A Cost-Effectiveness Analysis of Maternal Genotyping to Guide Treatment in Postnatal Patients
DISCLOSURE

I have received research support from:
SickKids RestraComp
Ontario Graduate Scholarship
Institute of Health Policy, Management and Evaluation
Canadian Federation of University Women
The Issues

- Treating a new mother with medications may present a dilemma due to concerns of unnecessary infant exposure through breastmilk
- Recent evidence of serious adverse events associated with codeine use in the neonatal period ⇒ labelling change by federal regulators and practice changes across the country
- Inconsistent practice guidelines across institutions
- Increased risk may be associated with maternal ultrarapid metabolizer (UM) phenotype (CYP2D6)
- Pharmacogenetic testing increasingly used to guide treatment and improve care
Rationale

- Genotyping may be able to identify at risk mother-infant pairs
- Analgesic medications are relatively inexpensive
- Adverse events (AEs) can be costly and place significant burdens on the health care system
- Genotyping can be expensive – *the promise of personalized medicine*
- HTA evidence is required to better inform clinical, institutional and policy decision makers
Objective

• To determine the incremental costs of CYP2D6 pharmacogenetic testing compared to standard of care in averting neonatal CNS depressive adverse events
Methods – Cost Effectiveness Analysis

- A cost-effectiveness analysis was conducted using a decision model, to determine the expected values of costs and effectiveness of the proposed intervention (CYP2D6 screening to guide treatment)
- Perspective: Societal (public payer, private payers, out-of-pocket)
- Time horizon: time of screening procedure to completion of drug therapy
- Outcome: CNS depressive adverse events
 - sedation, poor latch or feeding, difficulty breathing or limpness
- Extensive sensitivity analysis (including PSA) was performed
- Additional scenarios of a modified base case also evaluated
The Base Case and the Decision

Prenatal patient who may require analgesia after delivery

Pharmacogenetic screening prior to delivery. Non-opioid analgesics to women who test positive for UM phenotype and codeine administration (as required) if patient tests negative for UM

Standard care. No pharmacogenetic testing and codeine as required.
Base Case Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Case Estimate</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Distribution for PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability UM</td>
<td>0.0800</td>
<td>0.0100</td>
<td>0.4000</td>
<td>Beta</td>
</tr>
<tr>
<td>Probability test positive, given UM (True Positive)</td>
<td>0.9900</td>
<td>0.7000</td>
<td>1.0000</td>
<td>Fixed</td>
</tr>
<tr>
<td>Probability codeine used</td>
<td>0.6584</td>
<td>0.4155</td>
<td>0.8250</td>
<td>Beta</td>
</tr>
<tr>
<td>Probability AE, among UM</td>
<td>0.6667</td>
<td>0.2174</td>
<td>1.0000</td>
<td>Beta</td>
</tr>
<tr>
<td>Probability AE, non-UM</td>
<td>0.2174</td>
<td>0.0210</td>
<td>0.3077</td>
<td>Beta</td>
</tr>
<tr>
<td>Probability of emergency room with AE</td>
<td>0.1143</td>
<td>0</td>
<td>0.2343</td>
<td>Beta</td>
</tr>
<tr>
<td>Probability of hospital admission</td>
<td>0.9000</td>
<td>0.7500</td>
<td>1.0000</td>
<td>Beta</td>
</tr>
<tr>
<td>Test cost (genotyping analysis)</td>
<td>$150.00</td>
<td>$90.00</td>
<td>$1300.00</td>
<td>Gamma</td>
</tr>
<tr>
<td>Emergency room visit</td>
<td>$278.38</td>
<td>$6.50</td>
<td>$1769.95</td>
<td>Gamma</td>
</tr>
<tr>
<td>Parent lost productivity day</td>
<td>$250.23</td>
<td>$194.83</td>
<td>$525.26</td>
<td>Gamma</td>
</tr>
<tr>
<td>Hospital admission Cost</td>
<td>$6,865.32</td>
<td>$6.50</td>
<td>$387,058.59</td>
<td>Gamma</td>
</tr>
<tr>
<td>Hospital admission Quantity (days)</td>
<td>5.1</td>
<td>1</td>
<td>169</td>
<td>Gamma</td>
</tr>
</tbody>
</table>

AE=adverse event
UM=ultrarapid metabolizer
Folding back the tree

- Incremental cost-effectiveness ratio (ICER)

\[
ICER = \frac{\text{costs per mother} \cdot \text{infant pair intervention group} - \text{cost per pair comparator group}}{\text{AEs per infant intervention group} - \text{AEs per infant comparator group}}
\]

\[
= \frac{\Delta C}{\Delta E}
\]
Assumptions

- Assume 0% codeine (or any other opioid) use if UM positive
- Only first incident of codeine use evaluated, subsequent exposure to opioid analgesics not accounted for
- Infants are exclusively breastfed during the interval of drug use
- Rates of opioid-related adverse events do not differ for male and female offspring
- Infants are born at term, and were healthy at birth
- CNS depressive events assumed to be due to exposure, unless alternate diagnosis is made by a clinician
- No maternal adverse events included in the model
Methods

- Sensitivity analysis was conducted to evaluate robustness of the model
 - 1-way sensitivity analysis
 - Probabilistic sensitivity analysis (PSA)

- Scenario analyses of selected populations
 - High UM rate (pUM=0.4, range: 0.12-0.45)
 - Caesarean Sections only (pCodeine=0.93, range: 0.78-1.0)
Results: Probabilistic Sensitivity Analysis

- ICER
 - genotyping strategy cost $10,433 per adverse event averted

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Mean Cost per Case (95% CI) $</th>
<th>Mean Adverse Events per Case (95% CI)</th>
<th>Incremental Cost-Effectiveness Ratio (95% CI) $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>537.09 (241.78, 1670.63)</td>
<td>0.1339 (0.0543, 0.2518)</td>
<td></td>
</tr>
<tr>
<td>No Screen</td>
<td>183.73 (12.15, 1137.30)</td>
<td>0.1687 (0.0691, 0.3095)</td>
<td></td>
</tr>
<tr>
<td>Incremental</td>
<td>353.36 (-55.14, 1235.91)</td>
<td>-0.0339 (-0.1785, 0.0566)</td>
<td>10,432.73</td>
</tr>
</tbody>
</table>
ICER Scatter
Result: One-Way Sensitivity Analysis

- The ICER was sensitive to:
 - costs of hospital admission as a result of an adverse event
 - when costs >$104,000 per event, screening was the preferred strategy

- Dominance of screening strategy sensitive to:
 - prevalence of codeine use
 - when \(p_{\text{codeine}} < 0.53 \), screening was dominated by standard care
Results: Scenario - High UM rate

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Mean Cost per Case (95% CI)</th>
<th>Mean Adverse Events per Case (95% CI)</th>
<th>Incremental Cost-Effectiveness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>479.46 (235.70, 1524.12)</td>
<td>0.0877 (0.0345, 0.1603)</td>
<td></td>
</tr>
<tr>
<td>No Screen</td>
<td>287.11 (22.53, 1572.36)</td>
<td>0.2619 (0.1196, 0.4323)</td>
<td></td>
</tr>
<tr>
<td>Incremental</td>
<td>192.35 (-664.15, 1142.56)</td>
<td>-0.1743 (-0.3455, -0.0353)</td>
<td>1,137.56</td>
</tr>
</tbody>
</table>

![Graph showing incremental cost vs. incremental effectiveness](image)
Results: Scenario – Caesarean Section

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Mean Cost per Case (95% CI)</th>
<th>Mean Adverse Events per Case (95% CI)</th>
<th>Incremental Cost-Effectiveness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>613.57 (234.70, 2268.88)</td>
<td>0.1885 (0.0152, 0.5371)</td>
<td></td>
</tr>
<tr>
<td>No Screen</td>
<td>267.73 (8.19, 1610.98)</td>
<td>0.2407 (0.0283, 0.5982)</td>
<td></td>
</tr>
<tr>
<td>Incremental</td>
<td>345.82 (-95.27, 1329.49)</td>
<td>-0.0522 (-0.2494, 0.0266)</td>
<td>6,626.50</td>
</tr>
</tbody>
</table>

![Scatter plot showing incremental cost vs. incremental effectiveness]
Discussion

- Pharmacogenetic testing resulted in increased costs over standard care but decreased AE rates, a value of $10,433
- Model was not sensitive to variation in most variables suggesting it is robust.
Strengths

• First example of a CEA to evaluate genotyping to guide treatment for a new mother and avert AEs in her child
• Unique example of CEA in maternal-child health
• Utilization rates similar to those previously published
• Inform policy decisions
Limitations

- Small amount of published data from which to ascertain rates and ranges
 - Decision model may mitigate this
- Clinical practice changes over time and across settings
- No measure of future benefits of knowledge of metabolizer status or maternal adverse events
- Loss of lifetime productivity due to death not captured in short time horizon
- Death rates too unstable to include life years in the model
Implications

- Findings are relevant to patients, clinicians, and decision makers
- For the clinician, screening may not be cost-effective for all populations
 - sound clinical management and observation is critical
- For decision makers, this strategy would reduce AEs but at a cost
 - benefits of pharmacogenetic screening strategies should be evaluated for specific screens and specific outcomes
- Will have implications for vast numbers of mothers and children each year in Canada and internationally, and will inform decision making regarding reimbursement for genetic testing
- This model may be adaptable to other pharmacogenetic health economic questions
- The field of pharmacogenetic testing and treatment is rapidly evolving