TITLE: Topical Antimicrobials and Antimicrobial Dressings for the Management of Diabetic Foot Ulcers: Clinical Effectiveness and Guidelines

DATE: 15 September 2014

RESEARCH QUESTIONS

1. What is the clinical effectiveness of topical antimicrobial use without wound dressing application on both infected and non-infected diabetic foot ulcers (DFU)?

2. What is the clinical effectiveness of topical antimicrobial use with regular, non-antimicrobial wound dressing application on both infected and non-infected DFUs?

3. What is the clinical effectiveness of antimicrobial dressing application on both infected and non-infected DFUs?

4. What are the evidence-based guidelines regarding the use of antimicrobial products on DFUs in the absence of signs and symptoms of infection?

5. What are the evidence-based guidelines regarding the use of topical antimicrobials and antimicrobial dressings for the management of DFUs?

KEY FINDINGS

Six systematic reviews and meta-analyses, three randomized controlled trials, and three non-randomized studies were identified regarding the clinical effectiveness of topical antimicrobials or antimicrobial dressing application on both infected and non-infected DFUs. One evidence based guideline was identified regarding the use of topical antimicrobials and antimicrobial dressings for the management of DFUs.

METHODS

A limited literature search was conducted on key resources including PubMed, The Cochrane Library (2014, Issue 9), University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused

Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that CADTH could identify using all reasonable efforts within the time allowed. Rapid responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material and may contain material in which a third party owns copyright. This report may be used for the purposes of research or private study only. It may not be copied, posted on a web site, redistributed by email or stored on an electronic system without the prior written permission of CADTH or applicable copyright owner.

Links: This report may contain links to other information available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
Internet search. No filters were applied to limit the retrieval by study type. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2009 and September 8, 2014. Internet links were provided, where available.

The summary of findings was prepared from the abstracts of the relevant information. Please note that data contained in abstracts may not always be an accurate reflection of the data contained within the full article.

SELECTION CRITERIA

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
</tbody>
</table>
| **Intervention** | Q1 and 2: Topical antimicrobials (included, but not limited to, silver, iodine, acticoat)
| | Q3: Antimicrobial dressings
| | Q4 and 5: Both topical antimicrobials and antimicrobial dressings |
| **Comparator** | Q1: No comparator, regular non-antimicrobial dressings, antimicrobial dressings
| | Q2: No comparator, antimicrobial dressings
| | Q3: No comparator, topical antimicrobials without regular dressings, topical antimicrobials with regular dressings |
| **Outcomes** | Clinical effectiveness (clinical benefit; including, but not limited to, impact on healing and harms) |
| **Study Designs** | Health technology assessment reports, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies |

RESULTS

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, and evidence-based guidelines.

Six systematic reviews and meta-analyses, three randomized controlled trials, and three non-randomized studies were identified regarding the clinical effectiveness of topical antimicrobials or antimicrobial dressing application on both infected and non-infected DFUs. One evidence based guideline was identified regarding the use of topical antimicrobials and antimicrobial dressings for the management of DFUs. No health technology assessment reports were identified and no evidence-based guidelines were identified regarding the use of antimicrobial products on DFUs in the absence of signs and symptoms of infection.

Additional references of potential interest are provided in the appendix.
OVERALL SUMMARY OF FINDINGS

Six systematic reviews and meta-analyses, three randomized controlled trials, and three non-randomized studies regarding the clinical effectiveness of topical antimicrobials or antimicrobial dressing application on both infected and non-infected DFUs were identified.

Evidence regarding a number of antimicrobial interventions was identified.1-12 Overall, there was inconsistent evidence regarding the effectiveness of topical antimicrobials and antimicrobial dressing application on both infected and non-infected DFUs. Detailed results are summarized in Table 2.

One evidence-based guideline13 regarding the use of topical antimicrobials and antimicrobial dressings for the management of DFUs was identified. This guideline reported the following:

- “topical antimicrobials may be used for non-limb threatening infections to reduce bacterial burden in superficial infections
- there is mixed evidence regarding silver containing dressings and creams for promoting wound healing and preventing wound infections in DFUs
- “If topical antimicrobial agents are used and increased superficial bacterial burden or delayed healing are noted, treatment should be supplemented with debridement and moisture balance.”
- “There is mixed comparative evidence on the effectiveness of any particular dressing to heal diabetic foot ulcers.”

No relevant evidence-based guidelines regarding the use of antimicrobial products on DFUs in the absence of signs and symptoms of infection were identified.
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Study Findings and Author Conclusions</th>
</tr>
</thead>
</table>
| Dumville, 2013¹ | • Patients with DFUs | • Antimicrobial (silver) fibrous-hydrocolloid dressings | • Standard alginate dressing
• Iodine-impregnated antimicrobial dressing
• Standard fibrous hydrocolloid dressing with and without topical cream containing plant extracts | • No difference in healing between treatment and any comparators.
• Insufficient evidence to support use of the treatment over other types of dressings. |
| Dumville, 2013² | • Patients with DFUs | • Alginate dressings | • Basic wound contact dressings
• Foam dressings
• Silver-containing fibrous-hydrocolloid dressing | • No difference in the number of healed DFUs when antimicrobial (silver) hydrocolloid dressings were compared to alginate dressings. |
| Greer, 2013³ | • Patients with DFUs (non-healing) | • Platelet-derived growth factors and silver cream | • Standard care | • There was low-strength evidence that the combination treatment improved healing compared to standard care. |
| Peters, 2012⁴ | • Patients with DFUs (with infections in soft tissue and bone) | • Superoxidized water | • Soap
• Povidone iodine | • Better outcomes (not specified) were observed for superoxidized water than soap or povidone iodine (high risk of bias).
• No evidence to justify the adoption of any particular therapy in diabetic patients with infection of soft tissue or bone. |
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Study Findings and Author Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt, 2010<sup>⁵</sup></td>
<td>Patients with DFUs</td>
<td>Dimethyl sulfoxide, Cadexomer iodine,</td>
<td>Conventional treatment (not specified)</td>
<td>Dimethyl sulfoxide was associated with greater odds of healing than conventional treatment. Cadexomer iodine did not result in improved healing compared to conventional healing.</td>
</tr>
<tr>
<td>Storm-Versloot, 2010<sup>⁶</sup></td>
<td>Patients with DFUs</td>
<td>Silver-containing hydrofibre dressing</td>
<td>Non-silver dressings</td>
<td>One trial showed significant reduction in healing time with treatment. Insufficient evidence to establish whether silver treatments are effective at promoting wound healing.</td>
</tr>
</tbody>
</table>

Randomized Controlled Trials

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Study Findings and Author Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belcaro, 2010<sup>⁷</sup></td>
<td>Patients (n = 148) with venous or diabetic ulcers (location not specified)</td>
<td>Multivalent silver oxide ointment</td>
<td>Standard cleaning and compression management</td>
<td>Observations in treatment group after four weeks of treatment: greater increase in skin PO2 and skin flux, greater reduction in total ulcer surface area, higher proportion of complete closure of ulceration.</td>
</tr>
<tr>
<td>Trial, 2010<sup>⁸</sup></td>
<td>Patients (n = 42) with locally infected chronic wounds, including DFUs (29%)</td>
<td>Ionic silver alginate matrix dressing (Askina Calgitrol Ag)</td>
<td>Standard silver-free alginate dressing (Algosteril)</td>
<td>Treatment not superior to comparator. Clinical scores of infection decreased in both groups after 15 days.</td>
</tr>
</tbody>
</table>
Table 2: Summary of Findings of Systematic Reviews, Meta-analyses, Randomized Controlled Trials and Non-Randomized Studies

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Study Findings and Author Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffcoate, 2009</td>
<td>Patients (n = 229 after withdrawals, ≥ 18 years) with type 1 or 2 diabetes</td>
<td>Aquacel dressings</td>
<td>Non-adherent, knitted, viscose filament gauze (N-A)</td>
<td>No difference in percentage of ulcers healed by 24 weeks, quality of healing (recurrence), and adverse events between the three groups.</td>
</tr>
<tr>
<td></td>
<td>Chronic (> 6 weeks) full thickness DFU (area = 25-2500 mm²)</td>
<td></td>
<td>Inadine (iodine-impregnated dressing)</td>
<td></td>
</tr>
<tr>
<td>Non-Randomized Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coutts, 2014</td>
<td>Patients with DFUs (n = 8) and venous leg ulcers (n = 7)</td>
<td>Antibacterial foam (polyvinyl alcohol) dressing bound with gentian violet and methylene blue</td>
<td>None</td>
<td>At study end, improvements in surface critical colonization and pain scores were noted, especially for patients with DFUs.</td>
</tr>
<tr>
<td>Schwartz, 2013</td>
<td>Patients (n = 15) with DFUs that were infected or had achieved a critical level of colonization</td>
<td>Cadexomer iodine antibacterial dressing</td>
<td>None</td>
<td>Reductions in wound surface area, bacterial load (at 3 and 6 weeks), ulcer surface area, and ulcer depth were observed. No ulcers completely healed during the study period.</td>
</tr>
<tr>
<td>Nagoba, 2010</td>
<td>Patients (n = 115) with DFUs (of different Wagner grades)</td>
<td>Citric acid gel</td>
<td>None</td>
<td>Treatment was effective at controlling infection, especially in Wagner I and II grades (> 94% success rate), and Wagner III grades without deep osteomyelitis.</td>
</tr>
</tbody>
</table>

DFUs = diabetic foot ulcers.
REFERENCES SUMMARIZED

Health Technology Assessments
No literature identified.

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Non-Randomized Studies

Guidelines and Recommendations

APPENDIX – FURTHER INFORMATION:

Systematic Reviews – Topical Antimicrobials or Antimicrobial Dressings Not Specified

Randomized Controlled Trials

Combination Therapy

Alternate Comparator

Post-surgical Lesions

Non-Randomized Studies – Case Report

Clinical Practice Guidelines – Uncertain Methodology

Review Articles

