
DATE: 30 May 2016

RESEARCH QUESTIONS

1. What is the accuracy of programmed death ligand 1 (PD-L1) diagnostic antibody assays?
2. What is the clinical utility of PD-L1 testing in patients with non-small cell lung cancer?
3. What is the effectiveness of programmed cell death protein 1 (PD-1)/PD-L1 checkpoint inhibitors for treating patients with non-small cell lung cancer with different levels of PD-L1 expression?

KEY FINDINGS

Two health technology assessments, five systematic reviews, three randomized controlled trials, and two non-randomized studies were identified regarding the effectiveness of PD-1/PD-L1 checkpoint inhibitors for treating patients with non-small cell lung cancer with different levels of PD-L1 expression. No relevant studies were identified regarding the accuracy of diagnostic antibody assays or clinical utility of PD-L1 testing.

METHODS

A limited literature search was conducted on key resources including PubMed, The Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. Methodological filters were applied to limit retrieval to health technology assessments, systematic reviews, meta-analyses, randomized controlled trials and non-randomized studies. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between Jan 1, 2011 and May 23, 2016. Internet links were provided, where available.

Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada. Rapid responses are based on a limited literature search and are not comprehensive, systematic reviews. The intent is to provide a list of sources of the best evidence on the topic that the Canadian Agency for Drugs and Technologies in Health (CADTH) could identify using all reasonable efforts within the time allowed. Rapid responses should be considered along with other types of information and health care considerations. The information included in this response is not intended to replace professional medical advice, nor should it be construed as a recommendation for or against the use of a particular health technology. Readers are also cautioned that a lack of good quality evidence does not necessarily mean a lack of effectiveness particularly in the case of new and emerging health technologies, for which little information can be found, but which may in future prove to be effective. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up to date, CADTH does not make any guarantee to that effect. CADTH is not liable for any loss or damages resulting from use of the information in the report.

Copyright: This report contains CADTH copyright material and may contain material in which a third party owns copyright. This report may be used for the purposes of research or private study only. It may not be copied, posted on a web site, redistributed by email or stored on an electronic system without the prior written permission of CADTH or applicable copyright owner.

Links: This report may contain links to other information available on the websites of third parties on the Internet. CADTH does not have control over the content of such sites. Use of third party sites is governed by the owners’ own terms and conditions.
SELECTION CRITERIA

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Q1: Patients with cancer</td>
</tr>
<tr>
<td>Q2, Q3: Patients with non-small cell lung cancer</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Q1, Q2: PD-L1 testing</td>
</tr>
<tr>
<td>Q3: PD-1/PD-L1 checkpoint inhibitors (nivolumab, pembrolizumab, atezolizumab [MPDL3280A], durvalumab [MEDI4736], and avelumab [MSB0010718C])</td>
</tr>
<tr>
<td>Comparator</td>
</tr>
<tr>
<td>Q1, Q2: Any</td>
</tr>
<tr>
<td>Q3: Different PD-L1 expression levels</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Diagnostic accuracy, clinical utility (benefits and harms of testing), overall survival, progression-free survival, quality of life, objective response rate, duration of response, and time to response</td>
</tr>
<tr>
<td>Study Designs</td>
</tr>
<tr>
<td>Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies</td>
</tr>
</tbody>
</table>

PD-L1 = programmed death ligand 1; PD-L1 = programmed death ligand 1.

RESULTS

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, and non-randomized studies.

Two health technology assessments, five systematic reviews, three randomized controlled trials, and two non-randomized studies were identified regarding the effectiveness of PD-1/PD-L1 checkpoint inhibitors for treating patients with non-small cell lung cancer with different levels of PD-L1 expression. No relevant studies were identified regarding the accuracy of diagnostic antibody assays or clinical utility of PD-L1 testing.

Additional references of potential interest are provided in the appendix.

Health Technology Assessments

 See: 6.2 Efficacy and safety – further studies, page 10

Systematic Reviews and Meta-analyses

Randomized Controlled Trials

Non-Randomized Studies

APPENDIX – FURTHER INFORMATION:

Review Articles

Additional References

