TITLE: Magnetic Resonance Spectroscopic Imaging for Prostate Disease Detection: Clinical and Cost-Effectiveness, and Guidelines

DATE: 07 February 2014

RESEARCH QUESTIONS

1. What is the clinical effectiveness of magnetic resonance spectroscopic imaging versus ultrasound-guided transrectal biopsy for prostate disease diagnosis in men 50 years of age and older?

2. What are the harms associated with the use of magnetic resonance spectroscopic imaging for prostate disease detection?

3. What is the cost-effectiveness of magnetic resonance spectroscopic imaging versus ultrasound-guided transrectal biopsy for prostate disease diagnosis in men 50 years of age and older?

4. What are the guidelines associated with magnetic resonance spectroscopic imaging for prostate disease detection in men 50 years of age and older?

KEY MESSAGE

One health technology assessment, two systematic reviews, one randomized controlled trial, five non-randomized studies, and two evidence-based guidelines were identified regarding magnetic resonance spectroscopic imaging compared with ultrasound-guided transrectal biopsy for prostate disease diagnosis.

METHODS

A limited literature search was conducted on key resources including PubMed, The Cochrane Library (2014, Issue 1), University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No filters were applied to limit the retrieval by study type. Where possible, retrieval was limited to the human population. The search was also limited to English language.

Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that CADTH could identify using all reasonable efforts within the time allowed. Rapid responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material and may contain material in which a third party owns copyright. This report may be used for the purposes of research or private study only. It may not be copied, posted on a web site, redistributed by email or stored on an electronic system without the prior written permission of CADTH or applicable copyright owner.

Links: This report may contain links to other information available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
documents published between Jan 1, 2009 and Jan 27, 2014. Internet links were provided, where available.

The summary of findings was prepared from the abstracts of the relevant information. Please note that data contained in abstracts may not always be an accurate reflection of the data contained within the full article.

RESULTS

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, economic evaluations, and evidence-based guidelines.

One health technology assessment (HTA), two systematic reviews, one randomized controlled trial (RCT), five non-randomized studies, and two evidence-based guidelines were identified regarding magnetic resonance spectroscopic imaging (MRSI) compared with ultrasound-guided transrectal biopsy for prostate disease diagnosis. No economic studies were identified. Additional references of potential interest are provided in the appendix.

OVERALL SUMMARY OF FINDINGS

An HTA, published in 2009, considered MRSI to be safe when guidelines for its use were followed. The section of the report on MRSI for prostate cancer based its findings on 13 small studies. The conclusion from these studies was that MRSI combined with magnetic resonance imaging (MRI) could be useful when testing low-risk patients; the main advantage being a greater specificity when identifying lesions as benign or non-malignant. This same conclusion was reached by a systematic review, also published in 2009, which included 16 studies (581 patients) for meta-analysis. A recent systematic review (2013) that included 51 studies assessing MRSI, enhanced MRI, and dynamic contrast-enhanced MRI (DCE-MRI) concluded that MRSI had higher sensitivity and specificity than T2-MRI. The authors stated that more prospective studies were needed for determining the cost-effectiveness of MRSI. None of the abstracts for these three assessments specified age of the included participants.

One RCT and five non-randomized studies were identified; the details and conclusions of these studies are provided in Table 1.

<table>
<thead>
<tr>
<th>Author, Year; Study type</th>
<th>Stated Objective</th>
<th>No. of patients (n); Age</th>
<th>Stated Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciarra et al., 2010; RCT</td>
<td>Prospectively analyze MRSI and DCEMR in detecting prostate tumor foci in patients with high PSA levels and prior negative TRUS-guided biopsy</td>
<td>n = 180; Age: NR</td>
<td>The combined technologies showed potential for guiding a biopsy to cancer foci, in these patients</td>
</tr>
<tr>
<td>Ferda et al., 2013; Prospective non-randomized study</td>
<td>Assess the role of multiparametric 3T (3T MRI): the combination of T2-weighted images, diffusion-weighted images, MRSI, and...</td>
<td>n = 164; Age: NR</td>
<td>Routine use of 3T MRI for patients with elevated PSA should reduce the number of biopsies and improve detection</td>
</tr>
</tbody>
</table>
Table 1: Summary of Clinical Trials

<table>
<thead>
<tr>
<th>Author, Year; Study type</th>
<th>Stated Objective</th>
<th>No. of patients (n); Age</th>
<th>Stated Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganie et al., 2013; Prospective non-randomized study</td>
<td>Assess the efficacy of endorectal coil MRI and MRSI in patients with elevated PSA and negative TRUS-guided biopsy</td>
<td>n = 87; Age: NR</td>
<td>Early diagnosis and localization of prostatic carcinoma was improved with the combined technologies in these patients</td>
</tr>
<tr>
<td>Javali et al., 2013; Retrospective non-randomized study</td>
<td>Assess the ability of MRSI to improve detection of prostate cancer in patients with elevated PSA and normal digital rectal examination</td>
<td>n = 278; Age: NR</td>
<td>MRSI-directed TRUS biopsy showed increased rates of prostate cancer detection compared with standard TRUS biopsy for these patients</td>
</tr>
<tr>
<td>Lunacek et al., 2013; Retrospective non-randomized study</td>
<td>Assess the ability of MRT, MRSI, and DW-MRI to detect prostate cancer in patients with elevated PSA and negative biopsies</td>
<td>n = 67; 25 pathology sections analyzed Age: mean 66 years</td>
<td>MRI and MRSI were accurate in locating tumours in 20 of 25 cases</td>
</tr>
<tr>
<td>Franiel et al., 2011; Prospective non-randomized study</td>
<td>Investigate the incremental value of multiparametric MRI compared with standard T2-weighted imaging for biopsies</td>
<td>n = 54; Age: NR</td>
<td>Combination of T2-weighted imaging with 3 multiparametric techniques locates all identifiable prostate cancers; DW imaging with MRSI or contrast-enhanced MR imaging misses 6%</td>
</tr>
</tbody>
</table>

DCEMR = dynamic-contrast enhancement magnetic resonance; DW = diffusion-weighted; MRI = magnetic resonance imaging; MRSI = magnetic resonance spectroscopy imaging; MRT = magnetic resonance tomography; NR = not reported; PSA = prostate-specific antigen; TRUS = transrectal ultrasound-guided biopsy

One guideline, produced by the European Association of Urology (EAU) Guidelines Group for Prostate Cancer in 2013, recommends the use of TRUS-guided systemic biopsy for the diagnosis of prostate cancer, and recommends MRI for the staging of prostatic cancer (MRSI not specifically mentioned). The second guideline, produced by the American College of Radiology in 2012, states that MRSI improves accuracy of cancer detection, but does not indicate if MRSI is recommended for routine use in prostate cancer detection.
REFERENCES SUMMARIZED

Health Technology Assessments

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Non-Randomized Studies

Economic Evaluations
No literature identified.

Guidelines and Recommendations

 Section 7.4 Guidelines for the diagnosis and staging of PCa

 See: Sections on Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy and Multiparametric Magnetic Resonance Imaging of the Prostate

PREPARED BY:
Canadian Agency for Drugs and Technologies in Health
Tel: 1-866-898-8439
www.cadth.ca
APPENDIX – FURTHER INFORMATION:

Non-Randomized Studies – MRSI and Non-MRI Combination Technologies

Non-Randomized Studies – No Pre-MRSI Biopsy Comparator

Guidelines and Recommendations – Consensus Guidelines

Review Articles

Additional References

