombolytic therapy and anticoagulant therapy • Thrombolytic therapy increased the incidence of hemorrhage compared to anticoagulant therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>enoxaparin alone</td>
<td>clinical deterioration • Major bleeding</td>
<td>deterioration compared to enoxaparin alone • No fatal bleeding or cerebral bleeding reported with thrombolytic therapy</td>
</tr>
</tbody>
</table>

LMWH= low-molecular weight heparin; MA= meta-analysis; PE= pulmonary embolism; RCT= randomized controlled trial; rt-PA= recombinant tissue-type plasminogen activator; RVD= right ventricular dysfunction; SR= systematic review; VTE= venous thromboembolism

References Summarized

Health Technology Assessments

No literature identified.

Systematic Reviews and Meta-analyses

Systematic Reviews with Meta-analyses

Meta-Analyses

Randomized Controlled Trials

PubMed: PM25870626

Non-Randomized Studies

PubMed: PM24348773

Guidelines and Recommendations

PubMed: PM26867832
See Section- Systemic Thrombolytic Therapy for PE

See Section 6.4- How should massive life-threatening PE in pregnancy and the puerperium be managed?

PubMed: PM25173341
See Sections 5.3- Thrombolytic Treatment and 5.8- Therapeutic Strategies
Appendix — Further Information

Systematic Review

No Abstract Available

Guidelines and Recommendations