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Why Is This an Issue?

End-of-life care provides support for patients and their families during
the last stage of life. End-of-life conversations aim to help people better
understand their disease prognosis and expected survival, enabling
them to make informed decisions regarding end-of-life care.

Palliative care focuses on relieving symptoms and improving quality of
life for patients with serious or life-threatening diseases. Approximately
89% of patients with life-limiting diseases, such as cancer, can

benefit from palliative care. However, not all patients receive it in a
timely manner.

Due in part to prognostic uncertainty and optimism bias, end-of-life
planning conversations and palliative care decisions do not occur early
enough to have maximum benefit. Interventions that aim to prompt

or help identify those patients who can benefit from palliative and/or
end-of-life planning could improve the quality of care.

What Is the Technology?

An artificial intelligence (Al)-based “nudge” is a decision-making
support tool that uses prompts and alerts to aid clinicians in deciding
whether and when to discuss end-of-life planning with patients.

The nudge sends alerts and/or reminders to clinicians to prompt end-
of-life conversations with patients who are at high risk of short-term
mortality. These patients are identified by machine learning mortality
prediction algorithms incorporated in the electronic health record
(EHR) system.

Two Al-based nudges designed for patients with cancer were identified.
Both tools were developed and internally validated in the US.

What Is the Potential Impact?

Al-based nudges have the potential to increase the number of end-of-life
planning conversations between clinicians and patients as well as the
number of referrals to end-of life services.

Implementing the nudges into clinical workflows could also help
clinicians more easily identify patients with palliative care needs.

What Else Do We Need to Know?

No Al-based nudges have been approved for use in Canada at the
time of this writing nor have there been validation studies using
Canadian data.
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Key » As with many Al algorithms, there is uncertainty about the validity and
generalizability of the mortality predictive algorithms used in the nudges.
Messqges » The acceptance of Al-based nudges by clinicians is unclear due to

varying clinician attitudes and experiences with nudges and because
we did not identify any studies that reported the experience of Al-based
nudges from the patient perspective.
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How It Works

An Al-based behavioural intervention, referred to as a “nudge,” uses alerts and/or reminders to prompt
clinicians to initiate end-of-life conversations with patients under their care who are at high risk of short-
term (such as 30-day'® or 180-day) mortality.*® These patients are identified by machine learning mortality
prediction tools incorporated in the EHR system."247 Through end-of-life conversations, patients can better
understand their disease prognosis and expected survival, enabling them to make informed decisions
regarding future treatment options.® For example, they could decide whether to choose disease-directed
treatment or palliative care, which focuses on relieving symptoms and improving quality of life for patients
with serious or life-threatening diseases.®

Two machine learning Al-based nudges, 1 of which has been commercialized, have been developed to
assist oncologists in the US to decide whether and when to discuss palliative care and end-of-life planning
with patients.”® Machine learning is a domain of Al that trains computer algorithms to provide accurate
predictions based on identified patterns from historical data.’™' Clinicians often overestimate patient
survival.’?"” Machine learning—based tools use data from EHRs and/or other sources to provide a more
precise estimate of short-term mortality.’® Moreover, machine learning Al-based nudges can create a list of
patients at high risk of 30-day’? or 180-day mortality,*® with thresholds tailored to clinician capacity for end-
of-life planning conversations. For example, a nudge developed by Manz et al.# uses structured electronic
record data to identify the 10% of patients at the highest risk of 180-day mortality.

Al-based nudges generally offer weekly notifications within a secure
platform, identifying patients at high risk for short-term mortality'24-’
and supporting the identification of those in need of advance care
planning.

For example, the nudge designed by Manz et al.* delivers prompts through a secure dashboard, which
encourage oncologists to initiate “serious illness conversations” (SICs) through 3 approaches:

» a weekly personalized list of up to 6 highest-risk patients for 180-day mortality, including patient
identifiers, the health professional and date of any prior SICs, and a default checkbox for opting out of
reminder texts®>’

 an opt-out message sent on the patient’'s appointment day to prompt clinicians to consider initiating
the SIC”7

» a weekly email regarding the number of SICs clinicians conducted in the preceding 4 weeks and a
peer comparison message tailored to clinicians who performed fewer or more than 8 SICs or ranked
among the top 10 performers of SICs during the previous 4 weeks.>”
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Who Might Benefit?

Al-based nudges developed for oncologists’™® may improve early access to palliative care for patients with
cancer. In 2022, it was estimated that there were 85,100 cancer-related deaths in Canada.™ According to
a 2023 report from the Canadian Institute for Health Information (CIHI), 89% of people with life-limiting
diseases, such as cancer and kidney diseases, can benefit from palliative care.?® In 2021 to 2022, 58% of
people who died (89,000 people) in Canada were described as palliative and had received some form of
palliative care.?

However, CIHI noted that not everyone in Canada receives palliative care early enough.? It reported that,
regardless of care setting, half of patients died within 22 days after being identified as palliative.?° Half
of patients receiving care in hospital with identified palliative care needs lived 11 days or fewer following
the identification.?®° People with cancer often receive aggressive treatments near the end of life.2?2 These
patients may experience severe physical and psychosocial symptoms before death. Palliative care can
reduce these symptoms and enhance patients’ quality of life.?

Al-based nudges have the potential to help clinicians identify
patients who could benefit from palliative and end-of-life care
planning and facilitate earlier conversations about their treatment
goals and end-of-life preferences.

Availability in Canada
Neither of the 2 nudges’® developed in the US have been approved for use in Canada.

The nudge developed by Manz et al.* has not been commercialized, whereas another nudge’? has been
commercialized for, and is available in, the US market.

What Does It Cost?

Although no specific cost information is available, the price of an Al-based tool may include tool usage,
training, and ongoing subscriptions for system updates and user support.z® Implementation training could
help clinicians better interpret prediction results, address disagreements with Al predictions, and maintain
responsiveness as the volume of system notification grows. Further, evidence suggests that clinicians
often feel unprepared to initiate SIC conversations,?* highlighting training is needed to develop essential
communication skills for these difficult conversations. For health care services without an EHR system,
additional costs include implementing, maintaining, and training for the EHR software.
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Current Practice

In Canada, decisions to initiate palliative care and/or end-of-life care are made by assessing the patient’s
condition using tools such as the Palliative Performance Scale.?** However, many patients are not eligible
until they approach the end of their lives.?

The Ontario Palliative Care Network recommends the Hospital One-year Mortality Risk (HOMR) tool for early
identification of palliative care needs across different care settings.?® HOMR uses statistical methods to
estimate mortality risk and is not Al enhanced. Refer to the Related Developments section for more details.

What Is the Evidence?

Predicting Performance of Al Algorithms Used in the Nudges

The prompt designed by Manz et al.* was prospectively validated using new data from the original EHR
systems, whereas the Al algorithm of the commercial nudge was validated within the same practice where it
was developed.? Both tools lack external validation with structurally different data from other health systems,
so their performance in different populations is unknown. A summary of prediction performance of the 2
tools is provided in Table 1. In general, Al algorithms of both nudges demonstrated:

» good overall performance in discriminating patients with cancer who had high risk or low risk of
30-day? or 180-day mortality,* with both receiver operating characteristic curves exceeding 0.82*

« accurate identification of patients at low risk of 30-day? or 180-day mortality,* as indicated by
specificities and negative predictive values all exceeding 0.952*

« limited ability to identify high-risk patients, with sensitivity values dropping below 0.3, showing that
they can capture fewer than 30% of high-risk patients.?*

In addition, Manz et al.* had a positive predictive value of 0.45. This means that for patients identified by
the algorithm as having a high risk of 180-day mortality, there is a 45% chance of passing away within 180
days. The positive predictive value of the commercial nudge was unreported,? suggesting signs of selective
reporting in the validation study.

Improving Palliative and End-of-Life Care Planning in Patients With Cancer
A stepped-wedge cluster randomized trial*” compared the nudge developed by Manz et al.* with usual care
in patients with cancer. The study involved 20,506 patients and 41,021 patient encounters, including 5,520
(13.5%) high-risk patient encounters.®
For all patient encounters, the study® found:

« a significant increase in SIC rates compared to the control period (4.4% vs. 1.3%)

« a significant decrease in end-of-life systemic therapy compared to the control period (7.5% vs. 10.4%)

» no impact on hospice enrolment or length of stay, inpatient death, or end-of-life intensive
care unit use.
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Among high-risk patient encounters, the study® found:
« a significant increase in SIC rates compared to the control period (13.5% vs. 3.4%).

A real-world before-after study’ reported that the commercial Al-based nudge significantly increased
palliative care consults and hospice referrals for patients with cancer.” In high- or medium-risk patients, the
study’ found:

« a nearly 2-fold increase in the average number of palliative care consults (after controlling for a 6
month adaptation period)

« anearly 13-fold increase in hospice referrals compared to baseline.

Issues to Consider

Predicting Performance Concerns

Both Al nudges demonstrated sensitivity less than 0.3,2# indicating they can correctly identify fewer than
30% of high-risk patients for mortality. Both nudges had a specificity exceeding 0.95,2* which means they
can accurately identify more than 95% of patients without high mortality risk. The high specificity values
suggest a potential trade-off between specificity and sensitivity. Sensitivity is generally prioritized for rare
event prediction,’®?” such as mortality prediction.? For example, some researchers preferred high sensitivity
over specificity when designing a machine learning mortality predictive model for older adults.?® One
systematic review'® noted that the low sensitivity of the nudge designed by Manz et al.* could lead to its
poor performance in identifying patients at high mortality risk. Nevertheless, the emphasis on sensitivity or
specificity depends on the models’ purposes. In a prediction model designed to identify patients at high risk
of short-term mortality, researchers may prioritize high specificity to minimize the misclassification of low-
risk patients as high risk. This is likely particularly important for large clinical practices, where a high number
of false-positives would either require clinicians to spend considerable time reviewing patient records and
speaking with people who are not at high mortality risk or lead to the nudge being ignored due to the time
required for review.

Manz et al. also employed a 40% threshold for high-risk patient identification during validation.* This meant
that the nudge would flag the top 40% of patients with the greatest risk of 180-day mortality as high risk,
while the other patients were classified as low risk.* But in real-world applications, researchers used a 10%
threshold without assessing the nudge’s performance at this threshold.>” Consequently, it is unknown
whether the nudge could predict mortality with a 10% threshold as precisely as it did using a 40% threshold.

Generalizability and Equity Concerns

There is uncertainty regarding the generalizability of Al-based nudges due to the lack of external validation.
Researchers have raised concerns about potential data bias in algorithm training datasets,?**° which
influences the performance of Al models and may cause health inequities. For example, EHR-based Al
models have demonstrated decreased performance and calibration across various geographic locations and
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over time.3" Al models also showed poor performance in historically underrepresented groups,®' potentially
reinforcing existing inequities.

External validation using data from other health systems can test whether the algorithms have site bias

or centre bias,*? which may result from variations in treatment protocols. It can also detect sampling bias
and whether the models’ predictive performance changes when applied to new cohorts with different
demographics.®2 However, current Al-based nudges lack external validation. Therefore, it is unclear whether
they can predict mortality as accurately in Canadian health care systems as they did in the development
setting. For example, although the nudge developed by Manz et al.# was prospectively validated using new
data in the original system to detect algorithm overfitting to the development dataset, it cannot evaluate the
nudge’s performance in other EHR systems. Therefore, this prospective internal validation cannot guarantee
safe application of the model in other populations.

Clinician Attitudes and Responses
The effect of the Al-based nudges in clinical practice can be influenced by clinician acceptance. Evidence
showed that clinicians varied in their attitudes toward machine learning—based clinical support tools.?’

Regarding using Al-based nudges in routine care of patients with
cancer, some clinicians believed it could aid in validating their own
prognostic estimates and prompt conversations about treatments
patients prefer to receive near the end of their lives.?

However, other clinicians have concerns about algorithm accuracy, over-reliance on algorithm predictions,
and the ethical implications related to disclosure of algorithm predictions.*

In addition, clinician response rates to the alerts can affect the effectiveness of these nudges because
clinicians are responsible for making clinical decisions, with the nudges serving as supportive tools.
Behavioural studies revealed that, over time, the impact of EHR alerts decreased due to alert fatigue.3*3°
Health care providers will pay less attention to alerts or reminders when responding to them requires a lot
of time or a lot of effort.* In a secondary analysis of a randomized controlled trial, the nudge developed by
Manz et al.* was applied in clinical practice and found that specialists with low patient volumes were more
responsive than general oncologists and specialists with higher patient volumes.?” Therefore, low response
rates from clinicians due to limited capacity or alert fatigue may be an important barrier to implementation,
especially for nudges sending multiple prompts.

Related Developments

HOMR is an EHR electronic medical record—integrated application that automatically calculates 12-month
mortality risk for newly admitted patients.*®* Based on multivariable binomial logistic regression modelling,
it predicts mortality risk using patient demographic variables and health administrative data.** HOMR was
internally validated using population-based health administrative databases in Ontario® and externally
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validated in adult, nonpsychiatric, inpatient acute care settings in Ontario and Alberta as well as Boston,
Massachusetts.?® HOMR can notify the admitting medical team of high-risk patients using an electronic
sign-out tool within the EHR.*° It can also send email alerts to the admitting physician for consideration of
palliative and end-of-life care needs.*’ The Ontario Palliative Care Network recommends using HOMR in
acute care settings.?® Some hospitals in Ontario have implemented HOMR either in practice?®4! or within
clinical studies.*? In addition, the latest version, HOMR Now!, calculates risk immediately upon patient
admission, which was internally validated using data from a tertiary-care teaching hospital in Ontario.*

Researchers at Washington University created and internally validated an Al-based nudge for the general
inpatient population in a community setting.** It notified physicians when a patient was identified as having

a high risk of 30-day mortality to prompt the discussion about care goals before discharge.** The Al model
can predict short-term mortality or hospice outcomes on the second day of a patient’s admission.* However,
details about the delivery method and frequency of these alerts were unknown.

An Al-based behavioural nudge triggering palliative care intervention for hospitalized patients was developed
and internally validated in the US.#*® Unlike nudges using mortality as a proxy for potential palliative care
needs, this tool identified patients at low risk of short-term mortality who may still benefit from palliative
care.® It was developed by learning the associations between variables in the electronic medical record and
palliative care consultation.** The nudge was delivered through a clinical Control Tower, where Control Tower
Operators and palliative care service clinicians evaluated potential palliative care needs of patients flagged
by the nudge.*

CADTH released a 2022 report introducing clinical applications of Al.#” The report included developments
and application of predictive Al models that can estimate disease progression, patient outcomes, and overall
survival across various medical conditions.#

Looking Ahead

Al-based behavioural nudges have the potential to assist clinicians in identifying high-risk patients for short-
term mortality and initiating end-of-life planning conversations, thus improving timely referrals to palliative
care or hospice services. Although there are nudges for patients with cancer that have been tested in
real-world settings, the predictive performance and generalizability are uncertain due to the lack of external
validation. In addition, the acceptance of Al prognostic prediction tools is unclear due to varying clinician
attitudes and unknown patient perspectives. More validation studies are required to confirm the robustness
and generalizability of machine learning Al models in various populations.

More real-world research is needed to investigate clinician and
patient acceptance of these nudges.

Additional research that examines the use of Al-based nudges for patients with nonmalignant diseases and
those who have reduced access to palliative care compared with patients with cancer would be helpful to
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understand whether the Al-based tools are helpful for conditions other than cancer.®5" A 2023 report from
CIHI indicated that among all patients with life-limiting illness in Canada, individuals with end-stage cancer
were 3 times more likely to receive palliative care than those with other conditions.?’ Developing Al-based

nudges and/or other interventions for patients with nonmalignant diseases may facilitate equitable access
to palliative care services.
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Appendix 1: Methods

Note that this appendix has not been copy-edited.

Literature Search Strategy

An information specialist conducted a literature search on key resources including MEDLINE, Embase, the
Cochrane Database of Systematic Reviews, the International HTA Database, the websites of Canadian and
major international health technology agencies, as well as a focused internet search. The search approach

was customized to retrieve a limited set of results, balancing comprehensiveness with relevancy. The search

strategy comprised both controlled vocabulary, such as the National Library of Medicine’'s MeSH (Medical
Subject Headings), and keywords. Search concepts were developed based on the elements of the research
questions and selection criteria. The main search concepts were artificial intelligence and end of life. The
search was completed on September 6, 2023, and limited to English-language documents published since
January 1, 2018.

Selection Criteria

One author screened the literature search results and reviewed the full text of all potentially relevant studies.

Studies were considered for inclusion if the intervention was a combination of Al-based mortality predictive
models and behavioural interventions targeting clinicians to initiate end-of-life conversations with patients.
Conference abstracts and grey literature were included when they provided additional information to that
available in the published studies.
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Appendix 2: Additional Information
Note that this appendix has not been copy-edited.

CADTH Horizon Scan

Table 1: Characteristics and Predicting Performance of the Al Algorithms of the Included

Behavioural Nudges

A commercial nudge developed for the US

Al-based nudge developed by researchers at

Al-based behavioural nudge market'? University of Pennsylvania*
Country us us
Type of disease All cancer All cancer

Algorithm

N-dimensional eigenspace

Gradient-boosted tree

Input features

Clinical data and billing information (e.g.,
diagnosis codes, assessments, laboratories,
medications, cancer staging information,
vitals, and screenings) from the EHR

Socioeconomic data? (e.g., income,
household size, transportation) from
publicly available resources including

US Census Bureau, US Department of
Agriculture and the National Oceanic and
Atmospheric Administration

Behavioural data? (e.g., history of internet
searches on health conditions, purchasing
channels and life stage) from third-party
data vendors such as Acxiom, Experian, and
Transunion

Structured EHR data including demographic,
clinicopathologic, laboratory, comorbidity, and
electrocardiogram data

Outcome

30-day mortality

180-day mortality

Validation

Internally validated in 3,671 patients in a
community practice in the Pacific Northwest
of the US

No external validation
Threshold for high-risk patients: 5%

Internally validated in 24,582 patients in a tertiary
practice within the University of Pennsylvania
Health System

No external validation
Threshold for high-risk patients: 40%

Area under the receiver 0.86 0.89
operating characteristic curve

Sensitivity 0.28 0.27
Specificity 0.95 0.99
Positive predictive value Not reported 0.45
Negative predictive value 0.99 0.97

EHR = electronic health record.

2Socioeconomic and behavioural data were used during model development. It is unclear whether the commercial nudge retrieves patients’ behavioural and socioeconomic
data out of the EHR system to predict individual mortality risk in practical use.
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