Appendix 1: Literature Search Strategy

Type 2 DM — Main Search

2016 Mar 5

OVID Multifile

Database: Embase Classic+Embase <1947 to 2016 March 04>, Ovid MEDLINE(R) In-Process \& Other Non-Indexed Citations and Ovid MEDLINE(R) <1946 to Present>

```
Search Strategy
    1 exp Diabetes Mellitus, Type 2/ (266330)
2 Diabetes Mellitus/ (557998)
3 ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or
    stable or type 2 or type II or lipoatrophic) adj3 diabet*).tw,kw. (275289)
4 (MODY or NIDDM or T2DM).tw,kw. (45223)
5 or/1-4 (845937)
6 exp Diabetes Mellitus, Type 2/dt (66593)
7 Drug Combinations/ (114030)
8 Drug Therapy, Combination/ (196166)
96 and (7 or 8) (3517)
10 Hypoglycemic Agents/ (81238)
11 (antidiabetic? or anti-diabetic? or antihyperglyc?emic? or anti-hyperglyc?emic? or hypoglyc?emic?
    or antidiabetes or anti-diabetes).tw,kw. (89934)
12 Dipeptidyl-Peptidase IV Inhibitors/ (5438)
13 ((DPP4 or DPP 4 or DPP IV) adj1 inhibitor?).tw,kw. (5838)
14 (dipeptidyl-peptidase IV adj2 inhibitor?).tw,kw. (1193)
15 (dipeptidyl-peptidase 4 adj2 inhibitor?).tw,kw. (2749)
16 gliptin?.tw,kw. (406)
17 (alogliptin or nesina or SYR 322 or SYR322 or HSDB 8203 or incresina or vipidia).tw,kw. (800)
18 JHC049LO86.rn. (139)
19 Linagliptin/ (1411)
20 (linagliptin or BI 1356 or ONDERO or tradjenta or trajenta or trayenta or trazenta).tw,kw. (1182)
21 3X29ZEJ4R2.rn. (192)
22 (saxagliptin or BMS 477118 or BMS477118 or HSDB }8199\mathrm{ or Onglyza or OPC 262).tw,kw. (1331)
23 9GB927LAJW.rn. (202)
24 exp Sitagliptin Phosphate/ (6074)
```


Search Strategy

25 (sitagliptin or EC 690-730-1 or Glactiv or HSDB 7516 or januvia or "mk 0431" or mk0431 or mk 431 or ono 5435 or ristaben or sitagliptine or tesabel or tesavel or xelevia).tw,kw. (4518)
26 TS63EW8X6F.rn. (808)
27 Sodium-Glucose Transporter 2/ai (514)
28 (sodium-glucose transporter 2 inhibitor? or sodium-glucose cotransporter 2 inhibitor?).tw,kw. (420)
29 (sodium-glucose transporter 2 inhibitor? or sodium-glucose co-transporter 2 inhibitor?).tw,kw. (392)
30 ((SGLT-2 or SGLT2) adj inhibitor?).tw,kw. (1855)
31 (sodium dependent glucose transporter 2 inhibitor? or sodium dependent glucose cotransporter 2 inhibitor?).tw,kw. (23)
32 (sodium dependent glucose transporter 2 inhibitor? or sodium dependent glucose co-transporter 2 inhibitor?).tw,kw. (14)
33 gliflozin?.tw,kw. (44)
34 Canagliflozin/ (916)
35 (canagliflozin or Invokana or JNJ 24831754* or JNJ 28431754 or TA 7284 or Prominad).tw,kw. (859)

36 OSAC974Z85.rn. (141)
37 (dapagliflozin or BMS 512148 or BMS512148 or edistride or forxiga or farxiga).tw,kw. (1079)
38 1ULL0QJ8UC.rn. (0)
39 (empagliflozin or BI 10773 or BI10773 or Jardiance).tw,kw. (645)
40 HDC1R2M35U.rn. (108)
41 Sulfonylurea Compounds/ (12899)
42 (sulfonylurea? or sulfonurea? or sulfonyl urea? or sulfonylcarbamide? or sulphonurea? or sulphonylurea?).tw,kw. (21551)
43 Chlorpropamide/ (7986)
44 (adiaben or apo-chlorpropamide or apochlorpropamide or abemide or "arodoc c" or asucrol or ascurol or biabenal or bioglumin or BRN 2218363 or catanil or CCRIS 155 or chlomide or chlormide or chlorodiabina or chloropropamide or chlorpromide or clorpropamide or copamide or chloronase or chlorpromide or clorpropamide or chloropropamide or chlorpropamid or chlorpropamide or chlorpropamidum or clorpropamid or clorpropamida).tw,kw. (3523)
45 (dabinese or deavynfar or diabaril or diabechlor or diabeedol or diabemide or diabenal or diabenese or diabeneza or diabet-pages or diabetoral or diabexan or diabiclor or diabines or diabinese or diabitex or diabitol or diamel ex or dibecon or dynalase or EINECS 202-314-5 or eubetin or glicoben or glisema or glucamide or glycemin or glymese or HSDB 2051 or hypomide or insilange or insogen or insulase).tw,kw. (732)
46 (melormin or meldian or melitase or mellinese or millinese or NCI-C01752 or NSC 44634 or NSC 626720 or neo-toltinon or oradian or P 607 or pamidin or prodiaben or pubetin or stabinol or tesmel or "p chlorobenzolsulphonylglycolic acid nitrile" or para chlorobenzenesulfonylglycolic acid nitrile or

Search Strategy

parachlorobenzene sulfonylglycolic acid nitrile or U-3818 or U-9818).tw,kw. (172)
47 WTM2C3IL2X.rn. (1810)
48 Gliclazide/ (5655)
49 (gliclazide or diaglyk or diaikron or diabrezide or diamicron or BRN 1657836 or EINECS 244-260-5 or gen-gliclazide or gliklazid or gliclazida or gliclazidum or glimicron or glyade or glyclazide or glycazide or nordialex or predian or S 1702 or S 852 or SE 1702).tw,kw. (3352)

50 G4PX8C4HKV.rn. (767)

51 (glimepiride or amaryl or amarel or BRN 5365754 or CCRIS 7083 or endial or euglim or glemax or glimepirid or glimepirida or glimepiridum or glimerid or glorion or HOE 490 or HOE490 or solosa or "s 80 8490").tw,kw. (3176)
52 6KY687524K.rn. (658)
53 Glyburide/ (27473)
54 (adiab or amecladin or apo-glibenclamide or azuglucon or bastiverit or benclamin or betanase or betanese 5 or BRN 2230085 or calabren or clamide or clibenclamide or cytagon or dangbinol or daonil or debtan or diabasan or diabeta or dibelet or duraglucon or EINECS 233-570-6 or euclamin or euglucan or euglucon or euglykon).tw,kw. (1292)
55 (GBN 5 or gen-glybe or gewaglucon or gilemal or glamide or glencamide or gliban or glibeclamid or glibemid or gliben or glibenbeta or glibenclamid or glibenclamida or glibenclamide or glibenclamidum or glibenhexal or glibenil or glibens or glibesyn or glibet or glibetic or glibil or gliboral or glicem or glidiabet or gliformin or glikeyer or glimel or glimide or glimidstada or glisulin or glitisol or glubate or gluben).tw,kw. (17385)
56 (glucobene or glucohexal or glucolon or glucomid or gluconic or glucoremed or glucoven or glukoreduct or glulo or glyamid or glyben or glybencamidum or glybencenamide or glybenclamid or glybenclamide or glybendamine or glybenzyclamide or glybenzcyclamide or glyburide or glycolande or glycomin or glynase or HB 419 or HB 420 or hemi-daonil or hexaglucon or humedia or insol or lederglib or libanil or lisaglucon or locose or lodulce).tw,kw. (6708)
57 (maninil or manoglucon or med-glionil or melix or micronase or miglucan or nadib or neogluconin or norglicem 5 or normoglucon or orabetic or pira or praeciglucon or prodiabet or renabetic or RP-1127 or semi-daonil or semi-euglucon or semi-gliben-puren n or sugril or suraben or tiabet or U 26452 or U-26 452 or UR 606 or yuglucon or xeltic).tw,kw. (680)
58 SX6K58TVWC.rn. (5768)
59 Tolbutamide/ (18758)
60 (abemin or aglicem or aglicid or aglycid or apo-tolbutamide or arcosal or arkozal or artosin or artosina or artozin or beglucin or BRN 1984428 or butamid or butamide or butamidum or CCRIS 592 or "D 860 " or diabecid or diaben or diabenyl or diabeton or diabesan or diasulfon or diabetamid or diabetol or diabuton or diatol or dirastan or diasulin or diaval or dolipol or drabet).tw,kw. (630)
61 (EINECS 200-594-3 or fresan or glicemin or glicotron or glycotron or guabeta or glyconon or HLS 831 or HSDB 3393 or hypoglycone or ipoglicone or ipoglucos or mermol or metil glucosulfina or

Search Strategy

mobenol or NCI-C01763 or NSC 23813 or neo antiglycemikos or neo diabetal or neo norboral or neobellin or neoinsoral).tw,kw. (29)
62 (orabet or oralin or oresan or orezan or orinade or orinase or orinaz or orsinon or osdiabet or oterben or pramidex or proinsul or rastinon or SK-tolbutamide or tarasina or tobutamine or tol ortab or tolbet or tolbugen or tolbusal or tolbutamid or tolbutamida or tolbutamide or tolbutamidum or tolbutone or tolbutamte or tolbutol or tolbutylharnstoff or tolbutylurea or tolglybutamide or tolsiran or tolubetin or toluran or tolurast or tosula or toluina or tolumid or toluvan or tolylsulfonylbutylurea or " U 2043" or willbutamide).tw,kw. (11849)
63 982XCM1FOI.rn. (5177)
64 Thiazolidinediones/ (20146)
65 (thiazolidinedione* or TZD or TZDs).tw,kw. (12397)
66 (pioglitazone* or actos or AD 4833 or piomed or U 72107A or U72 107A or cereluc or glidipion or glita or glitase or glustin or paglitaz or pioglit or sepioglin or zactos).tw,kw. (11333)
67 X4OV71U42S.rn. (2980)
68 (rosiglitazone* or avandia or BRL 49653-C or BRL 49653 or nyracta or rezult or rossini or venvia).tw,kw. (12978)
69 05V02F2KDG.rn. (3774)
70 exp Glucagon-Like Peptide 1/aa (980)
71 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 analog*).tw,kw. (2996)
72 Glucagon-Like Peptide-1 Receptor/ (3946)
73 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 (receptor? or protein?)).tw,kw. (7207)
74 Receptors, Glucagon/ag (716)
75 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 agonist*).tw,kw. (5289) 76 incretin mimetic*.tw,kw. (754)
77 (dulaglutide or LY-2189265 or LY2189265 or trulicity).tw,kw. (315)
78 WTT295HSY5.rn. (34)
79 (AC 2993 or AC 2993A or AC-2993 or AC002993 or AC2993 or AC2993A or baietta or byetta or bydureon or DA 3091 or exenatide or exendin 4 or HSDB 7789 or LY 2148568 or LY2148568 or PT302 or Ex4 peptide or ITCA 650).tw,kw. (7065)
80 9P1872D4OL.rn. (1654)
81 Liraglutide/ (4905)
82 (liraglutida or liraglutide or liraglutidum or HSDB 8205 or NN-2211 or NN2211 or NNC 90-1170 or saxenda or victoza).tw,kw. (3920)
83 839I73S42A.rn. (697)
84 Insulin, Long-Acting/ (4078)
85 ((long-acting or LA or semilente or semi-lente or slow* acting or intermediate-acting) adj (insulin* or

Search Strategy

analog*)).tw,kw. (3627)
86 Insulin Detemir/ (3156)
87 (detemir or determir or levemir or NN-304 or NN304).tw,kw. (2636)
88 4FT78T86XV.rn. (432)
89 Insulin Glargine/ (8182)
90 (abasaglar or abasria or basaglar or glargine or HOE-901 or HOE901 or lantus or ly 2963016 or ly2963016 or optisulin or toujeo).tw,kw. (6280)
91 2ZM8CX04RZ.rn. (1259)
92 exp Insulin, Short-Acting/ (1999)
93 ((fast-acting or quick-acting or short-acting or rapid* acting) adj (insulin? or analog*)).tw,kw. (3052)
94 (insulin aspart* or (B28 adj1 insulin?) or (B28 adj1 insulin?) or (B28asp* adj1 insulin?) or NovoLog* or NovoMix* or Novo Mix* or NovoRapid*).tw,kw. (3086)
95 D933668QVX.rn. (528)
96 (lispro or lyspro or humalog or liprolog).tw,kw. (3712)
97 (apidra or glulisine).tw,kw. (1017)
98 7XIY785AZD.rn. (132)
99 exp Insulin, Isophane/ (7864)
100 (actraphan? or berlinsulin or "humulin i " or "humulin n" or insulatard or (insulin? adj3 monotard) or isophane or (insulin? adj2 NPH) or (insulin? adj2 protamine) or isofane or isophan or isophane or isophone or mixtard or novolin or nph iletin or nph umuline or orgasuline or protaphan or protaphane or protophane or prozinc or (zinc adj2 insulin?) or (zinc adj1 protamine)).tw,kw. (6799)
101 2ZM8CX04RZ.rn. (1259)
102 exp Insulin/ (461486)
103 (insulin? adj1 regular).tw,kw. (2886)
104 (insulin? adj1 human).tw,kw. (12859)
105 (nph insulin? or humulin or novolin).tw,kw. (4347)
106 ((insulin? adj1 (pork or porcine or pig or pigs)) or hypurin).tw,kw. (2880)
107 (alogliptin adj3 metformin).tw,kw. (27)
108 (metformin adj2 nesina).tw,kw. (0)
109 (kazano or nesimet or nesina or nesinamet or vipdomet).tw,kw. (80)
110 (linagliptin adj2 metformin).tw,kw. (72)
111 (jentadueto or trajenta duo or trajentamet or trayebta duo or trayenta duo).tw,kw. (28)
112 (saxagliptin adj3 metformin).tw,kw. (135)
113 (komboglyze or kombiglyze or comboglyze or duoglyze).tw,kw. (35)
114 "Sitagliptin Phosphate, Metformin Hydrochloride Drug Combination"/ (5)
115 (sitagliptin adj3 metformin).tw,kw. (459)

Search Strategy

116 (janumet or efficib or gliptamet or Januet or ristfor or velmetia or mk 0431a).tw,kw. (169)
117 (metformin adj3 dapagliflozin).tw,kw. (70)
118 (ebymect or xigduo).tw,kw. (20)
119 (empagliflozin adj3 metformin).tw,kw. (22)
120 (jardiamet or jardiancemet or synjardy).tw,kw. (3)
121 (metformin adj3 rosiglitazone).tw,kw. (817)
122 (avandamet or interac).tw,kw. (308)
123 Glycoside Hydrolase Inhibitors/ (2932)
124 ((alpha-amylase or alpha-glucosidase or glucosidase or glycoside) adj2 inhibitor?).tw,kw. (6829)
125 Acarbose/ (7337)
126 (acarbose or ag 5421 or ag5421 or alpha ghi or bay g 5421 or bay g5421 or glibose or glicobase or glucobay or gluconase or glucor or glumida or prandase or precise or rebose).tw,kw. (307456)
127 T58MSI464G.rn. (1139)
128 (hb 699 or hb699 or meglitinide?).tw,kw. (642)
129 (actulin or ag ee 388 or ag ee388 or ag ee 623 or ag ee623 or enyglid or gluconorm or novonorm or prandin or rapilan or repaglinide or sestrine).tw,kw. (1882)
130 (a 4166 or a4166 or ay 4166 or ay4166 or djn 608 or djn608 or fasticor or glinate or nateglinide or sdz djn 608 or sdz djn608 or senaglinide or starlix or starsis or trazec or "ym 026").tw,kw. (1413)
131 (bay 1099 or bay m 1099 or bay m1099 or bay1099 or diastabol or glyset or miglitol or plumarol).tw,kw. (855)
132 OV5436JAQW.rn. (194)
133 (ao 128 or ao128 or basen or "en 116077 " or en 116077 or "en116 077 " or en116077 or glustat or voglibose).tw,kw. (713)
134 or/9-133 (943368)
1355 and 134 (232691)
136 (controlled clinical trial or randomized controlled trial).pt. (493183)
137 clinical trials as topic.sh. (175057)
138 (randomi\#ed or randomly or RCT\$1 or placebo*).tw. (1662366)
139 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (328932)
140 trial.ti. (349371)
141 or/136-140 (2094448)
142135 and 141 (27582)
143 exp Animals/ not (exp Animals/ and Humans/) (13903716)
144142 not 143 (18521)
145 Adolescent/ not (exp Adult/ and Adolescent/) (1002401)
146 exp Child/ not (exp Adult/ and exp Child/) (2892676)

Search Strategy
147 exp Infant/ not (exp Adult/ and exp Infant/) (1546227)
148 or/145-147 (3676743)
149144 not 148 (18221)
150 (comment or editorial or interview or news or newspaper article).pt. (1628874)
151 (letter not (letter and randomized controlled trial)).pt. (1826480)
152149 not (150 or 151) (17868)
153152 use prmz (9578)
154 diabetes mellitus/ (557998)
155 non insulin dependent diabetes mellitus/ (266146)
156 lipoatrophic diabetes mellitus/ (434)
157 ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or stable or type 2 or type II or lipoatrophic) adj3 diabet*).tw,kw. (275289)
158 (MODY or NIDDM or T2DM).tw,kw. (45223)
159 or/154-158 (845997)
160 non insulin dependent diabetes mellitus/dt (66555)
161 drug combination/ (55587)
162160 and 161 (550)
163 antidiabetic agent/ (88027)
164 oral antidiabetic agent/ (15334)
165 (antidiabetic? or anti-diabetic? or antihyperglyc?emic? or anti-hyperglyc?emic? or hypoglyc?emic? or antidiabetes or anti-diabetes).tw,kw. (89934)
166 dipeptidyl peptidase IV inhibitor/ (7382)
167 ((DPP4 or DPP 4 or DPP IV) adj1 inhibitor?).tw,kw. (5838)
168 (dipeptidyl-peptidase IV adj2 inhibitor?).tw,kw. (1193)
169 (dipeptidyl-peptidase 4 adj2 inhibitor?).tw,kw. (2749)
170 gliptin?.tw,kw. (406)
171 alogliptin/ (980)
172 (alogliptin or nesina or SYR 322 or SYR322 or HSDB 8203 or incresina or vipidia).tw,kw. (800)
173 850649-62-6.rn. (464)
174 850649-61-5.rn. (838)
175 linagliptin/ (1411)
176 (linagliptin or BI 1356 or ONDERO or tradjenta or trajenta or trayenta or trazenta).tw,kw. (1182)
177 668270-12-0.rn. (938)
178 saxagliptin/ (1825)
179 (saxagliptin or BMS 477118 or BMS477118 or HSDB 8199 or Onglyza or OPC 262).tw,kw. (1331)
180 361442-04-8.rn. (1522)

Search Strategy

181 945667-22-1.rn. (1455)
182 sitagliptin/ (6073)
183 (sitagliptin or EC 690-730-1 or Glactiv or HSDB 7516 or januvia or "mk 0431" or mk0431 or mk 431 or ono 5435 or ristaben or sitagliptine or tesabel or tesavel or xelevia).tw,kw. (4518)
184 486460-32-6.rn. (4204)
185 sodium glucose cotransporter 2 inhibitor/ (702)
186 (sodium-glucose transporter 2 inhibitor? or sodium-glucose cotransporter 2 inhibitor?).tw,kw. (420)
187 (sodium-glucose transporter 2 inhibitor? or sodium-glucose co-transporter 2 inhibitor?).tw,kw. (392)
188 ((SGLT-2 or SGLT2) adj inhibitor?).tw,kw. (1855)
189 (sodium dependent glucose transporter 2 inhibitor? or sodium dependent glucose cotransporter 2 inhibitor?).tw,kw. (23)
190 (sodium dependent glucose transporter 2 inhibitor? or sodium dependent glucose co-transporter 2 inhibitor?).tw,kw. (14)
191 gliflozin?.tw,kw. (44)
192 canagliflozin/ (916)
193 (canagliflozin or invokana or JNJ 24831754* or JNJ 28431754 or TA 7284 or prominad).tw,kw. (859)
194 842133-18-0.rn. (540)
195 dapagliflozin/ (1020)
196 (dapagliflozin or BMS 512148 or BMS512148 or edistride or forxiga or farxiga).tw,kw. (1079)
197 461432-26-8.rn. (705)
198 empagliflozin/ (556)
199 (empagliflozin or BI 10773 or BI10773 or jardiance).tw,kw. (645)
200 864070-44-0.rn. (386)
201 sulfonylurea derivative/ (8351)
202 (sulfonylurea? or sulfonurea? or sulfonyl urea? or sulfonylcarbamide? or sulphonurea? or sulphonylurea?).tw,kw. (21551)
203 chlorpropamide/ (7986)
204 (adiaben or apo-chlorpropamide or apochlorpropamide or abemide or "arodoc c" or asucrol or ascurol or biabenal or bioglumin or BRN 2218363 or catanil or CCRIS 155 or chlomide or chlormide or chlorodiabina or chloropropamide or chlorpromide or clorpropamide or copamide or chloronase or chlorpromide or clorpropamide or chloropropamide or chlorpropamid or chlorpropamide or chlorpropamidum or clorpropamid or clorpropamida).tw,kw. (3523)
205 (dabinese or deavynfar or diabaril or diabechlor or diabeedol or diabemide or diabenal or diabenese or diabeneza or diabet-pages or diabetoral or diabexan or diabiclor or diabines or diabinese or diabitex or diabitol or diamel ex or dibecon or dynalase or EINECS 202-314-5 or eubetin or glicoben or glisema or glucamide or glycemin or glymese or HSDB 2051 or hypomide or insilange or insogen or insulase).tw,kw. (732)

Search Strategy

206 (melormin or meldian or melitase or mellinese or millinese or NCI-C01752 or NSC 44634 or NSC 626720 or neo-toltinon or oradian or P 607 or pamidin or prodiaben or pubetin or stabinol or tesmel or "p chlorobenzolsulphonylglycolic acid nitrile" or para chlorobenzenesulfonylglycolic acid nitrile or parachlorobenzene sulfonylglycolic acid nitrile or U-3818 or U-9818).tw,kw. (172)
207 94-20-2.rn. (5862)
208 gliclazide/ (5655)
209 (gliclazide or diaglyk or diaikron or diabrezide or diamicron or BRN 1657836 or EINECS 244-260-5 or gen-gliclazide or gliklazid or gliclazida or gliclazidum or glimicron or glyade or glyclazide or glycazide or nordialex or predian or S 1702 or S 852 or SE 1702).tw,kw. (3352)
210 21187-98-4.rn. (4621)
211 glimepiride/ (5332)
212 (glimepiride or amaryl or amarel or BRN 5365754 or CCRIS 7083 or endial or euglim or glemax or glimepirid or glimepirida or glimepiridum or glimerid or glorion or HOE 490 or HOE490 or solosa or "s 80 8490").tw,kw. (3176)
213 93479-97-1.rn. (4884)
214 glibenclamide/ (27473)
215 (adiab or amecladin or apo-glibenclamide or azuglucon or bastiverit or benclamin or betanase or betanese 5 or BRN 2230085 or calabren or clamide or clibenclamide or cytagon or dangbinol or daonil or debtan or diabasan or diabeta or dibelet or duraglucon or EINECS 233-570-6 or euclamin or euglucan or euglucon or euglykon).tw,kw. (1292)
216 (GBN 5 or gen-glybe or gewaglucon or gilemal or glamide or glencamide or gliban or glibeclamid or glibemid or gliben or glibenbeta or glibenclamid or glibenclamida or glibenclamide or glibenclamidum or glibenhexal or glibenil or glibens or glibesyn or glibet or glibetic or glibil or gliboral or glicem or glidiabet or gliformin or glikeyer or glimel or glimide or glimidstada or glisulin or glitisol or glubate or gluben).tw,kw. (17385)
217 (glucobene or glucohexal or glucolon or glucomid or gluconic or glucoremed or glucoven or glukoreduct or glulo or glyamid or glyben or glybencamidum or glybencenamide or glybenclamid or glybenclamide or glybendamine or glybenzyclamide or glybenzcyclamide or glyburide or glycolande or glycomin or glynase or HB 419 or HB 420 or hemi-daonil or hexaglucon or humedia or insol or lederglib or libanil or lisaglucon or locose or lodulce).tw,kw. (6708)
218 (maninil or manoglucon or med-glionil or melix or micronase or miglucan or nadib or neogluconin or norglicem 5 or normoglucon or orabetic or pira or praeciglucon or prodiabet or renabetic or RP-1127 or semi-daonil or semi-euglucon or semi-gliben-puren n or sugril or suraben or tiabet or U 26452 or U-26 452 or UR 606 or yuglucon or xeltic).tw,kw. (680)
219 10238-21-8.rn. (20454)
220 tolbutamide/ (18758)
221 (abemin or aglicem or aglicid or aglycid or apo-tolbutamide or arcosal or arkozal or artosin or artosina or artozin or beglucin or BRN 1984428 or butamid or butamide or butamidum or CCRIS

Search Strategy

592 or "D 860" or diabecid or diaben or diabenyl or diabeton or diabesan or diasulfon or diabetamid or diabetol or diabuton or diatol or dirastan or diasulin or diaval or dolipol or drabet).tw,kw. (630)
222 (EINECS 200-594-3 or fresan or glicemin or glicotron or glycotron or guabeta or glyconon or HLS 831 or HSDB 3393 or hypoglycone or ipoglicone or ipoglucos or mermol or metil glucosulfina or mobenol or NCI-C01763 or NSC 23813 or neo antiglycemikos or neo diabetal or neo norboral or neobellin or neoinsoral).tw,kw. (29)
223 (orabet or oralin or oresan or orezan or orinade or orinase or orinaz or orsinon or osdiabet or oterben or pramidex or proinsul or rastinon or SK-tolbutamide or tarasina or tobutamine or tol ortab or tolbet or tolbugen or tolbusal or tolbutamid or tolbutamida or tolbutamide or tolbutamidum or tolbutone or tolbutamte or tolbutol or tolbutylharnstoff or tolbutylurea or tolglybutamide or tolsiran or tolubetin or toluran or tolurast or tosula or toluina or tolumid or toluvan or tolylsulfonylbutylurea or " U 2043" or willbutamide).tw,kw. (11849)

224 64-77-7.rn. (12174)

225 2,4 thiazolidinedione derivative/ (10823)
226 (thiazolidinedione* or TZD or TZDs).tw,kw. (12397)
227 pioglitazone/ (14830)
228 (pioglitazone* or actos or AD 4833 or piomed or U 72107A or U72 107A or cereluc or glidipion or glita or glitase or glustin or paglitaz or pioglit or sepioglin or zactos).tw,kw. (11333)
229 112529-15-4.rn. (0)
230 rosiglitazone/ (15989)
231 (rosiglitazone* or avandia or BRL 49653-C or BRL 49653 or nyracta or rezult or rossini or venvia).tw,kw. (12978)
232 155141-29-0.rn. (14702)
233 glucagon like peptide 1 receptor agonist/ (2110)
234 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 analog*).tw,kw. (2996)
235 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 (receptor? or protein?)).tw,kw. (7207)
236 ((glucagon-like peptide-1 or GLP-1 or GLP1 or GLP-1R or GLP1R) adj2 agonist*).tw,kw. (5289)
237 incretin mimetic*.tw,kw. (754)
238 dulaglutide/ (307)
239 (dulaglutide or LY-2189265 or LY2189265 or trulicity).tw,kw. (315)
240 923950-08-7.rn. (211)
241 exendin 4/ (7217)
242 (AC 2993 or AC 2993A or AC-2993 or AC002993 or AC2993 or AC2993A or baietta or byetta or bydureon or DA 3091 or exenatide or exendin 4 or HSDB 7789 or LY 2148568 or LY2148568 or PT302 or Ex4 peptide or ITCA 650).tw,kw. (7065)
243 141758-74-9.rn. (5627)

Search Strategy

244 liraglutide/ (4905)

245 (liraglutida or liraglutide or liraglutidum or HSDB 8205 or NN-2211 or NN2211 or NNC 90-1170 or saxenda or victoza).tw,kw. (3920)
246 204656-20-2.rn. (3097)
247 long acting insulin/ (4078)
248 ((long-acting or LA or semilente or semi-lente or slow* acting or intermediate-acting) adj (insulin* or analog*)).tw,kw. (3627)
249 insulin detemir/ (3156)
250 (detemir or determir or levemir or NN-304 or NN304).tw,kw. (2636)
251 169148-63-4.rn. (2341)
252 insulin glargine/ (8182)
253 (abasaglar or abasria or basaglar or glargine or HOE-901 or HOE901 or lantus or ly 2963016 or ly2963016 or optisulin or toujeo).tw,kw. (6280)
254 160337-95-1.rn. (5715)
255 short acting insulin/ (820)
256 ((fast-acting or quick-acting or short-acting or rapid* acting) adj (insulin? or analog*)).tw,kw. (3052)
257 insulin aspart/ (4398)
258 (insulin aspart* or (B28 adj1 insulin?) or (B28 adj1 insulin?) or (B28asp* adj1 insulin?) or NovoLog* or NovoMix* or Novo Mix* or NovoRapid*).tw,kw. (3086)
259 116094-23-6.rn. (3429)
260 insulin lispro/ (5176)
261 (lispro or lyspro or humalog or liprolog or ly 275585 or ly275585).tw,kw. (3714)
262 133107-64-9.rn. (4016)
263 isophane insulin/ (7863)
264 (actraphan? or berlinsulin or "humulin i" or "humulin n" or insulatard or (insulin? adj3 monotard) or isophane or (insulin? adj2 NPH) or (insulin? adj2 protamine) or isofane or isophan or isophane or isophone or mixtard or novolin or nph iletin or nph umuline or orgasuline or protaphan or protaphane or protophane or prozinc or (zinc adj2 insulin?) or (zinc adj1 protamine)).tw,kw. (6799)
265 9004-17-5.rn. (6246)
266 (insulin? adj1 regular).tw,kw. (2886)
267 human insulin/ (4542)
268 (insulin? adj1 human).tw,kw. (12859)
269 (h tronin or humulin or nazlin).tw,kw. (1813)
270 pig insulin/ (1396)
271 ((insulin? adj1 (pork or porcine or pig or pigs)) or hypurin).tw,kw. (2880)
272 alogliptin plus metformin/ (25)

Search Strategy

273 (alogliptin adj3 metformin).tw,kw. (27)

274 (metformin adj2 nesina).tw,kw. (0)
275 (kazano or nesimet or nesina or nesinamet or vipdomet).tw,kw. (80)
276 linagliptin plus metformin/ (41)
277 (linagliptin adj2 metformin).tw,kw. (72)
278 (jentadueto or trajenta duo or trajentamet or trayebta duo or trayenta duo).tw,kw. (28)
279 metformin plus saxagliptin/ (71)
280 (saxagliptin adj3 metformin).tw,kw. (135)
281 (komboglyze or kombiglyze or comboglyze or duoglyze).tw,kw. (35)
282 metformin plus sitagliptin/ (271)
283 (sitagliptin adj3 metformin).tw,kw. (459)
284 (janumet or efficib or gliptamet or Januet or ristfor or velmetia or mk 0431a).tw,kw. (169)
285 dapagliflozin plus metformin/ (19)
286 (metformin adj3 dapagliflozin).tw,kw. (70)
287 (ebymect or Xigduo).tw,kw. (20)
288 empagliflozin plus metformin/ (3)
289 (empagliflozin adj3 metformin).tw,kw. (22)
290 (jardiamet or jardiancemet or synjardy).tw,kw. (3)
291 metformin plus rosiglitazone/ (427)
292 (metformin adj3 rosiglitazone).tw,kw. (817)
293 (avandamet or interac).tw,kw. (308)
294 622402-70-4.rn. (0)
295 glycosidase inhibitor/ (1164)
296 ((alpha-amylase or alpha-glucosidase or glucosidase or glycoside) adj2 inhibitor?).tw,kw. (6829)
297 acarbose/ (7337)
298 (acarbose or ag 5421 or ag5421 or alpha ghi or bay g 5421 or bay g5421 or glibose or glicobase or glucobay or gluconase or glucor or glumida or prandase or precise or rebose).tw,kw. (307456)
299 56180-94-0.rn. (5929)
300 meglitinide/ (1388)
301 (hb 699 or hb699 or meglitinide?).tw,kw. (642)
302 repaglinide/ (3158)
303 (actulin or ag ee 388 or ag ee388 or ag ee 623 or ag ee623 or enyglid or gluconorm or novonorm or prandin or rapilan or repaglinide or sestrine).tw,kw. (1882)
304 135062-02-1.rn. (3031)
305 nateglinide/ (2352)
306 (a 4166 or a4166 or ay 4166 or ay4166 or djn 608 or djn608 or fasticor or glinate or nateglinide or

Search Strategy

sdz djn 608 or sdz djn608 or senaglinide or starlix or starsis or trazec or "ym 026").tw,kw. (1413)
307 105816-04-4.rn. (2291)
308 miglitol/ (1309)
309 (bay 1099 or bay m 1099 or bay m1099 or bay1099 or diastabol or glyset or miglitol or plumarol).tw,kw. (855)
310
72432-03-2.rn. (1271)
311 voglibose/ (928)
312 (ao 128 or ao128 or basen or "en 116077 " or en 116077 or "en116 077" or en116077 or glustat or voglibose).tw,kw. (713)
313 83480-29-9.rn. (1011)
314 or/162-313 (587197)
315159 and 314 (138063)
316 randomized controlled trial/ or controlled clinical trial/ (1029931)
317 exp "clinical trial (topic)"/ (183028)
318 (randomi\#ed or randomly or RCT\$1 or placebo*).tw. (1662366)
319 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (328932)
320 trial.ti. (349371)
321 or/316-320 (2287790)
322315 and 321 (24744)
323 exp animal experimentation/ or exp models animal/ or exp animal experiment/ or nonhuman/ or exp vertebrate/ (42125725)
324 exp human/ or exp human experimentation/ or exp human experiment/ (32720153)
325323 not 324 (9407230)
326322 not 325 (23943)
327 exp Juvenile/ not (exp Adult/ and exp Juvenile/) (2103525)
328326 not 327 (23758)
329 editorial.pt. (896572)
330 letter.pt. not (letter.pt. and randomized controlled trial/) (1822001)
331328 not (329 or 330) (23398)
332331 use emczd (16259)
333153 or 332 (25837)
334 limit 333 to $\mathrm{yr}=$ "2014-2016" (5544)
335 remove duplicates from 334 (4459)
336 limit 333 to $y r=" 2012-2013 "(4826)$
337 remove duplicates from 336 (3926)
338 limit 333 to $\mathrm{yr}=" 2009-2011 "(5440)$

Search Strategy

339 remove duplicates from 338 (4300)
340 limit 333 to $\mathrm{yr}=$ "2002-2008" (5814)
341 remove duplicates from 340 (4233)
342 limit 333 to $\mathrm{yr}=$ "1800-2001" (4211)
343 remove duplicates from 342 (3246)
344335 or 337 or 339 or 341 or 343 (20164) [TOTAL UNIQUE RECORDS]
345344 use prmz (9490) [MEDLINE UNIQUE RECORDS]
346344 use emczd (10674) [EMBASE UNIQUE RECORDS]

Cochrane Library

ID	Search	Hits
\#1	[mh "Diabetes Mellitus, Type 2"]	10494
\#2	[mh ^"Diabetes Mellitus"]	2731
\#3	((adult or "ketosis-resistant" or matur* or late or ("non-insulin" next depend*) or (noninsulin next depend*) or slow or stable or "type 2" or "type II" or lipoatrophic) near/3 diabet*):ti,ab,kw	19979
\#4	(MODY or NIDDM or T2DM):ti,ab,kw	2925
\#5	(or \#1-\#4)	22212
\#6	[mh "Diabetes Mellitus, Type 2"/DT]	4793
\#7	[mh "Drug Combinations"]	11668
\#8	[mh ^"Drug Therapy, Combination"]	27341
\#9	\#6 and (\#7 or \#8)	1080
\#10	[mh "Hypoglycemic Agents"]	6208
\#11	(antidiabetic* or (anti next diabetic*) or antihyperglycemic* or antihyperglycaemic* or (anti next hyperglycemic*) or (anti next hyperglycaemic*) or hypoglycemic* or hypoglycaemic* or antidiabetes or (anti next diabetes)):ti,ab,kw	8917
\#12	[mh "Dipeptidyl-Peptidase IV Inhibitors"]	387
\#13	((DPP4 or "DPP 4" or "DPP IV") near/1 inhibitor*):ti,ab,kw	379
\#14	("dipeptidyl-peptidase IV" near/2 inhibitor*):ti,ab,kw	592
\#15	("dipeptidyl-peptidase 4" near/2 inhibitor*):ti,ab,kw	281
\#16	(gliptin or gliptins):ti,ab,kw	9
\#17	(alogliptin or nesina or "SYR 322" or SYR322 or "HSDB 8203" or incresina or vipidia):ti,ab,kw	87
\#18	[mh Linagliptin]	52
\#19	(linagliptin or "BI 1356" or ONDERO or tradjenta or trajenta or trayenta or trazenta):ti,ab,kw	154
\#20	(saxagliptin or "BMS 477118" or BMS477118 or "HSDB 8199" or Onglyza or "OPC 262"):ti,ab,kw	163
\#21	[mh "Sitagliptin Phosphate"]	206
\#22	(sitagliptin or "EC 690-730-1" or Glactiv or "HSDB 7516" or januvia or "mk 0431" or mk0431 or "mk 431" or "ono 5435" or ristaben or sitagliptine or tesabel or tesavel or xelevia):ti,ab,kw	533
\#23	[mh "Sodium-Glucose Transporter 2"/Al]	85
\#24	(("sodium-glucose transporter 2" or "sodium-glucose cotransporter 2") next inhibitor*):ti,ab,kw	95
\#25	(("sodium-glucose transporter 2" or "sodium-glucose co-transporter 2") next inhibitor*):ti,ab,kw	66
\#26	(("SGLT-2" or SGLT2) next inhibitor*):ti,ab,kw	171

ID	Search	Hits
\#27	(("sodium dependent glucose transporter 2" or "sodium dependent glucose cotransporter 2") next inhibitor*):ti,ab,kw	2
\#28	(("sodium dependent glucose transporter 2" or "sodium dependent glucose co-transporter 2") next inhibitor*):ti, ab,kw	1
\#29	(gliflozin or gliflozins):ti, ab,kw	1
\#30	[mh Canagliflozin]	44
\#31	(canagliflozin or Invokana or (JNJ next 24831754*) or "JNJ 28431754" or "TA 7284" or Prominad):ti,ab,kw	115
\#32	(dapagliflozin or "BMS 512148" or BMS512148 or edistride or forxiga or farxiga):ti,ab,kw	173
\#33	(empagliflozin or "BI 10773" or Bl10773 or Jardiance):ti,ab,kw	138
\#34	[mh ^"Sulfonylurea Compounds"]	649
\#35	(sulfonylurea* or sulfonurea* or (sulfonyl next urea*) or sulfonylcarbamide* or sulphonurea* or sulphonylurea*):ti,ab,kw	1858
\#36	[mh Chlorpropamide]	74
\#37	(adiaben or "apo-chlorpropamide" or apochlorpropamide or abemide or "arodoc c" or asucrol or ascurol or biabenal or bioglumin or "BRN 2218363 " or catanil or "CCRIS 155" or chlomide or chlormide or chlorodiabina or chloropropamide or chlorpromide or clorpropamide or copamide or chloronase or chlorpromide or clorpropamide or chloropropamide or chlorpropamid or chlorpropamide or chlorpropamidum or clorpropamid or clorpropamida):ti,ab,kw	126
\#38	(dabinese or deavynfar or diabaril or diabechlor or diabeedol or diabemide or diabenal or diabenese or diabeneza or "diabet-pages" or diabetoral or diabexan or diabiclor or diabines or diabinese or diabitex or diabitol or "diamel ex" or dibecon or dynalase or "EINECS 202-314-5" or eubetin or glicoben or glisema or glucamide or glycemin or glymese or "HSDB 2051" or hypomide or insilange or insogen or insulase):ti,ab,kw	3
\#39	(melormin or meldian or melitase or mellinese or millinese or "NCI-C01752" or "NSC 44634" or "NSC 626720 " or "neo-toltinon" or oradian or "P607" or pamidin or prodiaben or pubetin or stabinol or tesmel or "p chlorobenzolsulphonylglycolic acid nitrile" or "para chlorobenzenesulfonylglycolic acid nitrile" or "parachlorobenzene sulfonylglycolic acid nitrile" or "U-3818" or "U-9818"):ti,ab,kw	7
\#40	[mh Gliclazide]	154
\#41	(gliclazide or diaglyk or diaikron or diabrezide or diamicron or "BRN 1657836" or "EINECS 244-260-5" or "gen-gliclazide" or gliklazid or gliclazida or gliclazidum or glimicron or glyade or glyclazide or glycazide or nordialex or predian or "S 1702" or "S 852" or "SE 1702"):ti,ab,kw	368
\#42	(glimepiride or amaryl or amarel or "BRN 5365754" or "CCRIS 7083" or endial or euglim or glemax or glimepirid or glimepirida or glimepiridum or glimerid or glorion or "HOE 490" or HOE490 or solosa or "s 80 8490"):ti,ab,kw	537
\#43	[mh Glyburide]	506
\#44	(adiab or amecladin or "apo-glibenclamide" or azuglucon or bastiverit or benclamin or betanase or "betanese 5 " or "BRN 2230085" or calabren or clamide or clibenclamide or cytagon or dangbinol or daonil or debtan or diabasan or diabeta or dibelet or duraglucon or "EINECS 233-570-6" or euclamin or euglucan or euglucon or euglykon):ti,ab,kw	33
\#45	("GBN 5 " or "gen-glybe" or gewaglucon or gilemal or glamide or glencamide or gliban or glibeclamid or glibemid or gliben or glibenbeta or glibenclamid or glibenclamida or glibenclamide or glibenclamidum or glibenhexal or glibenil or glibens or glibesyn or glibet or glibetic or glibil or gliboral or glicem or glidiabet or gliformin or glikeyer or glimel or glimide or glimidstada or glisulin or glitisol or glubate or gluben):ti,ab,kw	763
\#46	(glucobene or glucohexal or glucolon or glucomid or gluconic or glucoremed or glucoven or glukoreduct or glulo or glyamid or glyben or glybencamidum or glybencenamide or glybenclamid or glybenclamide or glybendamine or glybenzyclamide or glybenzcyclamide or glyburide or glycolande or glycomin or glynase or "HB 419" or "HB 420" or "hemi-daonil" or hexaglucon or humedia or insol or lederglib or libanil or lisaglucon or locose or lodulce):ti, ab,kw	632
\#47	(maninil or manoglucon or "med-glionil" or melix or micronase or miglucan or nadib or neogluconin or "norglicem 5" or normoglucon or orabetic or pira or praeciglucon or prodiabet or renabetic or "RP-1127" or	14

ID	Search	Hits
	"semi-daonil" or "semi-euglucon" or "semi-gliben-puren n" or sugril or suraben or tiabet or "U 26452" or "U-26 452 " or "UR 606" or yuglucon or xeltic):ti,ab,kw	
\#48	[mh Tolbutamide]	135
\#49	(abemin or aglicem or aglicid or aglycid or "apo-tolbutamide" or arcosal or arkozal or artosin or artosina or artozin or beglucin or "BRN 1984428" or butamid or butamide or butamidum or "CCRIS 592" or "D 860" or diabecid or diaben or diabenyl or diabeton or diabesan or diasulfon or diabetamid or diabetol or diabuton or diatol or dirastan or diasulin or diaval or dolipol or drabet):ti,ab,kw	0
\#50	("EINECS 200-594-3" or fresan or glicemin or glicotron or glycotron or guabeta or glyconon or "HLS 831" or "HSDB 3393" or hypoglycone or ipoglicone or ipoglucos or mermol or "metil glucosulfina" or mobenol or "NCI-C01763" or "NSC 23813" or "neo antiglycemikos" or "neo diabetal" or "neo norboral" or neobellin or neoinsoral):ti,ab,kw	0
\#51	(orabet or oralin or oresan or orezan or orinade or orinase or orinaz or orsinon or osdiabet or oterben or pramidex or proinsul or rastinon or "SK-tolbutamide" or tarasina or tobutamine or tol ortab or tolbet or tolbugen or tolbusal or tolbutamid or tolbutamida or tolbutamide or tolbutamidum or tolbutone or tolbutamte or tolbutol or tolbutylharnstoff or tolbutylurea or tolglybutamide or tolsiran or tolubetin or toluran or tolurast or tosula or toluina or tolumid or toluvan or tolylsulfonylbutylurea or "U 2043" or willbutamide):ti,ab,kw	230
\#52	[mh Thiazolidinediones]	1248
\#53	(thiazolidinedione* or TZD or TZDs):ti,ab,kw	1554
\#54	(pioglitazone* or actos or "AD 4833" or piomed or "U 72107A" or "U72 107A" or cereluc or glidipion or glita or glitase or glustin or paglitaz or pioglit or sepioglin or zactos):ti,ab,kw	1224
\#55	(rosiglitazone* or avandia or "BRL 49653-C" or "BRL 49653" or nyracta or rezult or rossini or venvia):ti,ab,kw	817
\#56	[mh "Glucagon-Like Peptide 1"/AA]	147
\#57	(("glucagon-like peptide-1" or "GLP-1" or GLP1 or "GLP-1R" or GLP1R) near/2 analog*):ti,ab,kw	170
\#58	[mh "Glucagon-Like Peptide-1 Receptor"]	48
\#59	(("glucagon-like peptide-1" or "GLP-1" or GLP1 or "GLP-1R" or GLP1R) near/2 (receptor* or protein*)):ti,ab,kw	344
\#60	[mh "Receptors, Glucagon"/AG]	47
\#61	(("glucagon-like peptide-1" or "GLP-1" or GLP1 or "GLP-1R" or GLP1R) near/2 agonist*):ti,ab,kw	309
\#62	(incretin next mimetic*):ti,ab,kw	23
\#63	(dulaglutide or "LY-2189265" or LY2189265 or trulicity):ti,ab,kw	62
\#64	("AC 2993" or "AC 2993A" or "AC-2993" or AC002993 or AC2993 or AC2993A or baietta or byetta or bydureon or "DA 3091" or exenatide or "exendin 4" or "HSDB 7789" or "LY 2148568" or "LY2148568" or PT302 or "Ex4 peptide" or "ITCA 650"):ti,ab,kw	421
\#65	[mh Liraglutide]	106
\#66	(liraglutida or liraglutide or liraglutidum or "HSDB 8205" or "NN-2211" or NN2211 or "NNC 90-1170" or saxenda or victoza):ti,ab,kw	378
\#67	[mh "Insulin, Long-Acting"]	776
\#68	(("long-acting" or LA or semilente or semi-lente or (slow* next acting) or "intermediate-acting") next (insulin* or analog*)):ti,ab,kw	290
\#69	[mh "Insulin Detemir"]	103
\#70	(detemir or determir or levemir or "NN-304" or NN304):ti,ab,kw	297
\#71	[mh "Insulin Glargine"]	368
\#72	(abasaglar or abasria or basaglar or glargine or "HOE-901" or HOE901 or lantus or "ly 2963016" or ly2963016 or optisulin or toujeo):ti,ab,kw	935
\#73	[mh "Insulin, Short-Acting"]	488
\#74	(("fast-acting" or "quick-acting" or "short-acting" or (rapid* next acting)) next (insulin* or analog*)):ti,ab,kw	374
\#75	((insulin next aspart*) or (B28 near/1 insulin*) or (B28 near/1 insulin*) or (B28asp* near/1 insulin*) or	534

ID	Search	Hits
	NovoLog* or NovoMix* or (Novo next Mix*) or NovoRapid*):ti,ab,kw	
\#76	(lispro or lyspro or humalog or liprolog):ti,ab,kw	528
\#77	(apidra or glulisine):ti,ab,kw	125
\#78	[mh "Insulin, Isophane"]	304
\#79	(actraphan* or berlinsulin or "humulin i " or "humulin n" or insulatard or (insulin* near/3 monotard) or isophane or (insulin* near/2 NPH) or (insulin* near/2 protamine) or isofane or isophan or isophane or isophone or mixtard or novolin or "nph iletin" or "nph umuline" or orgasuline or protaphan or protaphane or protophane or prozinc or (zinc near/2 insulin*) or (zinc near/1 protamine)):ti,ab,kw	829
\#80	[mh Insulin]	9438
\#81	(insulin* near/1 regular):ti,ab,kw	403
\#82	(insulin* near/1 human):ti,ab,kw	2565
\#83	((nph next insulin*) or humulin or novolin):ti,ab,kw	428
\#84	((insulin* near/1 (pork or porcine or pig or pigs)) or hypurin):ti,ab,kw	167
\#85	(alogliptin near/3 metformin):ti,ab,kw	8
\#86	(metformin near/2 nesina):ti,ab,kw	0
\#87	(kazano or nesimet or nesina or nesinamet or vipdomet):ti,ab,kw	1
\#88	(linagliptin near/2 metformin):ti,ab,kw	42
\#89	(jentadueto or "trajenta duo" trajentamet or "trayebta duo" or "trayenta duo"):ti,ab,kw	2
\#90	(saxagliptin near/3 metformin):ti,ab,kw	52
\#91	(komboglyze or kombiglyze or comboglyze or duoglyze):ti,ab,kw	2
\#92	[mh "Sitagliptin Phosphate, Metformin Hydrochloride Drug Combination"]	1
\#93	(sitagliptin near/3 metformin):ti,ab,kw	119
\#94	(janumet or efficib or gliptamet or Januet or ristfor or velmetia or "mk 0431a"):ti,ab,kw	2
\#95	(metformin near/3 dapagliflozin):ti,ab,kw	43
\#96	(ebymect or xigduo):ti,ab,kw	0
\#97	(empagliflozin near/3 metformin):ti,ab,kw	25
\#98	(jardiamet or jardiancemet or synjardy):ti,ab,kw	0
\#99	(metformin near/3 rosiglitazone):ti,ab,kw	185
\#100	(avandamet or interac):ti,ab,kw	8
\#101	[mh "Glycoside Hydrolase Inhibitors"]	137
\#102	(("alpha-amylase" or "alpha-glucosidase" or glucosidase or glycoside) near/2 inhibitor*)	438
\#103	[mh Acarbose]	238
\#104	(acarbose or "ag 5421" or ag5421 or "alpha ghi" or "bay g 5421" or "bay g5421" or glibose or glicobase or glucobay or gluconase or glucor or glumida or prandase or precise or rebose):ti,ab,kw	2642
\#105	("hb 699" or hb699 or meglitinide*):ti,ab,kw	38
\#106	(actulin or "ag ee 388 " or "ag ee388" or "ag ee 623 " or "ag ee623" or enyglid or gluconorm or novonorm or prandin or rapilan or repaglinide or sestrine):ti,ab,kw	207
\#107	("a 4166 " or a4166 or "ay 4166 " or ay4166 or "djn 608 " or djn608 or fasticor or glinate or nateglinide or "sdz djn 608" or "sdz djn608" or senaglinide or starlix or starsis or trazec or "ym 026"):ti,ab,kw	172
\#108	("bay 1099" or "bay m 1099" or "bay m1099" or bay1099 or diastabol or glyset or miglitol or plumarol):ti,ab,kw	127
\#109	("ao 128" or ao128 or basen or "en 116077 " or "en 116077 " or "en116 077 " or en116077 or glustat or voglibose):ti,ab,kw	120
\#110	(or \#9-\#109)	22251

CENTRAL - 9573
PubMed (newest records only)

Search	Query	Items Found
\#90	Search \#88 AND \#89	53
\#89	Search publisher[sb] OR 2016/03/01:2016/03/17[edat]	$\underline{487139}$
\#88	Search \#85 NOT (\#86 OR \#87)	11953
\#87	Search letter[pt] NOT (letter[pt] AND randomized controlled trial[pt])	903578
\#86	Search comment[pt] OR editorial[pt] OR interview[pt] OR news[pt] OR newspaper article[pt]	$\underline{1128869}$
\#85	Search \#80 NOT \#84	12435
\#84	Search \#81 OR \#82 OR \#83	$\underline{1621786}$
\#83	Search Infant[mesh] not (Adult[mesh] and Infant[mesh])	$\underline{735164}$
\#82	Search Child[mesh] not (Adult[mesh] and Child[mesh])	$\underline{1037160}$
\#81	Search Adolescent[mesh] not (Adult[mesh] and Adolescent[mesh])	$\underline{508484}$
\#80	Search \#78 NOT \#79	12561
\#79	Search Animals[mesh] NOT (Animals[mesh] AND humans[mesh])	$\underline{4187523}$
\#78	Search (\#76 AND \#77)	12808
\#77	Search (\#4 AND \#69)	75398
\#76	Search \#71 or \#72 or \#73 OR \#74 OR \#75	$\underline{1115734}$
\#75	Search trial [ti]	149291
\#74	Search single blind*[tw] OR single mask*[tw] OR single dumm*[tw] OR double blind*[tw] OR double mask*[tw] OR double dumm*[tw] OR triple blind*[tw] OR triple mask*[tw] OR triple dumm*[tw] OR treble blind*[tw] OR treble mask*[tw] OR treble dumm*[tw]	$\underline{193913}$
\#73	Search randomised[tw] OR randomized[tw] OR randomly[tw] or RCT[tw] OR RCTs[tw] OR placebo*[tw]	870866
\#72	Search "clinical trials as topic"[mesh]	$\underline{287364}$
\#71	Search controlled clinical trial[pt] OR randomized controlled trial[pt]	492381
\#69	Search \#5 OR \#6 OR \#7 OR \#8 OR \#9 OR \#10 OR \#11 OR \#12 OR \#13 OR \#14 OR \#15 OR \#16 OR \#17 OR \#18 OR \#19 OR \#20 OR \#21 OR \#22 OR \#23 OR \#24 OR \#25 OR \#26 OR \#27 OR \#28 OR \#29 OR \#30 OR \#31 OR \#32 OR \#33 OR \#34 OR \#35 OR \#36 OR \#37 OR \#38 OR \#39 OR \#40 OR \#41 OR \#42 OR \#43 OR \#44 OR \#45 OR \#46 OR \#47 OR \#48 OR \#49 OR \#50 OR \#51 OR \#52 OR \#53 OR \#54 OR \#55 OR \#56 OR \#57 OR \#58 OR \#59 OR \#60 OR \#61 OR \#62 OR \#63 OR \#64 OR \#65 OR \#66 OR \#67 OR \#68	$\underline{2755452}$
\#68	Search "ao 128"[tw] OR ao128[tw] OR basen[tw] OR "en 116077 "[tw] OR "en 116077"[tw] OR "en116 077"[tw] OR en116077[tw] OR glustat[tw] OR voglibose[tw]	$\underline{274}$
\#67	Search "hb 699"[tw] OR hb699[tw] OR meglitinide*[tw] OR actulin[tw] OR "ag ee 388"[tw] OR "ag ee388"[tw] OR "ag ee 623"[tw] OR "ag ee623"[tw] OR enyglid[tw] OR gluconorm[tw] OR novonorm[tw] OR prandin[tw] OR rapilan[tw] OR repaglinide[tw] OR sestrine[tw] OR "a 4166"[tw] OR a4166[tw] OR "ay 4166 "[tw] OR ay4166[tw] OR "djn 608"[tw] OR djn608[tw] OR fasticor[tw] OR glinate[tw] OR nateglinide[tw] OR sdz djn 608[tw] OR sdz djn608[tw] OR senaglinide[tw] OR starlix[tw] OR starsis[tw] OR trazec[tw] OR "ym 026"[tw] OR "bay 1099"[tw] OR "bay m 1099"[tw] OR "bay m1099"[tw] OR bay1099[tw] OR diastabol[tw] OR glyset[tw] OR miglitol[tw] OR plumarol[tw] OR 0V5436JAQW[EC/RN Number]	1507
\#66	Search acarbose[tw] OR "ag 5421"[tw] OR ag5421[tw] OR "alpha ghi"[tw] OR "bay g 5421"[tw] OR "bay g5421" $[\mathrm{tw}$] OR glibose[tw] OR glicobase[tw] OR glucobay[tw] OR gluconase[tw] OR glucor[tw] OR glumida[tw] OR prandase[tw] OR precise[tw] OR rebose[tw] OR T58MSI464G[EC/RN Number]	135060

Search	Query	Items Found
\#65	Search Acarbose[mesh]	1140
\#64	Search alpha-amylase inhibitor*tw] OR alpha-glucosidase inhibitor*[tw] OR glucosidase inhibitoo * ${ }^{*}$ tw] OR glycoside inhibitor*[tw]	2631
\#63	Search Glycoside Hydrolase Inhibitors[mesh]	1776
\#62	Search (sitagliptin[tw] AND metformin[tw]) OR janumet[tw] OR efficib[tw] OR gliptamet[tw] OR Januet[tw] OR ristfor[tw] OR velmetia[tw] OR "mk 0431a"[tw] OR (metformin[tw] AND dapagliflozin[tw]) OR ebymect[tw] OR xigduo[tw] OR (empagliflozin[tw] AND metformin[tw]) OR jardiamet[tw] OR jardiancemet[tw] OR synjardy[tw] OR (metformin[tw] AND rosiglitazone[tw]) OR avandamet[tw] OR interac[tw]	1283
\#61	Search "Sitagliptin Phosphate, Metformin Hydrochloride Drug Combination"[mesh]	5
\#60	Search (alogliptin[tw] AND metformin[tw]) OR (nesina[tw] AND metformin[tw]) OR kazano[tw] OR nesimet[tw] OR nesina[tw] OR nesinamet[tw] OR vipdomet[tw] OR (linagliptin[tw] AND metformin[tw]) OR jentadueto[tw] OR trajenta duo[tw] OR trajentamet[tw] OR trayebta duo[tw] OR trayenta duo[tw] OR (saxagliptin[tw] AND metformin[tw]) OR komboglyze[tw] OR kombiglyze[tw] OR comboglyze[tw] OR duoglyze[tw]	1313
\#59	Search pork insulin*[tw] OR porcine insulin*[tw] OR pig insulin*[tw] OR pigs insulin*[tw] OR hypurin[tw]	$\underline{7723}$
\#58	Search regular insulin*[tw] OR human insulin*[tw] OR nph insulin*[tw] OR humulin[tw] OR novolin[tw]	7626
\#57	Search Insulin [mesh]	$\underline{165022}$
\#56	Search actraphan*[tw] OR berlinsulin[tw] OR "humulin $i^{\prime \prime}[t w]$ OR "humulin n " $[t w]$ OR insulatard[tw] OR (insulin*[tw] AND monotard[tw]) OR isophane[tw] OR (insulin*[tw] AND NPH[tw]) OR (insulin*[tw] AND protamine[tw]) OR isofane[tw] OR isophan[tw] OR isophane[tw] OR isophone[tw] OR mixtard[tw] OR novolin[tw] OR "nph iletin"[tw] OR nph umuline[tw] OR orgasuline[tw] OR protaphan[tw] OR protaphane[tw] OR protophane[tw] OR prozinc[tw] OR zinc insulin ${ }^{*}[t w]$ OR zinc protamine[tw] OR protamine zinc[tw] OR 2ZM8CX04RZ[EC/RN Number]	3436
\#55	Search Insulin, Isophane[mesh]	917
\#54	Search lispro[tw] OR lyspro[tw] OR humalog[tw] OR liprolog[tw] OR apidra[tw] OR glulisine[tw] OR 7XIY785AZD[EC/RN Number]	1309
\#53	Search fast-acting insulin*[tw] OR quick-acting insulin*[tw] OR short-acting insulin*[tw] OR rapid acting insulin*[tw] OR rapidly acting insulin*[tw] OR fast-acting analog*[tw] OR quick-acting analog*[tw] OR shortacting analog*[tw] OR rapid acting analog*[tw] OR rapidly acting analog*[tw] OR insulin aspart*[tw] OR B28 insulin*[tw] OR B28 insulin*[tw] OR B28asp insulin*[tw] OR NovoLog*[tw] OR NovoMix*[tw] OR Novo Mix*[tw] OR NovoRapid*[tw] OR D933668QVX[EC/RN Number]	3630
\#52	Search Insulin, Short-Acting[mesh]	1250
\#51	Search abasaglar[tw] OR abasria[tw] OR basaglar[tw] OR glargine[tw] OR "HOE-901"[tw] OR HOE901[tw] OR lantus[tw] OR ly $2963016[t w]$ OR ly2963016[tw] OR optisulin[tw] OR toujeo[tw] OR 2ZM8CX04RZ[EC/RN Number]	2026
\#50	Search Insulin Glargine[mesh]	1261
\#49	Search detemir[tw] OR determir[tw] OR levemir[tw] OR "NN-304"[tw] OR NN304[tw] OR 4FT78T86XV[EC/RN Number]	820
\#48	Search Insulin Detemir[mesh]	433
\#47	Search long-acting insulin*[tw] OR LA insulin*[tw] OR semilente insulin*[tw] OR semi-lente insulin*[tw] OR slow acting insulin*[tw] OR slower acting insulin*[tw] OR intermediate-acting insulin*[tw] OR long-acting analog*[tw] OR LA analog*[tw] OR semilente analog*[tw] OR semi-lente analog*[tw] OR slow acting analog*[tw] OR slower acting analog*[tw] OR intermediate-acting analogn ${ }^{*}[t w]$	10580
\#46	Search Insulin, Long-Acting[mh:noexp]	2528
\#45	Search liraglutida[tw] OR liraglutide[tw] OR liraglutidum[tw] OR "HSDB 8205"[tw] OR "NN-2211"[tw] OR NN2211[tw] OR "NNC 90-1170"[tw] OR saxenda[tw] OR victoza[tw] OR 839173S42A[EC/RN Number]	1286
\#44	Search Liraglutide[mesh]	705

Search	Query	Items Found
\#43	Search "AC 2993" $[t w]$ OR "AC 2993A" $[$ [w] OR "AC-2993" $[t w]$ OR AC002993[tw] OR AC2993[tw] OR AC2993A[tw] OR baietta[tw] OR byetta[tw] OR bydureon[tw] OR "DA 3091"[tw] OR exenatide[tw] OR "exendin 4"[tw] OR "HSDB 7789"[tw] OR LY 2148568[tw] OR LY2148568[tw] OR PT302[tw] OR "Ex4 peptide"[tw] OR "ITCA 650"[tw] OR 9P1872D4OL[EC/RN Number]	$\underline{2536}$
\#42	Search glucagon-like peptide-1 agonist*tw] OR GLP-1 agonist*[tw] OR GLP1 agonist ${ }^{*}[t w]$ OR GLP-1R agonist*[tw] OR GLP1R agonist*[tw] OR incretin mimetic*t[w] OR dulaglutide[tw] OR LY-2189265[tw] OR LY2189265[tw] OR trulicity[tw] OR WTT295HSY5[EC/RN Number]	1012
\#41	Search "receptors, glucagon/agonists"[MeSH Terms]	710
\#40	Search glucagon-like peptide-1 receptor*[tw] OR GLP-1 receptor*[tw] OR GLP1 receptor*[tw] OR GLP-1R recepto**[tw] OR GLP1R recepto**[tw] OR glucagon-like peptide-1 protein*[tw] OR GLP- protein*[tw] OR GLP1 protein*[tw] OR GLP-1R protein*[tw] OR GLP1R protein*[tw]	5630
\#39	Search Glucagon-Like Peptide-1 Receptor[mesh]	1542
\#38	Search glucagon-like peptide-1 analog*[tw] OR GLP-1 analog*[tw] OR GLP1 analog*[tw] OR GLP-1R analog*[tw] OR GLP1R analog*[tw]	1261
\#37	Search "glucagon like peptide 1/analogs and derivatives"[MeSH]	977
\#36	Search rosiglitazone*[tw] OR avandia[tw] OR "BRL 49653-C" $[$ tw] OR "BRL 49653"[tw] OR nyracta[tw] OR rezult[tw] OR rossinii[tw] OR venvia[tw] OR 05V02F2KDG[EC/RN Number]	5549
\#35	Search thiazolidinedione*[tw] OR TZD[tw] OR TZDs[tw] OR pioglitazone*[tw] OR actos[tw] OR "AD 4833" $[t w]$ OR piomed[tw] OR "U 72107A" "tw] OR "U72 107A"[tw] OR cereluc[tw] OR glidipion[tw] OR glita[tw] OR glitase[tw] OR glustin[tw] OR paglitaz[tw] OR pioglit[tw] OR sepioglin[[tw] OR zactos[tw] OR X4OV71U42S[EC/RN Number]	12847
\#34	Search Thiazolidinediones[mesh]	9929
\#33	Search abemin[tw] OR aglicem[tw] OR aglicid[tw] OR aglycid[tw] OR apo-tolbutamide[tw] OR arcosal[tw] OR arkozal[tw] OR artosin[tw] OR artosina[tw] OR artozin[tw] OR beglucin[tw] OR "BRN 1984428"[tw] OR butamid[tw] OR butamide[tw] OR butamidum[tw] OR "CCRIS 592"[tw] OR "D 860"[tw] OR diabecid[tw] OR diaben[tw] OR diabenyl[tw] OR diabeton[tw] OR diabesan[tw] OR diasulfon[tw] OR diabetamid[tw] OR diabetol [tw] OR diabuton[tw] OR diatol[tw] OR dirastan[tw] OR diasulin[tw] OR diaval[tw] OR dolipol[tw] OR drabbet[tw] OR EINECS 200-594-3[tw] OR fresan[tw] OR glicemin[tw] OR glicotron[tw] OR glycotron[tw] OR guabeta[tw] OR glyconon[tw] OR "HLS 831" t [w] OR "HSDB 3393" $[t w]$ OR hypoglycone[tw] OR ipoglicone[tw] OR ipoglucos[tw] OR mermol[tw] OR metil glucosulfina[tw] OR mobenol[tw] OR NCIC01763[tw] OR NSC 23813[tw] OR neo antiglycemikos[tw] OR neo diabetal[tw] OR neo norboral[tw] OR neobellin[tw] OR neoinsoral[tw] OR orabet[tw] OR oralin[tw] OR oresan[tw] OR orezan[tw] OR orinade[tw] OR orinase[tw] OR orinaz[tw] OR orsinon[tw] OR osdiabet[tw] OR oterben[tw] OR pramidex[tw] OR proinsul[tw] OR rastinon[tw] OR SK-tolbutamide[tw] OR tarasina[tw] OR tobutamine[tw] OR tol ortab[tw] OR tolbet[tw] OR tolbugen[tw] OR tolbusal[tw] OR tolbutamid[tw] OR tolbutamida[tw] OR tolbutamide[tw] OR tolbutamidum[tw] OR tolbutone[tw] OR tolbutamte[tw] OR tolbutol[tw] OR tolbutylharnstoff[tw] OR tolbutylurea[tw] OR tolglybutamide[tw] OR tolsiran[tw] OR tolubetin[tw] OR toluran[tw] OR tolurast[tw] OR tosula[tw] OR toluina[tw] OR tolumid[tw] OR toluvan[tw] OR tolylsulfonylbutylurea[tw] OR "U 2043"[tw] OR willbutamide[tw] OR 982XCM1FOI[EC/RN Number]	6637
\#32	Search Tolbutamide[mesh]	5173
\#31	Search glucobene[tw] OR glucohexal[tw] OR glucolon[tw] OR glucomid[tw] OR gluconic[tw] OR glucoremed[tw] OR glucoven[tw] OR glukoreduct[tw] OR glulo[tw] OR glyamid[tw] OR glyben[tw] OR glybencamidum[tw] OR glybencenamide[tw] OR glybenclamid[tw] OR glybenclamide[tw] OR glybendamine[tw] OR glybenzyclamide[tw] OR glybenzcyclamide[tw] OR glyburide[tw] OR glycolande[tw] OR glycomin[tw] OR glynase[tw] OR "HB 419"[tw] OR "HB 420"[tw] OR hemi-daonil[tw] OR hexaglucon[tw] OR humedia[tw] OR insol[tw] OR lederglib[tw] OR libanil[tw] OR lisaglucon[tw] OR locose[tw] OR lodulce[tw] OR maniniil[tw] OR manoglucon[tw] OR med-glionil[tw] OR melix[tw] OR micronase[tw] OR miglucan[tw] OR nadib[tw] OR neogluconin[tw] OR "norglicem 5" $[$ [w] OR normoglucon[tw] OR orabetic[tw] OR pira[tw] OR praeciglucon[tw] OR prodiabet[tw] OR renabetic[tw] OR "RP-1127"[tw] OR semi-daonil[tw] OR semi-euglucon[tw] OR semi-gliben-puren n[tw] OR sugril[tw] OR suraben[tw] OR tiabet[tw] OR "U 26452"[tw] OR "U-26 452"[tw] OR "UR 606"[tw] OR yuglucon[tw] OR xeltic[tw] OR SX6K58TVWC[EC/RN	$\underline{2434824}$

Search	Query	Items Found
	Number]	
\#30	Search adiab[tw] OR amecladin[tw] OR apo-glibenclamide[tw] OR azuglucon[tw] OR bastiverit[tw] OR benclamin[tw] OR betanase[tw] OR "betanese 5 " $[t w]$ OR "BRN 2230085 " $[t w]$ OR calabren[tw] OR clamide[tw] OR clibenclamide[tw] OR cytagon[tw] OR dangbinol[tw] OR daonii[tw] OR debtan[tw] OR diabasan[tw] OR diabeta[tw] OR dibelet[tw] OR duraglucon[tw] OR EINECS 233-570-6[tw] OR euclamin[tw] OR euglucan[tw] OR euglucon[tw] OR euglykon[tw] OR "GBN 5" $[t w]$ OR gen-glybe[tw] OR gewaglucon[tw] OR gilemal[tw] OR glamide[tw] OR glencamide[tw] OR gliban[tw] OR glibeclamid[tw] OR glibemid[tw] OR gliben[tw] OR glibenbeta[tw] OR glibenclamid[tw] OR glibenclamida[tw] OR glibenclamide[tw] OR glibenclamidum[tw] OR glibenhexal[tw] OR glibenil[tw] OR glibens[tw] OR glibesyn[tw] OR glibet[tw] OR glibetic[tw] OR glibil[tw] OR gliboral[tw] OR glicem[tw] OR glidiabet[tw] OR gliformin[tw] OR glikeyer[tw] OR glimel[tw] OR glimide[tw] OR glimidstada[tw] OR glisulin[tw] OR glitisol[tw] OR glubate[tw] OR gluben[tw]	7433
\#29	Search Glyburide[mesh]	5752
\#28	Search glimepiride[tw] OR amaryl[tw] OR amarel[tw] OR "BRN 5365754" [tw] OR "CCRIS 7083" [tw] OR endial[tw] OR euglim[tw] OR glemax[tw] OR glimepirid[tw] OR glimepirida[tw] OR glimepiridum[tw] OR glimerid[tw] OR glorion[tw] OR "HOE 490" [tw] OR HOE490[tw] OR solosa[tw] OR "s 80 8490" $[t w]$ OR 6KY687524K[EC/RN Number]	1092
\#27	Search gliclazide[tw] OR diaglyk[tw] OR diaikron[tw] OR diabrezide[tw] OR diamicron[tw] OR "BRN 1657836"[tw] OR EINECS 244-260-5[tw] OR gen-gliclazide[tw] OR gliklazid[tw] OR gliclazida[tw] OR gliclazidum[tw] OR glimicron[tw] OR glyade[tw] OR glyclazide[tw] OR glycazide[tw] OR nordialex[tw] OR predian[tw] OR "S 1702"[tw] OR "S 852"[tw] OR "SE 1702"[tw] OR G4PX8C4HKV[EC/RN Number]	$\underline{1210}$
\#26	Search Gliclazide[mesh]	$\underline{767}$
\#25	Search melormin[tw] OR meldian[tw] OR melitase[tw] OR mellinese[tw] OR millinese[tw] OR NCIC01752[tw] OR "NSC 44634" $[t w]$ OR "NSC 626720" $[t w]$ OR neo-toltinon[tw] OR oradian[tw] OR "P 607"[tw] OR pamidin[tw] OR prodiaben[tw] OR pubetin[tw] OR stabinol[tw] OR tesmel[tw] OR "p chlorobenzolsulphonylglycolic acid nitrile"[tw] OR para chlorobenzenesulfonylglycolic acid nitrile[tw] OR parachlorobenzene sulfonylglycolic acid nitrile[tw] OR "U-3818"[tw] OR "U-9818" $[t w]$ OR WTM2C3IL2X[EC/RN Number]	1843
\#24	Search adiaben[tw] OR apo-chlorpropamide[tw] OR apochlorpropamide[tw] OR abemide[tw] OR "arodoc c"[tw] OR asucrol[tw] OR ascurol[tw] OR biabenal[tw] OR bioglumin[tw] OR BRN $2218363[t w]$ OR catanil[tw] OR "CCRIS 155"[tw] OR chlomide[tw] OR chlormide[tw] OR chlorodiabina[tw] OR chloropropamide[tw] OR chlorpromide[tw] OR clorpropamide[tw] OR copamide[tw] OR chloronase[tw] OR chlorpromide[tw] OR clorpropamide[tw] OR chloropropamide[tw] ORchlorpropamid[tw] OR chlorpropamide[tw] OR chlorpropamidum[tw] OR clorpropamid[tw] OR clorpropamida[tw] OR dabinese[tw] OR deavynfar[tw] OR diabaril[tw] OR diabechlor[tw] OR diabeedol[tw] OR diabemide[tw] OR diabenal[tw] OR diabenese[tw] OR diabeneza[tw] OR diabet-pages[tw] OR diabetoral[tw] OR diabexan[tw] OR diabiclor[tw] OR diabines[tw] OR diabinese[tw] OR diabitex[tw] OR diabitol[tw] OR diamel ex[tw] OR dibecon[tw] OR dynalase[tw] OR EINECS 202-314-5[tw] OR eubetin[tw] OR glicoben[tw] OR glisema[tw] OR glucamide[tw] OR glycemin[tw] OR glymese[tw] OR HSDB 2051[tw] OR hypomide[tw] OR insilange[tw] OR insogen[tw] OR insulase[tw]	2067
\#23	Search Chlorpropamide[mesh]	1809
\#22	Search sulfonylurea*[tw] OR sulfonurea*[tw] OR sulfonyl urea*[tw] OR sulfonylcarbamide*[tw] OR sulphonurea*[tw] OR sulphonylurea*[tw]	11088
\#21	Search Sulfonylurea Compounds[mh:noexp]	5254
\#20	Search empagliflozin[tw] OR "BI 10773"[tw] OR BI10773[tw] OR Jardiance[tw] OR HDC1R2M35U[EC/RN Number]	236
\#19	Search dapagliflozin[tw] OR "BMS 512148"[tw] OR BMS512148[tw] OR edistride[tw] OR forxiga[tw] OR farxiga[tw] OR 1ULLOQJ8UC[EC/RN Number]	320
\#18	Search canagliflozin[tw] OR Invokana[tw] OR JNJ 24831754*[tw] OR "JNJ 28431754" $[$ [w] OR TA 7284[tw] OR Prominad[tw] OR 0SAC974Z85[EC/RN Number]	301
\#17	Search Canagliflozin[mesh]	$\underline{144}$

Search	Query	Items Found
\#16	Search sodium-glucose transporter 2 inhibitor*[tw] OR sodium-glucose cotransporter 2 inhibitor*[tw] OR sodium-glucose co-transporter 2 inhibito ${ }^{*}$ [tw] OR sodium-glucose co-transporter 2 inhibitor*[tw] OR SGLT-2 inhibitor*[tw] OR SGLT2 inhibitor*[tw] OR sodium dependent glucose transporter 2 inhibitor*[tw] OR sodium dependent glucose cotransporter 2 inhibitoo*[tw] OR sodium dependent glucose transporter 2 inhibitor*[tw] OR sodium dependent glucose co-transporter 2 inhibitor*[tw] OR gliflozin[tw] OR glifilozins[tw]	890
\#15	Search "sodium glucose transporter 2/antagonists and inhibitors"[MeSH Terms]	515
\#14	Search sitagliptin[tw] OR "EC 690-730-1" "tw] OR Glactiv[tw] OR "HSDB 7516"[tw] OR januvia or "mk 0431" $[t w]$ OR mk0431[tw] OR "mk 431" $[t w]$ OR "ono 5435" $[t w]$ OR ristaben[tw] OR sitagliptine[tw] OR tesabel[tw] OR tesavel[tw] OR xelevia[tw] OR TS63EW8X6F[EC/RN Number]	1464
\#13	Search Sitagliptin Phosphate[mesh]	812
\#12	Search saxagliptin[tw] OR BMS 477118[tw] OR BMS477118[tw] OR HSDB 8199[tw] OR Onglyza[tw] OR "OPC 262"[tw] OR 9GB927LAJW[EC/RN Number]	410
\#11	Search linagliptin[tw] OR "BI 1356"[tw] OR ONDERO[tw] OR tradjenta[tw] OR trajenta[tw] OR trayenta[tw] OR trazenta[tw] OR 3X29ZEJ4R2[EC/RN Number]	374
\#10	Search Linagliptin[mesh]	194
\#9	Search DPP4 inhibitor*[tw] OR DPP 4 inhibitor*[tw] OR DPP IV inhibitor*[tw] OR dipeptidyl-peptidase IV inhibitor*[tw] OR dipeptidyl-peptidase 4 inhibitor*[tw] OR gliptin[tw] OR gliptins[tw] OR alogliptin[tw] OR nesina[tw] OR "SYR 322"[tw] OR SYR322[tw] OR "HSDB 8203"[tw] OR incresina[tw] OR vipidia[tw] OR JHC049LO86[EC/RN Number]	3682
\#8	Search Dipeptidyl-Peptidase IV Inhibitors[mesh]	$\underline{2171}$
\#7	Search antidiabetic*[tw] OR anti-diabetic*[tw] OR antihyperglycemic*[tw] OR antihyperglycaemic*[tw]OR anti-hyperglycemic*[tw] OR anti-hyperglycaemic ${ }^{*}[t w]$ OR hypoglycemic*[tw] OR hypoglycaemic*[tw] OR antidiabetes ${ }^{*}[t w]$ OR anti-diabetes*[tw]	67826
\#6	Search Hypoglycemic Agents[mesh]	50724
\#5	Search "diabetes mellitus, type 2/drug therapy"[MeSH] AND (Drug Combinations[mh:noexp] OR Drug Therapy, Combination[mh:noexp])	3005
\#4	Search \#1 OR \#2 OR \#3	$\underline{328883}$
\#3	Search MODY[tw] OR NIDDM[tw] OR T2DM[tw]	17648
\#2	Search (adult[tw] OR ketosis-resistant[tw] OR matur*[tw] OR late[tw] OR non-insulin depend*[tw] OR noninsulin depend*[tw] OR slow[tw] OR stable[tw] OR "type 2"[tw] OR "type Il"[tw] OR lipoatrophic[tw]) AND diabet*[tw]	$\underline{263664}$
\#1	Search ("Diabetes Mellitus, Type 2" [mesh] OR Diabetes Mellitus [mh:noexp])	$\underline{191490}$

Type 2 DM — Metformin/Canagliflozin, Albiglutide

2016 Apr 7

OVID Multifile

Database: Embase Classic+Embase <1947 to 2016 April 06>, Ovid MEDLINE(R) In-Process \& Other NonIndexed Citations and Ovid MEDLINE(R) <1946 to Present>

Search Strategy

1 exp Diabetes Mellitus, Type 2/ (269163)
2 Diabetes Mellitus/ (562571)
3 ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or stable or type 2 or type II or lipoatrophic) adj3 diabet*).tw,kw. (278379)

Search Strategy

4 (MODY or NIDDM or T2DM).tw,kw. (45749)
5 or/1-4 (853960)
6 (metformin adj3 canagliflozin).tw,kw. (30)
7 (invokamet or vokanamet).tw,kw. (12)
8 (albiglutide or albugon or (albumin adj1 GLP 1) or (albumin adj1 glucagon like peptide 1) or eperzan or "gsk 716155" or "gsk 716155a" or gsk716155 or gsk716155a or naliglutide or syncria or tanzeum).tw,kw. (339)
9 bydureon*.tw,kw. (183)
10 or/6-9 (532)
115 and 10 (478)
12 (controlled clinical trial or randomized controlled trial).pt. (498240)
13 clinical trials as topic.sh. (175967)
14 (randomi\#ed or randomly or RCT\$1 or placebo*).tw. (1678922)
15 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (331077)
16 trial.ti. (353740)
17 or/12-16 (2113939)
$18 \quad 11$ and 17 (164)
19 exp Animals/ not (exp Animals/ and Humans/) (14071795)
$20 \quad 18$ not 19 (68)
21 Adolescent/ not (exp Adult/ and Adolescent/) (1008508)
22 exp Child/ not (exp Adult/ and exp Child/) (2907448)
23 exp Infant/ not (exp Adult/ and exp Infant/) (1553718)
24 or/21-23 (3695720)
$25 \quad 20$ not 24 (68)
26 (comment or editorial or interview or news or newspaper article).pt. (1640159)
27 (letter not (letter and randomized controlled trial)).pt. (1835999)
2825 not (26 or 27) (68)
2928 use prmz (37)
30 diabetes mellitus/ (562571)
31 non insulin dependent diabetes mellitus/ (268979)
32 lipoatrophic diabetes mellitus/ (434)
33 ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or stable or type 2 or type II or lipoatrophic) adj3 diabet*).tw,kw. (278379)
34 (MODY or NIDDM or T2DM).tw,kw. (45749)
35 or/30-34 (854020)
36 canagliflozin plus metformin/ (11)
37 (metformin adj3 canagliflozin).tw,kw. (30)
38 (invokamet or vokanamet).tw,kw. (12)
39 albiglutide/ (428)
40 (albiglutide or albugon or (albumin adj1 GLP 1) or (albumin adj1 glucagon like peptide 1) or eperzan or "gsk 716155 " or "gsk 716155a" or gsk716155 or gsk716155a or naliglutide or syncria or tanzeum).tw,kw. (339)
41 782500-75-8.rn. (351)
42 bydureon*.tw,kw. (183)
43 or/36-42 (732)
$44 \quad 35$ and 43 (665)
45 randomized controlled trial/ or controlled clinical trial/ (1038247)
46 exp "clinical trial (topic)"/ (187219)
47 (randomi\#ed or randomly or RCT\$1 or placebo*).tw. (1678922)

Search Strategy

48 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (331077)
49 trial.ti. (353740)
50 or/45-49 (2310053)
$51 \quad 44$ and 50 (307)
52 exp animal experimentation/ or exp models animal/ or exp animal experiment/ or nonhuman/ or exp vertebrate/ (42446468)

53 exp human/ or exp human experimentation/ or exp human experiment/ (32988838)
5452 not 53 (9459290)
$55 \quad 51$ not 54 (307)
56 exp Juvenile/ not (exp Adult/ and exp Juvenile/) (2112211)
$57 \quad 55$ not 56 (307)
58 editorial.pt. (902821)
59 letter.pt. not (letter.pt. and randomized controlled trial/) (1831507)
$60 \quad 57$ not (58 or 59) (303)
6160 use emczd (269)
$62 \quad 29$ or 61 (306)
63 remove duplicates from 62 (272) [TOTAL UNIQUE RECORDS]
6463 use prmz (37) [MEDLINE UNIQUE RECORDS]
6563 use emczd (235) [EMBASE UNIQUE RECORDS]

Cochrane Library

| ID | Search | Hits |
| :--- | :--- | ---: | ---: |
| $\# 1$ | [mh "Diabetes Mellitus, Type 2"] | 10504 |
| $\# 2$ | [mh ^"Diabetes Mellitus"] | 2731 |
| $\# 3$ | ((adult or "ketosis-resistant" or matur" or late or ("non-insulin" next depend*) or (noninsulin next depend*) or
 slow or stable or "type 2" or "type II" or lipoatrophic) near/3 diabet*):ti,ab,kw | 20075 |
| $\# 4$ | (MODY or NIDDM or T2DM):ti,ab,kw | 2938 |
| $\# 5$ | (or \#1-\#4) | 22308 |
| $\# 6$ | (metformin near/3 canagliflozin):ti,ab,kw | 14 |
| $\# 7$ | (invokamet or vokanamet):ti,ab,kw | 0 |
| $\# 8$ | (albiglutide or albugon or (albumin near/1 GLP 1) or (albumin near/1 "glucagon like peptide 1") or eperzan or
 "gsk 716155" or "gsk 716155a" or gsk716155 or gsk716155a or naliglutide or syncria or tanzeum):ti,ab,kw | 44 |
| $\# 9$ | bydureon*:ti,ab,kw | 4 |
| $\# 10$ | (or \#6-\#9) | 3 |
| $\# 11$ | $\# 5$ and \#10 | 60 |

CENTRAL - 55
PubMed (newest records only)

Search	Query	Items Found
\#29	Search \#27 AND \#28	$\underline{4}$
$\# 28$	Search publisher[sb] OR 2016/04/01:2016/04/07	$\underline{491128}$
$\# 27$	Search \#24 NOT (\#25 OR \#26)	$\underline{76}$
$\# 26$	Search letter[pt] NOT (letter[pt] AND randomized controlled trial[pt])	$\underline{905925}$
$\# 25$	Search comment[pt] OR editorial[pt] OR interview[pt] OR news[pt] OR newspaper article[pt]	$\underline{1132446}$

Search	Query	Items Found
\#24	Search \#19 NOT \#23	$\underline{77}$
\#23	Search \#20 OR \#21 OR \#22	1624995
\#22	Search Infant[mesh] not (Adult[mesh] and Infant[mesh])	736446
\#21	Search Child[mesh] not (Adult[mesh] and Child[mesh])	1039276
\#20	Search Adolescent[mesh] not (Adult[mesh] and Adolescent[mesh])	509692
\#19	Search \#17 NOT \#18	77
\#18	Search Animals[mesh] NOT (Animals[mesh] AND humans[mesh])	4194732
\#17	Search \#10 AND \#16	$\underline{77}$
\#16	Search \#11 OR \#12 OR \#13 OR \#14 OR \#15	1119773
\#15	Search trial [ti]	150082
\#14	Search single blind ${ }^{*}[t w]$ OR single mask*[tw] OR single dumm*[tw] OR double blind*[tw] OR double mask*[tw] OR double dumm*[tw] OR triple blind*[tw] OR triple mask*[tw] OR triple dumm ${ }^{*}[t w]$ OR treble blind*[tw] OR treble mask*[tw] OR treble dumm ${ }^{*}$ [tw]	194501
\#13	Search randomised[tw] OR randomized[tw] OR randomly[tw] or RCT[tw] OR RCTs[tw] OR placebo*[tw]	874480
\#12	Search "clinical trials as topic"[mesh]	$\underline{28148}$
\#11	Search controlled clinical trial[pt] OR randomized controlled trial[pt]	493795
\#10	Search \#4 AND \#9	158
\#9	Search \#5 OR \#6 OR \#7 OR \#8	173
\#8	Search bydureon*[tw]	$\underline{9}$
\#7	Search albiglutide[tw] OR albugon[tw] OR "albumin GLP 1 " $[t w]$ OR "GLP 1 albumin" $[t w]$ or "albumin glucagon like peptide 1 " $[$ tw] OR "glucagon like peptide 1 albumin" $[t w]$ OR eperzan[tw] OR "gsk $716155 "[t w]$ OR "gsk 716155a" $[t w]$ OR gsk716155[tw] OR gsk716155a[tw] OR naliglutide[tw] OR syncria[tw] OR tanzeum[tw]	$\underline{90}$
\#6	Search invokamet[tw] OR vokanamet[tw]	$\underline{3}$
\#5	Search metformin[tw] AND canagliflozin[tw]	$\underline{72}$
\#4	Search \#1 OR \#2 OR \#3	328883
\#3	Search MODY[tw] OR NIDDM[tw] OR T2DM[tw]	$\underline{17759}$
\#2	Search (adult[tw] OR ketosis-resistant[tw] OR matur*[tw] OR late[tw] OR non-insulin depend*[tw] OR noninsulin depend*[tw] OR slow[tw] OR stable[tw] OR "type 2"[tw] OR "type Il" $[t w]$ OR lipoatrophic[tw]) AND diabet*[tw]	$\underline{264674}$
\#1	Search "Diabetes Mellitus, Type 2" [mesh] OR Diabetes Mellitus [mh:noexp]	$\underline{192175}$

Appendix 2: Research Question 1 - List of Included Studies (and Companion Publications)

1. Merker L, Haring HU, Christiansen AV, et al. Empagliflozin as add-on to metformin in people with Type 2 diabetes. Diabet Med. 2015; 32: 1555-67.
2. Simo R, Guerci B, Schernthaner G, et al. Long-term changes in cardiovascular risk markers during administration of exenatide twice daily or glimepiride: results from the European exenatide study. Cardiovascular Diabetology [electronic resource]. 2015; 14: 116.
3. Weinstock RS, Guerci B, Umpierrez G, Nauck MA, Skrivanek Z and Milicevic Z. Safety and efficacy of once-weekly dulaglutide versus sitagliptin after 2years in metformin-treated patients with type 2 diabetes (AWARD-5): a randomized, phase III study. Diabetes Obes Metab. 2015; 17: 849-58.
4. Ross S, Thamer C, Cescutti J, Meinicke T, Woerle HJ and Broedl UC. Efficacy and safety of empagliflozin twice daily versus once daily in patients with type 2 diabetes inadequately controlled on metformin: a 16-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2015; 17: 699-702.
5. Schernthaner G, Duran-Garcia S, Hanefeld M, et al. Efficacy and tolerability of saxagliptin compared with glimepiride in elderly patients with type 2 diabetes: a randomized, controlled study (GENERATION). Diabetes Obes Metab. 2015; 17: 630-8.
6. Hansen L, Iqbal N, Ekholm E, Cook W and Hirshberg B. Postprandial dynamics of plasma glucose, insulin, and glucagon in patients with type 2 diabetes treated with saxagliptin plus dapagliflozin add-on to metformin therapy. EndocrPract. 2014; 20: 1187-97.
7. Anholm C, Kumarathurai P, Klit MS, et al. Adding liraglutide to the backbone therapy of biguanide in patients with coronary artery disease and newly diagnosed type-2 diabetes (the AddHope2 study): a randomised controlled study protocol. Bmj open. 2014; 4: e005942, 2014.
8. Moon JS, Ha KS, Yoon JS, et al. The effect of glargine versus glimepiride on pancreatic beta-cell function in patients with type 2 diabetes uncontrolled on metformin monotherapy: open-label, randomized, controlled study. Acta Diabetologica. 2014; 51: 277-85.
9. Grandy S, Langkilde AM, Sugg JE, Parikh S and Sjostrom CD. Health-related quality of life (EQ-5D) among type 2 diabetes mellitus patients treated with dapagliflozin over 2 years. Int J Clin Pract. 2014; 68: 486-94.
10. Gupta S, Khajuria V, Tandon VR, Mahajan A and Gillani ZH. Comparative evaluation of efficacy and safety of combination of metformin-vidagliptin versus metfromin-glimepiride in most frequently used doses in patients of type 2 diabetes mellitus with inadequately controlled metformin monotherapy-A randomised open label study. Perspect Clin Res. 2015; 6: 163-8.
11. Hissa MR, Cavalcante LL, Guimaraes SB and Hissa MN. A 16-week study to compare the effect of vildagliptin versus gliclazide on postprandial lipoprotein concentrations and oxidative stress in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetol Metab Syndr. 2015; 7:62, 2015.
12. Inagaki N, Kondo K, Yoshinari T and Kuki H. Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: A 52-week open-label study. JDiabetesInvestig. 2015; 6: 210-8.
13. Odawara M, Hamada I and Suzuki M. Efficacy and Safety of Vildagliptin as Add-on to Metformin in Japanese Patients with Type 2 Diabetes Mellitus. Diabetes Ther. 2014; 5: 169-81.
14. Chen PH, Tsai YT, Wang JS, et al. Post-meal beta-cell function predicts the efficacy of glycemic control in patients with type 2 diabetes inadequately controlled by metformin monotherapy after addition of glibenclamide or acarbose. Diabetol Metab Syndr. 2014; 6:68, 2014.
15. Kawamori R, Kaku K, Hanafusa T, Oikawa T, Kageyama S and Hotta N. Effect of combination therapy with repaglinide and metformin hydrochloride on glycemic control in Japanese patients with type 2 diabetes mellitus. JDiabetes Investig. 2014; 5: 72-9.
16. Mita T, Katakami N, Shiraiwa T, et al. Rationale, design, and baseline characteristics of a clinical trial for prevention of atherosclerosis in patients with insulin-treated type 2 diabetes mellitus using DPP-4 inhibitor: the Sitagliptin Preventive study of Intima-media thickness Evaluation (SPIKE). Diabetol Metab Syndr. 2014; 6: 35, 2014.
17. White JL, Buchanan P, Li J and Frederich R. A randomized controlled trial of the efficacy and safety of twice-daily saxagliptin plus metformin combination therapy in patients with type 2 diabetes and inadequate glycemic control on metformin monotherapy. BMC Endocr Disord. 2014; 14:17, 2014.
18. Kadowaki T, Tajima N, Odawara M, Nishii M, Taniguchi T and Ferreira JC. Addition of sitagliptin to ongoing metformin monotherapy improves glycemic control in Japanese patients with type 2 diabetes over 52 weeks. Journal of Diabetes Investigation. 2013; 4: 174-81.
19. Neutel JM, Zhao C and Karyekar CS. Adding Saxagliptin to Metformin Extended Release (XR) or Uptitration of Metformin XR: Efficacy on Daily Glucose Measures. Diabetes Ther. 2013; 4: 269-83.
20. Chawla S, Kaushik N, Singh NP, Ghosh RK and Saxena A. Effect of addition of either sitagliptin or pioglitazone in patients with uncontrolled type 2 diabetes mellitus on metformin: A randomized controlled trial. J Pharmacol Pharmacother. 2013; 4: 27-32.
21. Bergenstal RM, Forti A, Chiasson JL, Woloschak M, Boldrin M and Balena R. Efficacy and safety of taspoglutide versus sitagliptin for type 2 diabetes mellitus (T-emerge 4 trial). Diabetes Ther. 2012; 3 : 13, 2012.
22. Cho YM, Koo BK, Son HY, et al. Effect of the combination of mitiglinide and metformin on glycemic control in patients with type 2 diabetes mellitus. JDiabetesInvestig. 2010; 1: 143-8.
23. Wang MM, Lin S, Chen YM, et al. Saxagliptin is similar in glycaemic variability more effective in metabolic control than acarbose in aged type 2 diabetes inadequately controlled with metformin. Diabetes Res Clin Pract. 2015; 108: e67-e70.
24. Jin SM, Park SW, Yoon KH, et al. Anagliptin and sitagliptin as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes Metab. 2015; 17: 511-5.
25. Xiao CC, Ren A, Yang J, et al. Effects of pioglitazone and glipizide on platelet function in patients with type 2 diabetes. European Review for Medical and Pharmacological Sciences. 2015; 19: 963-70.
26. Rosenstock J, Hansen L, Zee P, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care. 2015; 38: 376-83.
27. Rosenstock J, Cefalu WT, Lapuerta P, et al. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care. 2015; 38: 431-8.
28. Leiter LA, Yoon KH, Arias P, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015; 38: 355-64.
29. Kim MK, Rhee EJ, Han KA, et al. Efficacy and safety of teneligliptin, a dipeptidyl peptidase-4 inhibitor, combined with metformin in Korean patients with type 2 diabetes mellitus: a 16-week, randomized, double-blind, placebo-controlled phase III trial. Diabetes Obes Metab. 2015; 17: 309-12.
30. Gallwitz B, Rosenstock J, Patel S, et al. Regardless of the degree of glycaemic control, linagliptin has lower hypoglycaemia risk than all doses of glimepiride, at all time points, over the course of a 2-year trial. Diabetes Obes Metab. 2015; 17: 276-84.
31. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E and Utsuno A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015; 17: 304-8.
32. Aaboe K, Akram S, Deacon CF, Holst JJ, Madsbad S and Krarup T. Restoration of the insulinotropic effect of glucose-dependent insulinotropic polypeptide contributes to the antidiabetic effect of dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2015; 17: 74-81.
33. Schumm-Draeger PM, Burgess L, Koranyi L, Hruba V, Hamer-Maansson JE and de Bruin TW. Twicedaily dapagliflozin co-administered with metformin in type 2 diabetes: a 16-week randomized, placebocontrolled clinical trial. Diabetes Obes Metab. 2015; 17: 42-51.
34. Ji L, Han P, Liu Y, et al. Canagliflozin in Asian patients with type 2 diabetes on metformin alone or metformin in combination with sulphonylurea. Diabetes Obes Metab. 2015; 17: 23-31.
35. Gurkan E, Tarkun I, Sahin T, Cetinarslan B and Canturk Z. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabetes Res Clin Pract. 2014; 106: 567-75.
36. Derosa G, Bonaventura A, Bianchi L, et al. Comparison of vildagliptin and glimepiride: effects on glycaemic control, fat tolerance and inflammatory markers in people with type 2 diabetes. Diabet Med. 2014; 31: 1515-23.
37. Del Prato S, Camisasca R, Wilson C and Fleck P. Durability of the efficacy and safety of alogliptin compared with glipizide in type 2 diabetes mellitus: a 2-year study. Diabetes Obes Metab. 2014; 16: 1239-46.
38. Nandy D, Johnson C, Basu R, et al. The effect of liraglutide on endothelial function in patients with type 2 diabetes. Diab Vasc Dis Res. 2014; 11: 419-30.
39. Forst T, Anastassiadis E, Diessel S, Loffler A and Pfutzner A. Effect of linagliptin compared with glimepiride on postprandial glucose metabolism, islet cell function and vascular function parameters in patients with type 2 diabetes mellitus receiving ongoing metformin treatment. Diabetes/Metabolism Research and Reviews. 2014; 30: 582-9.
40. Dungan KM, Povedano ST, Forst T, et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, noninferiority trial. Lancet. 2014; 384: 1349-57.
41. Ridderstrale M, Andersen KR, Zeller C, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014; 2: 691-700.
42. Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014; 16: 159-69.
43. Ohira M, Yamaguchi T, Saiki A, et al. Metformin reduces circulating malondialdehyde-modified lowdensity lipoprotein in type 2 diabetes mellitus. Clin Invest Med. 2014; 37: E243-E51.
44. Ahren B, Johnson SL, Stewart M, et al. HARMONY 3: 104-week randomized, double-blind, placeboand active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. Diabetes Care. 2014; 37: 2141-8.
45. Grandy S, Hashemi M, Langkilde AM, Parikh S and Sjostrom CD. Changes in weight loss-related quality of life among type 2 diabetes mellitus patients treated with dapagliflozin. Diabetes Obes Metab. 2014; 16: 645-50.
46. Derosa G, Bonaventura A, Bianchi L, et al. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients. Metabolism. 2014; 63: 957-67.
47. Diamant M, van $G L$, Guerci B, et al. Exenatide once weekly versus insulin glargine for type 2 diabetes (DURATION-3): 3-year results of an open-label randomised trial. Lancet Diabetes Endocrinol. 2014; 2 : 464-73.
48. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014; 37: 1650-9.
49. Mintz ML and Minervini G. Saxagliptin versus glipizide as add-on therapy to metformin: assessment of hypoglycemia. Curr Med Res Opin. 2014; 30: 761-70.
50. Bolli GB, Munteanu M, Dotsenko S, et al. Efficacy and safety of lixisenatide once daily vs. placebo in people with Type 2 diabetes insufficiently controlled on metformin (GetGoal-F1). Diabet Med. 2014; 31: 176-84.
51. Berndt-Zipfel C, Michelson G, Dworak M, et al. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus - results from an exploratory study. Cardiovascular Diabetology [electronic resource]. 2013; 12: 59.
52. Rosenstock J, Gross JL, Aguilar-Salinas C, et al. Long-term 4-year safety of saxagliptin in drug-naive and metformin-treated patients with Type 2 diabetes. Diabet Med. 2013; 30: 1472-6.
53. Ridderstrale M, Svaerd R, Zeller C, et al. Rationale, design and baseline characteristics of a 4-year (208-week) phase III trial of empagliflozin, an SGLT2 inhibitor, versus glimepiride as add-on to metformin in patients with type 2 diabetes mellitus with insufficient glycemic control. Cardiovascular Diabetology. 2013; 12: 129.
54. Liebl A, Davidson J, Mersebach H, Dykiel P, Tack CJ and Heise T. A novel insulin combination of insulin degludec and insulin aspart achieves a more stable overnight glucose profile than insulin glargine: results from continuous glucose monitoring in a proof-of-concept trial. J Diabetes Sci Technol. 2013; 7: 1328-36.
55. Engel SS, Seck TL, Golm GT, Meehan AG, Kaufman KD and Goldstein BJ. Assessment of AACE/ACE recommendations for initial dual antihyperglycemic therapy using the fixed-dose combination of sitagliptin and metformin versus metformin. EndocrPract. 2013; 19: 751-7.
56. Genovese S, Passaro A, Brunetti P, et al. Pioglitazone Randomised Italian Study on Metabolic Syndrome (PRISMA): effect of pioglitazone with metformin on HDL-C levels in Type 2 diabetic patients. J Endocrinol Invest. 2013; 36: 606-16.
57. Derosa G, Carbone A, D'Angelo A, et al. Variations in inflammatory biomarkers following the addition of sitagliptin in patients with type 2 diabetes not controlled with metformin. Intern Med. 2013; 52: 217987.
58. Rosenstock J, Raccah D, Koranyi L, et al. Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care. 2013; 36: 2945-51.
59. Kim HS, Shin JA, Lee SH, et al. A comparative study of the effects of a dipeptidyl peptidase-IV inhibitor and sulfonylurea on glucose variability in patients with type 2 diabetes with inadequate glycemic control on metformin. Diabetes Technol Ther. 2013; 15: 810-6.
60. Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013; 382: 941-50.
61. Derosa G, Cicero AF, Franzetti IG, et al. Effects of exenatide and metformin in combination on some adipocytokine levels: a comparison with metformin monotherapy. Canadian Journal of Physiology and Pharmacology. 2013; 91: 724-32.
62. Henry RR, Rosenstock J, Logan DK, Alessi TR, Luskey K and Baron MA. Randomized trial of continuous subcutaneous delivery of exenatide by ITCA 650 versus twice-daily exenatide injections in metformin-treated type 2 diabetes. Diabetes Care. 2013; 36: 2559-65.
63. Ahren B, Leguizamo DA, Miossec P, Saubadu S and Aronson R. Efficacy and safety of lixisenatide once-daily morning or evening injections in type 2 diabetes inadequately controlled on metformin (GetGoal-M). Diabetes Care. 2013; 36: 2543-50.
64. Derosa G, Franzetti IG, Querci F, et al. Variation in inflammatory markers and glycemic parameters after 12 months of exenatide plus metformin treatment compared with metformin alone: a randomized placebo-controlled trial. Pharmacotherapy. 2013; 33: 817-26.
65. Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013; 36: 2254-61.
66. Lapuerta P, Rosenstock J, Zambrowicz B, et al. Study design and rationale of a dose-ranging trial of LX4211, a dual inhibitor of SGLT1 and SGLT2, in type 2 diabetes inadequately controlled on metformin monotherapy. Clin Cardiol. 2013; 36: 367-71.
67. Kapitza C, Forst T, Coester HV, Poitiers F, Ruus P and Hincelin-Mery A. Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin. Diabetes Obes Metab. 2013; 15: 642-9.
68. Charbonnel B, Steinberg H, Eymard E, et al. Efficacy and safety over 26 weeks of an oral treatment strategy including sitagliptin compared with an injectable treatment strategy with liraglutide in patients with type 2 diabetes mellitus inadequately controlled on metformin: a randomised clinical trial. Diabetologia. 2013; 56: 1503-11.
69. Bader G, Geransar P and Schweizer A. Vildagliptin more effectively achieves a composite endpoint of HbA1c < 7.0% without hypoglycaemia and weight gain compared with glimepiride after 2 years of treatment. Diabetes Res Clin Pract. 2013; 100: e78-e81.
70. Forst T, Dworak M, Berndt-Zipfel C, et al. Effect of vildagliptin compared to glimepiride on postprandial proinsulin processing in the beta cell of patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2013; 15: 576-9.
71. Rhee EJ, Lee WY, Min KW, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor gemigliptin compared with sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Obes Metab. 2013; 15: 523-30.
72. Goke B, Gallwitz B, Eriksson JG, Hellqvist A and Gause-Nilsson I. Saxagliptin vs. glipizide as add-on therapy in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: long-term (52-week) extension of a 52-week randomised controlled trial. Int J Clin Pract. 2013; 67: 307-16.
73. Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P and Houzer A. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab. 2013; 15: 403-9.
74. Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA and List JF. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013; 11:43, 2013.
75. Barbieri M, Rizzo MR, Marfella R, et al. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis. 2013; 227: 349-54.
76. Nauck M, Frid A, Hermansen K, et al. Long-term efficacy and safety comparison of liraglutide, glimepiride and placebo, all in combination with metformin in type 2 diabetes: 2-year results from the LEAD-2 study. Diabetes Obes Metab. 2013; 15: 204-12.
77. Derosa G, Ragonesi PD, Carbone A, et al. Vildagliptin action on some adipocytokine levels in type 2 diabetic patients: a 12-month, placebo-controlled study. Expert Opin Pharmacother. 2012; 13: 258191.
78. Derosa G, Franzetti IG, Querci F, et al. Exenatide plus metformin compared with metformin alone on beta-cell function in patients with Type 2 diabetes. Diabet Med. 2012; 29: 1515-23.
79. Derosa G, Carbone A, D'Angelo A, et al. A randomized, double-blind, placebo-controlled trial evaluating sitagliptin action on insulin resistance parameters and beta-cell function. Expert Opin Pharmacother. 2012; 13: 2433-42.
80. Vaccaro O, Masulli M, Bonora E, et al. Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: impact on cardiovascular events. A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2012; 22: 997-1006.
81. Hermans MP, Delibasi T, Farmer I, et al. Effects of saxagliptin added to sub-maximal doses of metformin compared with uptitration of metformin in type 2 diabetes: the PROMPT study. Curr Med Res Opin. 2012; 28: 1635-45.
82. Derosa G, Carbone A, Franzetti I, et al. Effects of a combination of sitagliptin plus metformin vs metformin monotherapy on glycemic control, beta-cell function and insulin resistance in type 2 diabetic patients. Diabetes Res Clin Pract. 2012; 98: 51-60.
83. Ljunggren O, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012; 14: 990-9.
84. Monnier L, Colette C, Comenducci A, Vallee D and Dejager S. Add-on therapies to metformin in type 2 diabetes: what modulates the respective decrements in postprandial and basal glucose? Diabetes Technol Ther. 2012; 14: 943-50.
85. Rizzo MR, Barbieri M, Marfella R and Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012; 35: 2076-82.
86. Seino Y, Miyata Y, Hiroi S, Hirayama M and Kaku K. Efficacy and safety of alogliptin added to metformin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label, long-term extension study. Diabetes Obes Metab. 2012; 14: 927-36.
87. Yang W, Guan Y, Shentu Y, et al. The addition of sitagliptin to ongoing metformin therapy significantly improves glycemic control in Chinese patients with type 2 diabetes. J Diabetes. 2012; 4: 227-37.
88. Gallwitz B, Rosenstock J, Rauch T, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012; 380: 475-83.
89. Krobot KJ, Ferrante SA, Davies MJ, et al. Lower risk of hypoglycemia with sitagliptin compared to glipizide when either is added to metformin therapy: a pre-specified analysis adjusting for the most recently measured $\mathrm{HbA}(1 \mathrm{c})$ value. Curr Med Res Opin. 2012; 28: 1281-7.
90. Srivastava S, Saxena GN, Keshwani P and Gupta R. Comparing the efficacy and safety profile of sitagliptin versus glimepiride in patients of type 2 diabetes mellitus inadequately controlled with metformin alone. J Assoc Physicians India. 2012; 60: 27-30.
91. Koren S, Shemesh-Bar L, Tirosh A, et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol Ther. 2012; 14: 561-7.
92. Nyirjesy P, Zhao Y, Ways K and Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose cotransporter 2 inhibitor. Curr Med Res Opin. 2012; 28: 1173-8.
93. Nicolle LE, Capuano G, Ways K and Usiskin K. Effect of canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, on bacteriuria and urinary tract infection in subjects with type 2 diabetes enrolled in a 12-week, phase 2 study. Curr Med Res Opin. 2012; 28: 1167-71.
94. Pan C, Xing X, Han P, et al. Efficacy and tolerability of vildagliptin as add-on therapy to metformin in Chinese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2012; 14: 737-44.
95. Gallwitz B, Guzman J, Dotta F, et al. Exenatide twice daily versus glimepiride for prevention of glycaemic deterioration in patients with type 2 diabetes with metformin failure (EUREXA): an openlabel, randomised controlled trial. Lancet. 2012; 379: 2270-8.
96. Aschner P, Chan J, Owens DR, et al. Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial. Lancet. 2012; 379: 2262-9.
97. Derosa G, Ragonesi PD, Carbone A, et al. Vildagliptin added to metformin on beta-cell function after a euglycemic hyperinsulinemic and hyperglycemic clamp in type 2 diabetes patients. Diabetes Technol Ther. 2012; 14: 475-84.
98. Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012; 35: 1232-8.
99. Defronzo RA, Burant CF, Fleck P, Wilson C, Mekki Q and Pratley RE. Efficacy and tolerability of the DPP-4 inhibitor alogliptin combined with pioglitazone, in metformin-treated patients with type 2 diabetes. J Clin Endocrinol Metab. 2012; 97: 1615-22.
100. Diamant M, van GL, Stranks S, et al. Safety and efficacy of once-weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes over 84 weeks. Diabetes Care. 2012; 35: 683-9.
101. Bolinder J, Ljunggren O, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012; 97: 1020-31.
102. Fonseca V, Zhu T, Karyekar C and Hirshberg B. Adding saxagliptin to extended-release metformin vs. uptitrating metformin dosage. Diabetes Obes Metab. 2012; 14: 365-71.
103. Wang JS, Lin SD, Lee WJ, et al. Effects of acarbose versus glibenclamide on glycemic excursion and oxidative stress in type 2 diabetic patients inadequately controlled by metformin: a 24-week, randomized, open-label, parallel-group comparison. Clin Ther. 2011; 33: 1932-42.
104. Yang W, Pan CY, Tou C, Zhao J and Gause-Nilsson I. Efficacy and safety of saxagliptin added to metformin in Asian people with type 2 diabetes mellitus: a randomized controlled trial. Diabetes Res Clin Pract. 2011; 94: 217-24.
105. Stephens JW, Bodvarsdottir TB, Wareham K, et al. Effects of short-term therapy with glibenclamide and repaglinide on incretin hormones and oxidative damage associated with postprandial hyperglycaemia in people with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011; 94: 199-206.
106. Petrica L, Vlad A, Petrica M, et al. Pioglitazone delays proximal tubule dysfunction and improves cerebral vessel endothelial dysfunction in normoalbuminuric people with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011; 94: 22-32.
107. Lin SD, Wang JS, Hsu SR, et al. The beneficial effect of alpha-glucosidase inhibitor on glucose variability compared with sulfonylurea in Taiwanese type 2 diabetic patients inadequately controlled with metformin: preliminary data. J Diabetes Complications. 2011; 25: 332-8.
108. Bunck MC, Corner A, Eliasson B, et al. Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care. 2011; 34: 2041-7.
109. Seck TL, Engel SS, Williams-Herman DE, et al. Sitagliptin more effectively achieves a composite endpoint for A1C reduction, lack of hypoglycemia and no body weight gain compared with glipizide. Diabetes Res Clin Pract. 2011; 93: e15-e7.
110. Terra SG, Somayaji V, Schwartz S, et al. A Dose-Ranging Study of the DPP-IV Inhibitor PF-734200 Added to Metformin in Subjects With Type 2 Diabetes*. Exp Clin Endocrinol Diabetes. 2011; 119: 4017.
111. Derosa G, Putignano P, Bossi AC, et al. Exenatide or glimepiride added to metformin on metabolic control and on insulin resistance in type 2 diabetic patients. Eur J Pharmacol. 2011; 666: 251-6.
112. Karyekar C, Donovan M, Allen E, Fleming D, Ravichandran S and Chen R. Efficacy and safety of saxagliptin combination therapy in US patients with type 2 diabetes. PostgradMed. 2011; 123: 63-70.
113. Derosa G, Cicero AF, Fogari E, D'Angelo A, Bianchi L and Maffioli P. Pioglitazone compared to glibenclamide on lipid profile and inflammation markers in type 2 diabetic patients during an oral fat load. Horm Metab Res. 2011; 43: 505-12.
114. Pfutzner A, Schondorf T, Tschope D, et al. PIOfix-study: effects of pioglitazone/metformin fixed combination in comparison with a combination of metformin with glimepiride on diabetic dyslipidemia. Diabetes Technol Ther. 2011; 13: 637-43.
115. Schondorf T, Musholt PB, Hohberg C, et al. The fixed combination of pioglitazone and metformin improves biomarkers of platelet function and chronic inflammation in type 2 diabetes patients: results from the PIOfix study. J Diabetes Sci Technol. 2011; 5: 426-32.
116. Zinman B, Fulcher G, Rao PV, et al. Insulin degludec, an ultra-long-acting basal insulin, once a day or three times a week versus insulin glargine once a day in patients with type 2 diabetes: a 16-week, randomised, open-label, phase 2 trial. Lancet. 2011; 377: 924-31.
117. Pratley R, Nauck M, Bailey T, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J Clin Pract. 2011; 65: 397-407.
118. Gustavson SM, Dai H, Preston GM, Somayaji V, Hirshberg B and Calle RA. Effects of multiple doses of the DPP-IV inhibitor PF-734200 on the relationship between GLP-1 and glucose in subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011; 91: e45-e9.
119. Heise T, Tack CJ, Cuddihy R, et al. A new-generation ultra-long-acting basal insulin with a bolus boost compared with insulin glargine in insulin-naive people with type 2 diabetes: a randomized, controlled trial. Diabetes Care. 2011; 34: 669-74.
120. Gallwitz B, Bohmer M, Segiet T, et al. Exenatide twice daily versus premixed insulin aspart $70 / 30$ in metformin-treated patients with type 2 diabetes: a randomized 26 -week study on glycemic control and hypoglycemia. Diabetes Care. 2011; 34: 604-6.
121. Davies M, Pratley R, Hammer M, Thomsen AB and Cuddihy R. Liraglutide improves treatment satisfaction in people with Type 2 diabetes compared with sitagliptin, each as an add on to metformin. Diabet Med. 2011; 28: 333-7.
122. Best JH, Rubin RR, Peyrot M, et al. Weight-related quality of life, health utility, psychological wellbeing, and satisfaction with exenatide once weekly compared with sitagliptin or pioglitazone after 26 weeks of treatment. Diabetes Care. 2011; 34: 314-9.
123. Arechavaleta R, Seck T, Chen Y, et al. Efficacy and safety of treatment with sitagliptin or glimepiride in patients with type 2 diabetes inadequately controlled on metformin monotherapy: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2011; 13: 160-8.
124. Yang W, Chen L, Ji Q, et al. Liraglutide provides similar glycaemic control as glimepiride (both in combination with metformin) and reduces body weight and systolic blood pressure in Asian population with type 2 diabetes from China, South Korea and India: a 16-week, randomized, double-blind, active control trial(*). Diabetes Obes Metab. 2011; 13: 81-8.
125. Taskinen MR, Rosenstock J, Tamminen I, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011; 13: 65-74.
126. Forst T, Uhlig-Laske B, Ring A, et al. Linagliptin (BI 1356), a potent and selective DPP-4 inhibitor, is safe and efficacious in combination with metformin in patients with inadequately controlled Type 2 diabetes. Diabet Med. 2010; 27: 1409-19.
127. Goke B, Gallwitz B, Eriksson J, Hellqvist A, Gause-Nilsson I and Investigators DC. Saxagliptin is noninferior to glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: a 52-week randomised controlled trial. Int J Clin Pract. 2010; 64: 1619-31.
128. Banerji MA, Purkayastha D and Francis BH. Safety and tolerability of vildagliptin vs. thiazolidinedione as add-on to metformin in type 2 diabetic patients with and without mild renal impairment: a retrospective analysis of the GALIANT study. Diabetes Res Clin Pract. 2010; 90: 182-90.
129. Scheen AJ, Charpentier G, Ostgren CJ, Hellqvist A and Gause-Nilsson I. Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews. 2010; 26: 540-9.
130. Stenlof K, Raz I, Neutel J, Ravichandran S, Berglind N and Chen R. Saxagliptin and metformin XR combination therapy provides glycemic control over 24 hours in patients with T2DM inadequately controlled with metformin. Curr Med Res Opin. 2010; 26: 2355-63.
131. Ratner RE, Rosenstock J, Boka G and Study I. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med. 2010; 27: 1024-32.
132. Bergenstal RM, Wysham C, MacConell L, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet. 2010; 376: 431-9.
133. Diamant M, van GL, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010; 375: 2234-43.
134. Bailey CJ, Gross JL, Pieters A, Bastien A and List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebocontrolled trial. Lancet. 2010; 375: 2223-33.
135. Filozof C and Gautier JF. A comparison of efficacy and safety of vildagliptin and gliclazide in combination with metformin in patients with Type 2 diabetes inadequately controlled with metformin alone: a 52-week, randomized study. Diabet Med. 2010; 27: 318-26.
136. Seck T, Nauck M, Sheng D, et al. Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: a 2-year study. Int J Clin Pract. 2010; 64: 562-76.
137. Defronzo RA, Triplitt C, Qu Y, Lewis MS, Maggs D and Glass LC. Effects of exenatide plus rosiglitazone on beta-cell function and insulin sensitivity in subjects with type 2 diabetes on metformin. Diabetes Care. 2010; 33: 951-7.
138. Pratley RE, Nauck M, Bailey T, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26 -week, randomised, parallel-group, openlabel trial. Lancet. 2010; 375: 1447-56.
139. Apovian CM, Bergenstal RM, Cuddihy RM, et al. Effects of exenatide combined with lifestyle modification in patients with type 2 diabetes. Am J Med. 2010; 123: 468-17.
140. Ahren B, Foley JE, Ferrannini E, et al. Changes in prandial glucagon levels after a 2 -year treatment with vildagliptin or glimepiride in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2010; 33: 730-2.
141. Kadoglou NP, Tsanikidis H, Kapelouzou A, et al. Effects of rosiglitazone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with type 2 diabetes mellitus. Metabolism. 2010; 59: 3739.
142. Petrica L, Petrica M, Vlad A, et al. Nephro- and neuroprotective effects of rosiglitazone versus glimepiride in normoalbuminuric patients with type 2 diabetes mellitus: a randomized controlled trial. WienKlin Wochenschr. 2009; 121: 765-75.
143. Scheen AJ, Tan MH, Betteridge DJ, et al. Long-term glycaemic effects of pioglitazone compared with placebo as add-on treatment to metformin or sulphonylurea monotherapy in PROactive (PROactive 18). Diabet Med. 2009; 26: 1242-9.
144. Kazda C, Gallwitz B, Simo R, et al. The European Exenatide study of long-term exenatide vs. glimepiride for type 2 diabetes: rationale and patient characteristics. Diabetes Obes Metab. 2009; 11: 1131-7.
145. Blonde L, Dagogo-Jack S, Banerji MA, et al. Comparison of vildagliptin and thiazolidinedione as addon therapy in patients inadequately controlled with metformin: results of the GALIANT trial--a primary care, type 2 diabetes study. Diabetes Obes Metab. 2009; 11: 978-86.
146. Defronzo RA, Hissa MN, Garber AJ, et al. The efficacy and safety of saxagliptin when added to metformin therapy in patients with inadequately controlled type 2 diabetes with metformin alone. Diabetes Care. 2009; 32: 1649-55.
147. Spanheimer R, Betteridge DJ, Tan MH, Ferrannini E, Charbonnel B and Proactive I. Long-term lipid effects of pioglitazone by baseline anti-hyperglycemia medication therapy and statin use from the PROactive experience (PROactive 14). Am J Cardiol. 2009; 104: 234-9.
148. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009; 373: 2125-35.
149. Papathanassiou K, Naka KK, Kazakos N, et al. Pioglitazone vs glimepiride: Differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis. 2009; 205: 221-6.
150. Bolli G, Dotta F, Colin L, Minic B and Goodman M. Comparison of vildagliptin and pioglitazone in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Obes Metab. 2009; 11: 589-95.
151. Goodman M, Thurston H and Penman J. Efficacy and tolerability of vildagliptin in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Horm Metab Res. 2009; 41: 368-73.
152. Bunck MC, Diamant M, Corner A, et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2009; 32: 762-8.
153. Kaku K. Efficacy and safety of therapy with metformin plus pioglitazone in the treatment of patients with type 2 diabetes: a double-blind, placebo-controlled, clinical trial. Curr Med Res Opin. 2009; 25: 1111-9.
154. Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q and Alogliptin S. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract. 2009; 63: 46-55.
155. Ferrannini E, Fonseca V, Zinman B, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2009; 11: 157-66.
156. Gao Y, Yoon KH, Chuang LM, et al. Efficacy and safety of exenatide in patients of Asian descent with type 2 diabetes inadequately controlled with metformin or metformin and a sulphonylurea. Diabetes Res Clin Pract. 2009; 83: 69-76.
157. Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009; 32: 84-90.
158. von Bibra H, Diamant M, Scheffer PG, Siegmund T and Schumm-Draeger PM. Rosiglitazone, but not glimepiride, improves myocardial diastolic function in association with reduction in oxidative stress in type 2 diabetic patients without overt heart disease. Diab Vasc Dis Res. 2008; 5: 310-8.
159. Scott R, Loeys T, Davies MJ, Engel SS and Sitagliptin S. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008; 10: 95969.
160. Komajda M, Curtis P, Hanefeld M, et al. Effect of the addition of rosiglitazone to metformin or sulfonylureas versus metformin/sulfonylurea combination therapy on ambulatory blood pressure in people with type 2 diabetes: a randomized controlled trial (the RECORD study). Cardiovascular Diabetology [electronic resource]. 2008; 7: 10.
161. Khanolkar MP, Morris RH, Thomas AW, et al. Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus--an effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis. 2008; 197: 718-24.
162. Garcia-Soria G, Gonzalez-Galvez G, Argoud GM, et al. The dipeptidyl peptidase-4 inhibitor PHX1149 improves blood glucose control in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2008; 10: 293-300.
163. Raz I, Chen Y, Wu M, et al. Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin. 2008; 24: 537-50.
164. Hamann A, Garcia-Puig J, Paul G, Donaldson J and Stewart M. Comparison of fixed-dose rosiglitazone/metformin combination therapy with sulphonylurea plus metformin in overweight individuals with Type 2 diabetes inadequately controlled on metformin alone. Exp Clin Endocrinol Diabetes. 2008; 116: 6-13.
165. Bolli G, Dotta F, Rochotte E and Cohen SE. Efficacy and tolerability of vildagliptin vs. pioglitazone when added to metformin: a 24 -week, randomized, double-blind study. Diabetes Obes Metab. 2008; 10: 82-90.
166. Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. Clin Ther. 2007; 29: 2333-48.
167. Ahren B, Pacini G, Tura A, Foley JE and Schweizer A. Improved meal-related insulin processing contributes to the enhancement of B-cell function by the DPP-4 inhibitor vildagliptin in patients with type 2 diabetes. Horm Metab Res. 2007; 39: 826-9.
168. Ristic S, Collober-Maugeais C, Cressier F, Tang P and Pecher E. Nateglinide or gliclazide in combination with metformin for treatment of patients with type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone: 1-year trial results. Diabetes Obes Metab. 2007; 9: 506-11.
169. Home PD, Jones NP, Pocock SJ, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med. 2007; 24: 626-34.
170. Bosi E, Camisasca RP, Collober C, Rochotte E and Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007; 30: 890-5.
171. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP and Sitagliptin S. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2007; 9: 194-205.
172. Brazg R, Xu L, Dalla MC, Cobelli C, Thomas K and Stein PP. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2007; 9: 186-93.
173. Derosa G, D'Angelo A, Ragonesi PD, et al. Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with metformin. Intern MedJ. 2007; 37: 79-86.
174. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G and Sitagliptin S. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006; 29: 2638-43.
175. Nauck MA, Hompesch M, Filipczak R, et al. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2006; 114: 417-23.
176. Goldstein BJ, Weissman PN, Wooddell MJ, Waterhouse BR and Cobitz AR. Reductions in biomarkers of cardiovascular risk in type 2 diabetes with rosiglitazone added to metformin compared with dose escalation of metformin: an EMPIRE trial sub-study. Curr Med Res Opin. 2006; 22: 1715-23.
177. Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006; 24: 2047-55.
178. Ristic S, Collober-Maugeais C, Pecher E and Cressier F. Comparison of nateglinide and gliclazide in combination with metformin, for treatment of patients with Type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone. Diabet Med. 2006; 23: 757-62.
179. Umpierrez G, Issa M and Vlajnic A. Glimepiride versus pioglitazone combination therapy in subjects with type 2 diabetes inadequately controlled on metformin monotherapy: results of a randomized clinical trial. Curr Med Res Opin. 2006; 22: 751-9.
180. Garber A, Klein E, Bruce S, Sankoh S and Mohideen P. Metformin-glibenclamide versus metformin plus rosiglitazone in patients with type 2 diabetes inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2006; 8: 156-63.
181. Kvapil M, Swatko A, Hilberg C and Shestakova M. Biphasic insulin aspart 30 plus metformin: an effective combination in type 2 diabetes. Diabetes Obes Metab. 2006; 8: 39-48.
182. Betteridge DJ and Verges B. Long-term effects on lipids and lipoproteins of pioglitazone versus gliclazide addition to metformin and pioglitazone versus metformin addition to sulphonylurea in the treatment of type 2 diabetes. Diabetologia. 2005; 48: 2477-81.
183. Ahren B, Pacini G, Foley JE and Schweizer A. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care. 2005; 28: 1936-40.
184. Charbonnel B, Schernthaner G, Brunetti P, et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. Diabetologia. 2005; 48: 1093-104.
185. Poon T, Nelson P, Shen L, et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther. 2005; 7: 467-77.
186. Feinglos M, Dailey G, Cefalu W, et al. Effect on glycemic control of the addition of 2.5 mg glipizide GITS to metformin in patients with T2DM. Diabetes Res Clin Pract. 2005; 68: 167-75.
187. Defronzo RA, Ratner RE, Han J, Kim DD, Fineman MS and Baron AD. Effects of exenatide (exendin4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005; 28: 1092-100.
188. Matthews DR, Charbonnel BH, Hanefeld M, Brunetti P and Schernthaner G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in patients with type 2 diabetes: a randomized, comparative study. Diabetes/Metabolism Research and Reviews. 2005; 21: 167-74.
189. Ahren B, Gomis R, Standl E, Mills D and Schweizer A. Twelve- and 52 -week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care. 2004; 27: 2874-80.
190. Schernthaner G, Grimaldi A, Di MU, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest. 2004; 34: 535-42.
191. Raskin P, Klaff L, McGill J, et al. Efficacy and safety of combination therapy: repaglinide plus metformin versus nateglinide plus metformin. Diabetes Care. 2003; 26: 2063-8.
192. Dhindsa P, Davis KR and Donnelly R. Comparison of the micro- and macro-vascular effects of glimepiride and gliclazide in metformin-treated patients with Type 2 diabetes: a double-blind, crossover study. Br J Clin Pharmacol. 2003; 55: 616-9.
193. Phillips P, Karrasch J, Scott R, Wilson D and Moses R. Acarbose improves glycemic control in overweight type 2 diabetic patients insufficiently treated with metformin. Diabetes Care. 2003; 26: 26973.
194. Marre M, Howlett H, Lehert P and Allavoine T. Improved glycaemic control with metforminglibenclamide combined tablet therapy (Glucovance) in Type 2 diabetic patients inadequately controlled on metformin. Diabet Med. 2002; 19: 673-80.
195. Marre M, van GL, Usadel KH, Ball M, Whatmough I and Guitard C. Nateglinide improves glycaemic control when added to metformin monotherapy: results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab. 2002; 4: 177-86.
196. Gomez-Perez FJ, Fanghanel-Salmon G, Antonio BJ, et al. Efficacy and safety of rosiglitazone plus metformin in Mexicans with type 2 diabetes. Diabetes/Metabolism Research and Reviews. 2002; 18: 127-34.
197. van Gaal L, Maislos M, Schernthaner G, Rybka J and Segal P. Miglitol combined with metformin improves glycaemic control in type 2 diabetes. Diabetes Obes Metab. 2001; 3: 326-31.
198. Charpentier G, Fleury F, Kabir M, Vaur L and Halimi S. Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabet Med. 2001; 18: 828-34.
199. Halimi S, Le Berre MA and Grange V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with Type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000; 50: 49-56.
200. Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL and Schneider RL. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther. 2000; 22: 1395409.
201. Fonseca V, Rosenstock J, Patwardhan R and Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA Journal of the American Medical Association. 2000; 283: 1695-702.
202. Moses R. Repaglinide in combination therapy with metformin in Type 2 diabetes. Exp Clin Endocrinol Diabetes. 1999; 107 Suppl 4:S136-9.
203. Moses R, Slobodniuk R, Boyages S, et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 1999; 22: 119-24.
204. Rosenstock J, Brown A, Fischer J, et al. Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. Diabetes Care. 1998; 21: 2050-5.
205. Wolever TM, Chiasson JL, Josse RG, et al. Small weight loss on long-term acarbose therapy with no change in dietary pattern or nutrient intake of individuals with non-insulin-dependent diabetes. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 1997; 21: 756-63.
206. Rodger NW, Chiasson JL, Josse RG, et al. Clinical experience with acarbose: results of a Canadian multicentre study. Clin Invest Med. 1995; 18: 318-24.
207. Comparison of Adipose Distribution Indices with Gold Standard Body Composition Assessments in the EMPA-REG H2H SU Trial: A Body Composition Sub-Study. Diabetes Therapy. 2015; 6: 635-42.
208. Odessa G. Tolentino-Wilson ADL. A comparative study of the effect of vildagliptin and glimepiride on glucose variability in type 2 diabetic patients with inadequate glycemic control on metformin. Phillippine Journal of Internal Medicine. 2014; 52: 1-6.
209. Multifactorial effects of vildagliptin added to ongoing metformin therapy in patients with type 2 diabetes mellitus. Pharmacological Reports. 2014; 67: 24-31.
210. Efficacy and safety of twice-daily treatment with canagliflozin, a sodium glucose co-transporter 2 inhibitor, added on to metformin monotherapy in patients with type 2 diabetes mellitus. Journal of Clinical and Translational Endocrinology. 2014; 1: 54-60.
211. Efficacy and safety of the glucagon-like peptide-1 receptor agonist lixisenatide versus the dipeptidyl peptidase-4 inhibitor sitagliptin in young (<50 years) obese patients with type 2 diabetes mellitus. Journal of Clinical and Translational Endocrinology. 2014; 1: 31-7.
212. A comparative study to evaluate the efficacy and safety of Vildagliptin as an add-on therapy to a lowdose Metformin vs an uptitration of Metformin in type 2 DM patients. International Journal of Pharmaceutical Sciences Review and Research. 2013; 22: 116-20.
213. Raskin P. Basal insulin or premix analogue therapy in type 2 diabetes patients. Eur J Intern Med. 2007; 18: 56-62.
214. Leiter L. Efficacy and safety of Rosiglitazone as monotherapy or in combination with metformin in primary care settings. Canadian Journal of Diabetes. 2005; 29: 384-92.
215. Kilo C, Mezitis NH, Jain R, Mersey JH, McGill J and Raskin P. Starting patients with type 2 diabetes on insulin therapy using once-daily injections of biphasic insulin aspart 70/30, biphasic human insulin 70/30, or NPH insulin in combination with metformin. J Diabetes Complicat. 2003; 17: 307-13.
216. Ohira M, Yamaguchi T, Saiki A, et al. Pioglitazone improves the cardio-ankle vascular index in patients with type 2 diabetes mellitus treated with metformin. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014; 7: 313-9.
217. Derosa G, Ragonesi PD, Carbone A, et al. Evaluation of the positive effects on insulin-resistance andcell measurements of vildagliptin in addition to metformin in type 2 diabetic patients. Pharmacological Research. 2013; 73: 20-6.
218. Josse RG. Acarbose for the treatment of type II diabetes: the results of a Canadian multi-centre trial. Diabetes Res Clin Pract. 1995; 28 Suppl: S167-S72.
219. Leiter LA, Langslet G, Vijapurkar U, Davies MJ and Canovatchel W. Simultaneous Reduction in Both HbA1c and Body Weight with Canagliflozin Versus Glimepiride in Patients with Type 2 Diabetes on Metformin. Diabetes Ther. 2016.
220. Del Prato S, Fleck P, Wilson C and Chaudhari P. Comparison of alogliptin and glipizide in composites of HbA1c reduction, no hypoglycaemia, and no weight gain in type 2 diabetes mellitus. Diabetes Obes Metab. 2016.
221. Yang W, Han P, Min KW, et al. Efficacy and safety of dapagliflozin in Asian patients with type 2 diabetes after metformin failure: A randomized controlled trial. J Diabetes. 2015.
222. Chirila C, Zheng Q, Davenport E, et al. Treatment satisfaction in type 2 diabetes patients taking empagliflozin compared with patients taking glimepiride. Qual Life Res. 2015.
223. Xu S, Liu X, Ming J and Ji Q. Comparison of exenatide with biphasic insulin aspart 30 on glucose variability in type 2 diabetes: study protocol for a randomized controlled trial. Trials. 2016; 17: 160, 2016.
224. Wang JS, Lee IT, Lee WJ, et al. Glycemic excursions are positively associated with changes in duration of asymptomatic hypoglycemia after treatment intensification in patients with type 2 diabetes. Diabetes Res Clin Pract. 2016; 113: 108-15.
225. Merck Sharp \& Dohme Corp. Study to Evaluate the Safety and Efficacy of the Addition of Omarigliptin (MK-3102) Compared With the Addition of Sitagliptin in Participants With Type 2 Diabetes Mellitus With Inadequate Glycemic Control on Metformin (MK-3102-026). 2013 Apr 24 [updated 2017 Mar 3; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01841697 NLM Identifier: NCT01841697.
226. Boehringer Ingelheim; Eli Lilly and Company. Safety and Efficacy of Empagliflozin (BI 10773) and Sitagliptin Versus Placebo Over 76 Weeks in Patients With Type 2 Diabetes. 2011 Jan 31 [updated 2014 Jul 14; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01289990 NLM Identifier: NCT01289990.
227. Daiichi Sankyo Inc. Effects of Colesevelam HCI, Rosiglitazone, Sitagliptin on Control of Blood Glucose and Lipids in Type 2 Diabetes Patients Whose Blood Glucose Isn't Completely Controlled With Metformin. 2007 Jun 7 [updated 2016 Aug 23; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00484419 NLM Identifier: NCT00484419.
228. Merck Sharp \& Dohme Corp. A Study of the Safety and Efficacy of Omarigliptin (MK-3102) Compared With Glimepiride in Participants With Type 2 Diabetes Mellitus With Inadequate Glycemic Control on Metformin (MK-3102-016). 2012 Sep 7 [updated 2016 Jan 6; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01682759 NLM Identifier: NCT01682759.
229. AstraZeneca; Bristol-Myers Squibb. Saxagliptin Compared to Glimepiride in Elderly Type 2 Diabetes Patients, With Inadequate Glycemic Control on Metformin. 2012 Sep 7 [updated 2016 Jan 6; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01006603 NLM Identifier: NCT01006603.
230. GlaxoSmithKline. Rosiglitazone-Metformin Combination Versus Metformin-Sulfonylurea Combination On Beta-Cell Function In Type 2 Diabetes. 2006 Aug 21 [updated 2010 Jul 20; cited 2017 Apr 17]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00367055 NLM Identifier: NCT00367055.
231. Takeda. Efficacy of Pioglitazone/Metformin Combination Therapy in Subjects With Type 2 Diabetes Mellitus and Dyslipidemia. 2008 Oct 9 [updated 2010 Sep 13; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00770653 NLM Identifier: NCT00770653.
232. Merck Sharp \& Dohme Corp. Study to Assess the Efficacy and Safety of Sitagliptin Added to the Regimen of Patients With Type 2 Diabetes Mellitus With Inadequate Glycemic Control on Metformin (0431-189). 2009 Apr 1 [updated 2015 Aug 26; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00875394 NLM Identifier: NCT00875394.
233. Eli Lilly and Company; United BioSource Corporation; Tessella Inc.; Berry Consultants. A Study of LY2189265 Compared to Sitagliptin in Participants With Type 2 Diabetes Mellitus on Metformin. 2008 Aug 12 [updated 2015 Mar 31; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00734474 NLM Identifier: NCT00734474.
234. Pusan National University Hospital. Safety and Efficacy Study to Compare Vildagliptin to Pioglitazone as Adding on Metformin in Type 2 Diabetes. 2013 Jun 3 [updated 2015 Mar 4; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01882907 NLM Identifier: NCT01882907.
235. Boehringer Ingelheim; Eli Lilly and Company. Efficacy and Safety of Empagliflozin (BI 10773) With Metformin in Patients With Type 2 Diabetes. 2010 Jul 15 [updated 2016 Jul 28; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01167881 NLM Identifier: NCT01167881.
236. Novo Nordisk A/S. Efficacy and Safety of Liraglutide Versus Lixisenatide as add-on to Metformin in Subjects With Type 2 Diabetes. 2013 Oct 23 [updated 2016 Dec 15; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01973231 NLM Identifier: NCT01973231
237. Novo Nordisk A/S. The Effect of Liraglutide Versus Placebo When Added to Basal Insulin Analogues With or Without Metformin in Subjects With Type 2 Diabetes. 2012 Jun 8 [updated 2017 Jan 25; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01617434 NLM Identifier: NCT01617434.
238. Novo Nordisk A/S. The Efficacy and Safety of Liraglutide Compared to Sitagliptin, Both in Combination With Metformin in Chinese Subjects With Type 2 Diabetes. 2013 Dec 5 [updated 2017 Jan 26; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT02008682 NLM Identifier: NCT02008682.
239. Boehringer Ingelheim; Eli Lilly and Company. A 16 Weeks Study on Efficacy and Safety of Two Doses of Empagliflozin (BI 10773) (Once Daily Versus Twice Daily) in Patients With Type 2 Diabetes Mellitus and Preexisting Metformin Therapy. 2012 Jul 23 [updated 2015 Jun 26; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01649297 NLM Identifier: NCT01649297.
240. Boehringer Ingelheim; Eli Lilly and Company. Efficacy and Safety Study With Empagliflozin (BI 10773) vs. Placebo as add-on to Metformin or Metformin Plus Sulfonylurea Over 24 Weeks in Patients With Type 2 Diabetes. 2010 Jul 8 [updated 2014 May 16; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01159600 NLM Identifier: NCT01159600.
241. Novo Nordisk A/S. To Compare the Effect of Liraglutide When Given Together With Metformin With the Effect of Metformin Given Alone and With the Effect of Glimepiride and Metformin Given Together. 2006 Apr 25 [updated 2017 Jan 24; cited 2017 Apr 19]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00318461 NLM Identifier: NCT00318461.
242. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013; 56: 2582-92.
243. Blonde L, Stenlof K, Fung A, Xie J, Canovatchel W and Meininger G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. PostgradMed. 2016.
244. Chen X, Lv X, Yang G, et al. Polyethylene Glycol Loxenatide Injection added to metformin effectively improves glycemic control and exhibits a favorable safety in type 2 diabetic patients. J Diabetes. 2016.

Appendix 3: Research Question 2 - List of Included Studies (and Companion Publications)

1. Masmiquel L, Leiter LA, Vidal J, Bain S, Petrie J, Franek E, et al. LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovascular Diabetology [electronic resource]. 2016;15(1):29.
2. Cavender MA, Scirica BM, Raz I, Gabriel SP, McGuire DK, Leiter LA, et al. Cardiovascular Outcomes of Patients in SAVOR-TIMI 53 by Baseline Hemoglobin A1c. Am J Med. 2016;129(3):340-8.
3. Erdmann E, Harding S, Lam H, Perez A. Ten-year observational follow-up of PROactive: a randomized cardiovascular outcomes trial evaluating pioglitazone in type 2 diabetes. Diabetes Obes Metab. 2016;18(3):266-73.
4. Mosenzon O, Wei C, Davidson J, Scirica BM, Yanuv I, Rozenberg A, et al. Incidence of Fractures in Patients With Type 2 Diabetes in the SAVOR-TIMI 53 Trial. Diabetes Care. 2015;38(11):2142-50.
5. Fulcher G, Matthews DR, Perkovic V, de ZD, Mahaffey KW, Mathieu C, et al. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2016;18(1):82-91.
6. Merker L, Haring HU, Christiansen AV, Roux F, Salsali A, Kim G, et al. Empagliflozin as add-on to metformin in people with Type 2 diabetes. Diabet Med. 2015;32(12):1555-67.
7. Haering HU, Merker L, Christiansen AV, Roux F, Salsali A, Kim G, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes. Diabetes Res Clin Pract. 2015;110(1):82-90.
8. Marx N, Rosenstock J, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, et al. Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA). Diab Vasc Dis Res. 2015;12(3):164-74.
9. Daniels GH, Hegedus L, Marso SP, Nauck MA, Zinman B, Bergenstal RM, et al. LEADER 2: baseline calcitonin in 9340 people with type 2 diabetes enrolled in the Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results (LEADER) trial: preliminary observations. Diabetes Obes Metab. 2015;17(5):477-86.
10. Bethel MA, Green JB, Milton J, Tajar A, Engel SS, Califf RM, et al. Regional, age and sex differences in baseline characteristics of patients enrolled in the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Obes Metab. 2015;17(4):395-402.
11. Fulcher G, Matthews DR, Perkovic V, de ZD, Mahaffey KW, Weiss R, et al. Efficacy and Safety of Canagliflozin Used in Conjunction with Sulfonylurea in Patients with Type 2 Diabetes Mellitus: A Randomized, Controlled Trial. Diabetes Ther. 2015;6(3):289-302.
12. Leibowitz G, Cahn A, Bhatt DL, Hirshberg B, Mosenzon O, Wei C, et al. Impact of treatment with saxagliptin on glycaemic stability and beta-cell function in the SAVOR-TIMI 53 study. Diabetes Obes Metab. 2015;17(5):487-94.
13. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373(23):2247-57.
14. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-28.
15. Leiter LA, Teoh H, Braunwald E, Mosenzon O, Cahn A, Kumar KM, et al. Efficacy and safety of saxagliptin in older participants in the SAVOR-TIMI 53 trial. Diabetes Care. 2015;38(6):1145-53.
16. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232-42.
17. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067-76.
18. Bentley-Lewis R, Aguilar D, Riddle MC, Claggett B, Diaz R, Dickstein K, et al. Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am Heart J. 2015;169(5):631-8.
19. Udell JA, Bhatt DL, Braunwald E, Cavender MA, Mosenzon O, Steg PG, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI 53 Trial. Diabetes Care. 2015;38(4):696-705.
20. Neal B, Perkovic V, de ZD, Mahaffey KW, Fulcher G, Ways K, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38(3):403-11.
21. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579-88.
22. Steinberg WM, Nauck MA, Zinman B, Daniels GH, Bergenstal RM, Mann JF, et al. LEADER 3--lipase and amylase activity in subjects with type 2 diabetes: baseline data from over 9000 subjects in the LEADER Trial. Pancreas. 2014;43(8):1223-31.
23. Raz I, Bhatt DL, Hirshberg B, Mosenzon O, Scirica BM, Umez-Eronini A, et al. Incidence of pancreatitis and pancreatic cancer in a randomized controlled multicenter trial (SAVOR-TIMI 53) of the dipeptidyl peptidase-4 inhibitor saxagliptin. Diabetes Care. 2014;37(9):2435-41.
24. Zinman B, Inzucchi SE, Lachin JM, Wanner C, Ferrari R, Fitchett D, et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOMETM). Cardiovascular Diabetology [electronic resource]. 2014;13:102.
25. Green JB, Bethel MA, Paul SK, Ring A, Kaufman KD, Shapiro DR, et al. Rationale, design, and organization of a randomized, controlled Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in patients with type 2 diabetes and established cardiovascular disease. Am Heart J. 2013;166(6):983-9.
26. Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013;166(5):823-30.
27. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327-35.
28. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):131726.
29. Neal B, Perkovic V, de ZD, Mahaffey KW, Fulcher G, Stein P, et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)--a randomized placebo-controlled trial. Am Heart J. 2013;166(2):217-23.
30. Mosenzon O, Raz I, Scirica BM, Hirshberg B, Stahre CI, Steg PG, et al. Baseline characteristics of the patient population in the Saxagliptin Assessment of Vascular Outcomes Recorded in patients with diabetes mellitus (SAVOR)-TIMI 53 trial. Diabetes/Metabolism Research and Reviews. 2013;29(5):417-26.
31. Higashikawa F, Noda M, Awaya T, Tanaka T, Sugiyama M. 5-aminolevulinic acid, a precursor of heme, reduces both fasting and postprandial glucose levels in mildly hyperglycemic subjects. Nutrition. 2013;29(7-8):1030-6.
32. Hong J, Zhang Y, Lai S, Lv A, Su Q, Dong Y, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304-11.
33. Pfister R, Cairns R, Erdmann E, Schneider CA. A clinical risk score for heart failure in patients with type 2 diabetes and macrovascular disease: an analysis of the PROactive study. Int J Cardiol. 2013;162(2):112-6.
34. Doehner W, Erdmann E, Cairns R, Clark AL, Dormandy JA, Ferrannini E, et al. Inverse relation of body weight and weight change with mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: an analysis of the PROactive study population. Int J Cardiol. 2012;162(1):20-6.
35. Vaccaro O, Masulli M, Bonora E, Del PS, Giorda CB, Maggioni AP, et al. Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: impact on cardiovascular events. A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2012;22(11):997-1006.
36. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279-89.
37. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. The design and rationale of the saxagliptin assessment of vascular outcomes recorded in patients with diabetes mellitusthrombolysis in myocardial infarction (SAVOR-TIMI) 53 study. Am Heart J. 2011;162(5):818-25.
38. White WB, Bakris GL, Bergenstal RM, Cannon CP, Cushman WC, Fleck P, et al. EXamination of cArdiovascular outcoMes with alogliptIN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE): a cardiovascular safety study of the dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes with acute coronary syndrome. Am Heart J. 2011;162(4):620-6.
39. Raz I, Ceriello A, Wilson PW, Battioui C, Su EW, Kerr L, et al. Post hoc subgroup analysis of the HEART2D trial demonstrates lower cardiovascular risk in older patients targeting postprandial versus fasting/premeal glycemia. Diabetes Care. 2011;34(7):1511-3.
40. Ferrannini E, Betteridge DJ, Dormandy JA, Charbonnel B, Wilcox RG, Spanheimer R, et al. Highdensity lipoprotein-cholesterol and not HbA1c was directly related to cardiovascular outcome in PROactive. Diabetes Obes Metab. 2011;13(8):759-64.
41. Siegelaar SE, Kerr L, Jacober SJ, DeVries JH. A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetic patients after acute myocardial infarction: a reanalysis of the HEART2D study. Diabetes Care. 2011;34(4):855-7.
42. Erdmann E, Spanheimer R, Charbonnel B, Proactive SI. Pioglitazone and the risk of cardiovascular events in patients with Type 2 diabetes receiving concomitant treatment with nitrates, reninangiotensin system blockers, or insulin: results from the PROactive study (PROactive 20). J Diabetes. 2010;2(3):212-20.
43. Charbonnel B, DeFronzo R, Davidson J, Schmitz O, Birkeland K, Pirags V, et al. Pioglitazone use in combination with insulin in the prospective pioglitazone clinical trial in macrovascular events study (PROactive19). J Clin Endocrinol Metab. 2010;95(5):2163-71.
44. Komajda M, McMurray JJ, Beck-Nielsen H, Gomis R, Hanefeld M, Pocock SJ, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31(7):824-31.
45. Scheen AJ, Tan MH, Betteridge DJ, Birkeland K, Schmitz O, Charbonnel B, et al. Long-term glycaemic control with metformin-sulphonylurea-pioglitazone triple therapy in PROactive (PROactive 17). Diabet Med. 2009;26(10):1033-9.
46. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125-35.
47. Raz I, Wilson PW, Strojek K, Kowalska I, Bozikov V, Gitt AK, et al. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care. 2009;32(3):381-6.
48. Dormandy JA, Betteridge DJ, Schernthaner G, Pirags V, Norgren L, Proactive I. Impact of peripheral arterial disease in patients with diabetes--results from PROactive (PROactive 11). Atherosclerosis. 2009;202(1):272-81.
49. Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A. Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail. 2008;14(6):445-52.
50. Komajda M, Curtis P, Hanefeld M, Beck-Nielsen H, Pocock SJ, Zambanini A, et al. Effect of the addition of rosiglitazone to metformin or sulfonylureas versus metformin/sulfonylurea combination therapy on ambulatory blood pressure in people with type 2 diabetes: a randomized controlled trial (the RECORD study). Cardiovascular Diabetology [electronic resource]. 2008;7:10.
51. Wilcox R, Kupfer S, Erdmann E, Proactive Si. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am Heart J. 2008;155(4):712-7.
52. Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, et al. Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. N Engl J Med. 2007;357(1):28-38.
53. Home PD, Jones NP, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med. 2007;24(6):626-34.
54. Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous
myocardial infarction: results from the PROactive (PROactive 05) Study. J Am CollCardiol. 2007;49(17):1772-80.
55. Wilcox R, Bousser mg, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial In macroVascular Events 04). Stroke. 2007;38(3):865-73.
56. Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Dargie H, et al. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabetologia. 2005;48(9):1726-35.
57. Milicevic Z, Raz I, Strojek K, Skrha J, Tan MH, Wyatt JW, et al. Hyperglycemia and its effect after acute myocardial infarction on cardiovascular outcomes in patients with Type 2 diabetes mellitus (HEART2D) Study design. J Diabetes Complications. 2005;19(2):80-7.
58. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A, Group PRS. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care. 2004;27(7):1647-53.
59. Petrie JR, Marso SP, Bain SC, Franek E, Jacob S, Masmiquel L, et al. LEADER-4: blood pressure control in patients with type 2 diabetes and high cardiovascular risk: baseline data from the LEADER randomized trial. J Hypertens. 2016. Epub 2016/02/09.
60. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME (R) trial. Eur Heart J. 2016. Epub 2016/01/29.
61. Holman RR, Bethel MA, George J, Sourij H, Doran Z, Keenan J, et al. Rationale and design of the EXenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. Am Heart J. 2016;174:103-10.
62. Shimada YJ, Cannon CP, Liu Y, Wilson C, Kupfer S, Menon V, et al. Ischemic cardiac outcomes and hospitalizations according to prior macrovascular disease status in patients with type 2 diabetes and recent acute coronary syndrome from the Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care trial. Am Heart J. 2016;175:18-27.
63. AstraZeneca. Does Saxagliptin Reduce the Risk of Cardiovascular Events When Used Alone or Added to Other Diabetes Medications. 2010 Mar 25 [updated 2014 Jul 9; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01107886 NLM Identifier: NCT01107886.
64. VA Office of Research and Development. Glycemic Control and Complications in Diabetes Mellitus Type 2 (VADT). 2002 Mar 21 [updated 2017 Feb 28; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT00032487 NLM Identifier: NCT00032487.
65. Takeda. Cardiovascular Outcomes Study of Alogliptin in Patients With Type 2 Diabetes and Acute Coronary Syndrome. 2009 Aug 28 [updated 2014 Apr 15; cited 2017 Apr 18]. In: ClinicalTrialsgov [Internet]. Bethesda (MD): U.S. National Library of Medicine Available from:
https://ClinicalTrials.gov/show/NCT00968708 NLM Identifier: NCT00968708.

Appendix 4: Research Question 1 - Study Characteristics of Included Studies

Study Design and Interventions

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Nauck et al.	2014	United States, Canada, France, Germany, India, Republic of Korea, Mexico, Poland, Puerto Rico, Romania, Russian Federation, Spain, Taiwan	Parallel	≥ 6 weeks	1,098	104 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DUL } 0.75 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DUL } 1.5 \end{gathered}$	
Ross et al.	2015	Europe, North America, Latin America	Parallel	≥ 12 weeks	983	16 weeks	$\begin{gathered} \text { MET } \\ \text { 1,976+ } \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,973 \\ + \text { EMP } 5 \\ \text { b.i.d. } \end{gathered}$	MET 1,984 + EMP 10 q.d.	MET $1,967+$ EMP 12.5 b.i.d.	$\begin{gathered} \text { MET } \\ 1,909 \\ + \text { EMP } \\ 25 \text { q.d. } \end{gathered}$
Moon et al.	2014	Korea	Parallel	> 3 months	75	48 weeks	$\begin{gathered} \text { MET } \\ 1,425.5+ \\ \text { GLM } 4.3 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,365.1+ \\ \text { IGA } 22.8 \\ \text { IU } \end{gathered}$	NA		
Gupta et al.	2015	India	Parallel	4 months	90	12 weeks	$\begin{gathered} \text { MET 1,000 } \\ + \text { GLM } 4 \end{gathered}$	$\begin{aligned} & \text { MET 1,000 } \\ & \text { + VID } 100 \end{aligned}$	NA		
Hissa et al.	2015	Brazil	Parallel	≥ 3 months	36	16 weeks	$\begin{aligned} & \text { MET 1,457 } \\ & + \text { GLL } 86.8 \end{aligned}$	$\begin{aligned} & \text { MET 1,584 } \\ & + \text { VIL } 100 \end{aligned}$	NA		
Inagak et al.	2015	Japan	Parallel	NR	148	52 weeks	MET + CAN 100	MET + CAN 200	NA		
Odawara et al.	2014	Japan	Parallel	≥ 10 weeks	139	12 weeks	$\begin{aligned} & \text { MET } 750.0 \\ & + \text { PLA } \end{aligned}$	$\begin{gathered} \text { MET } 753.6 \\ + \text { VIL } 100 \\ \hline \end{gathered}$	NA		
Chen et al.	2014	Taiwan	Parallel	8 weeks	55	16 weeks	$\begin{gathered} \text { MET 1,500 } \\ + \text { GLY } 15 \end{gathered}$	$\begin{aligned} & \text { MET 1,500 } \\ & + \text { ACA } 300 \end{aligned}$	NA		
Kawamori et al.	2014	Japan	Parallel	12 weeks	130	16 weeks	$\begin{aligned} & \text { MET } 1,500 \\ & + \text { PLA } \end{aligned}$	$\begin{gathered} \text { MET 1,500 } \\ + \text { REP } 1.5 \end{gathered}$	NA		
White et al.	2014	US, Germany, Hungary, Puerto Rice	Parallel	At least 8 weeks	160	12 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SAX } 5 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Kadowaki et al.	2013	Japan	Parallel	≥ 12 weeks	149	12 weeks	MET 500 to 750 + PLA	MET 500 to $750+$ SIT 50	NA		
Neutel et al.	2013	US, Israel, Mexico, Argentina	Parallel	4 to 8 weeks	93	4 weeks	MET 2,000	$\begin{gathered} \text { MET } 1,500 \\ + \text { SAX } 5 \end{gathered}$	NA		
Chawla et al.	2013	India	Parallel	1 month	52	16 weeks	$\begin{gathered} \text { MET } \\ 1,865.38+ \\ \text { SIT } 100 \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET } 1,830 \\ & + \text { PIO } 30 \end{aligned}$	NA		
Bergenstal et al.	2012	23 countries	Parallel	12 weeks	666	156 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { TAS } 10 \text { a.w. } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { TAS } 10 \\ \text { to } 20 \text { q.w. } \end{gathered}$	NA
Cho et al.	2010	Korea	Parallel	8 weeks	145	16 weeks	$\begin{gathered} \text { MET 1,500 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET 1,500 } \\ + \text { MIT } 30 \end{gathered}$	NA		
Wang et al.	2015	NR	Parallel	6 months	90	1 yr	$\begin{aligned} & \text { MET + } \\ & \text { SAX } 5 \end{aligned}$	$\begin{gathered} \text { MET + } \\ \text { ACA } 150 \end{gathered}$	NA		
Jin et al.	2015	Republic of Korea	Parallel	≥ 4 weeks	180	24 weeks	MET 1,500 to $2,000+$ SIT 100	MET 1,500 to 2,000 + ANA 200	NA		
Xiao et al.	2015	China	Parallel	≥ 4 weeks	120	24 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLI } 5 \text { to } 10 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PIO } 15 \text { to } \\ 45 \\ \hline \end{gathered}$	NA		
Rosenstock et al.	2015	Multi-centre	Parallel	8 weeks	534	24 weeks	$\begin{gathered} \text { MET 1,500 } \\ \text { or } 2,000+ \\ \text { SAX } 5 \\ \hline \end{gathered}$	MET 1,500 or 2,000 + DAP 10	NA		
Rosenstock et al.	2015	US	Parallel		299	12 weeks	$\begin{gathered} \text { MET + } \\ \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET + } \\ & \text { SOT } 75 \end{aligned}$	$\begin{gathered} \text { MET + SOT } \\ 200 \end{gathered}$	MET + SOT 400 q.d.	$\begin{aligned} & \text { MET + } \\ & \text { SOT } \\ & 200 \\ & \text { b.i.d. } \end{aligned}$
Kim et al.	2015	Korea	Parallel	≥ 8 weeks	204	16 weeks	$\begin{aligned} & \text { MET } 1,407 \\ & + \text { PLA } \end{aligned}$	$\begin{gathered} \text { MET } 1,486 \\ + \text { TEN } 20 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Kashiwagi et al.	2015	Japan	Parallel	6 weeks	169	24 weeks doubleblind, up to 52 weeks with openlabel extension	MET + PLA	$\begin{gathered} \mathrm{MET}+\mathrm{IPR} \\ 50 \end{gathered}$	NA		
Aaboe et al.	2015	Denmark	Parallel	3 months	25	12 weeks	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { SIT } 100 \end{gathered}$	NA		
SchummDraeger et al.	2015	Europe, South Africa	Parallel	≥ 10 weeks	400	16 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DAP } 5 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DAP } 10 \text { q.d. } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DAP } 5 \\ \text { b.i.d. } \end{gathered}$	NA
Han et al.	2015	China, Malaysia, Vietnam,	Parallel	8 weeks	678	18 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { CAN } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { CAN } 300 \end{gathered}$	NA	
Gurkan et al.	2014	NR	Parallel	2 months	34	26 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { EXE } 20 \\ \mathrm{mcg} \\ \hline \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { IGA } \end{gathered}$	NA		
Del Prato et al.	2014	North and South America, Europe, Asia, South Africa, Australia, New Zealand	Parallel	4 weeks	2,639	104 weeks	$\begin{gathered} \text { MET } \\ 1,823.4+ \\ \text { GLI } 5 \text { to } 20 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,825.2+ \\ \text { ALO } 12.5 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,837.2+ \\ \text { ALO } 25 \end{gathered}$	NA	
Nandy et al.	2014	US	Parallel	3 months	49	12 weeks	$\begin{aligned} & \text { MET + } \\ & \text { GLM } 4 \end{aligned}$	MET +	$\begin{gathered} \hline \mathrm{MET}+\mathrm{LIR} \\ 1.8 \\ \hline \end{gathered}$	NA	
Forst et al.	2014	Germany	Parallel	NR	40	12 weeks	MET + GLM 1 to 4	$\begin{gathered} \mathrm{MET}+\mathrm{LIN} \\ 5 \end{gathered}$	NA		
Dungan et al.	2014	US, Czech Republic, Hungary, Mexico, Slovakia, Puerto Rico, Poland, Spain, Romania, Germany	Parallel	3 months	599	26 weeks	$\begin{gathered} \text { MET } 2,068 \\ + \text { LIR } 0.6 \\ \text { to } 1.8 \end{gathered}$	$\begin{gathered} \text { MET 2,021 } \\ + \text { DUL } 1.5 \\ \text { q.w. } \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Ridderstrale et al.	2014	Argentina, Austria, Canada, Colombia, Czech Republic, Finland, Hong Kong, India, Italy, Malaysia, Mexico, the Netherlands, Norway, Philippines, Portugal, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, UK, US	Parallel	12 weeks	1,549	104 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLM } 1 \text { to } 4 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { EMP } 25 \end{gathered}$	NA		
Ohira et al.	2014	Japan	Parallel	NR	70	6 mo	MET 1,000	$\begin{gathered} \text { MET } 500+ \\ \text { SIT } 50 \\ \hline \end{gathered}$	NA		
Ahren et al.	2014	United States, Albania, Germany, Hong Kong, Mexico, Peru, Philippines, Russian Federation, South Africa, Spain, United Kingdom	Parallel	3 months	1,049	104 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLM } 2 \text { to } 4 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { ALB } 30 \\ \text { q.w. } \end{gathered}$	NA
Derosa et al.	2014	Italy	Parallel	≥ 1 month	167	6 months	MET + GLM 6	$\begin{gathered} \mathrm{MET}+\mathrm{VIL} \\ 100 \end{gathered}$	NA		
Diamant et al.	2014	Multinational (72 sites)	Parallel	≥ 8 weeks	467	156 weeks (3 years)	$\begin{gathered} \text { MET } 2,000 \\ + \text { EXE } 2 \\ \text { q.w. } \\ \hline \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { IGA } \end{gathered}$	NA		
Haring et al.	2014	Canada, China, France, Germany, India, Korea, Mexico, Slovakia, Slovenia, Taiwan, Turkey, and US	Parallel	≥ 12 weeks	1,307	76 weeks ($24+52$ weeks extension)	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { EMP } 10 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { EMP } 25 \end{gathered}$	NA	
Bolli et al.	2014	US, Brazil, Chile, Colombia, Estonia, Germany, Italy, Lithuania, Malaysia, Mexico, Philippines, Poland, Romania, Slovakia, Ukraine	Parallel	NR	482	≥ 76 weeks	$\begin{gathered} \text { MET 1,943 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,968 \\ + \text { LIX } 20 \\ \text { mcg } 1 \\ \text { STEP } \end{gathered}$	MET2036 + LIX 20 mcg 2 STEP	NA	
Berndt-Zipfel et al.	2013	Germany	Parallel	NR	44	24 weeks	MET + GLM 0.5 to 4	$\begin{gathered} \text { MET + VIL } \\ 100 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Genovese et al.	2013	Italy	Parallel	3 months	213	24 weeks	$\begin{aligned} & \text { MET2550 } \\ & + \text { PLA } \end{aligned}$	$\begin{aligned} & \text { MET2550 } \\ & + \text { PIO } 30 \\ & \text { to } 45 \end{aligned}$	NA		
Rosenstock et al.	2013	United States, Argentina, Austria, Brazil, Colombia, Denmark, Finland, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Puerto Rico, Russian Federation, Spain, Sweden	Parallel	NR	639	24 weeks, then 52week safety extension	$\begin{gathered} \text { MET 2,058 } \\ + \text { EXE } 20 \\ \mathrm{mcg} \end{gathered}$	$\begin{gathered} \text { MET 2,020 } \\ + \text { LIX } 20 \\ m c g \end{gathered}$	NA		
Kim et al.	2013	Korea	Parallel	≥ 2 months	34	4 weeks	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { GLM } 2 \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,000+ \\ \text { SIT } 100 \end{gathered}$	NA		
Cefalu et al.	2013	United States, Argentina, Bulgaria, Canada, Costa Rica, Denmark, Finland, Germany, India, Israel, Korea, Republic of, Mexico, Norway, Philippines, Poland, Puerto Rico, Romania, Russian Federation, Slovakia, Ukraine	Parallel	≥ 10 weeks	1,452	104 weeks total; primary outcome: 52 weeks	MET + GLM 5.6	$\begin{gathered} \text { MET + } \\ \text { CAN } 100 \end{gathered}$	$\begin{array}{\|c} \text { MET + CAN } \\ 300 \end{array}$	NA	
Derosa et al.	2013	Italy	Parallel	8 ± 2 months	171	12 months	$\begin{gathered} \text { MET 2,500 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 2,500 \\ + \text { EXE } 20 \\ \mathrm{mcg} \\ \hline \end{gathered}$	NA		
Henry et al.	2013	US	Parallel	≥ 3 months	155	Period 1 only: 12week "activecontrolled period"	$\begin{gathered} \text { MET } \\ 1,236.8+ \\ \text { EXE } 10 \text { to } \\ 20 \mathrm{mcg} \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,403.9+ \\ \text { EXE } 20 \\ \mathrm{mcg} \end{gathered}$	$\begin{gathered} \text { MET } \\ \text { 1,470.6 }+ \\ \text { EXE } 40 \\ \mathrm{mcg} \end{gathered}$		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Ahrén et al.	2013	Australia, Canada, Chile, Czech Republic, Germany, Croatia, Mexico, Morocco, the Philippines, Romania, Russian Federation, South Africa, Spain, Ukraine, US, and Venezuela	Parallel	NR	680	24 weeks	$\begin{gathered} \text { MET 2,001 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET 1,969 } \\ + \text { LIX } 20 \\ \text { AM } \end{gathered}$	$\begin{gathered} \text { MET 1,943 } \\ + \text { LIX20 } \\ \text { PM } \end{gathered}$	NA	
Kapitza et al.	2013	Germany	Parallel	≥ 2 weeks	148	28 days	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIR } 0.6 \text { to } \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIX } 10 \text { to } \\ 20 \mathrm{mcg} \\ \hline \end{gathered}$	NA		
Charbonnel et al.	2013	21 countries	Parallel	≥ 12 weeks	653	12 weeks in phase 1 and 14 weeks in phase 2, total 26 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIR } 1.2 \end{gathered}$	NA		
Forst et al.	2013	Germany	Parallel	≥ 3 months	44	24 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { GLM } 1 \text { to } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { VIL } 100 \end{gathered}$	NA		
Rhee et al.	2013	Korea, India	Parallel	4 weeks	425	24 weeks	$\begin{gathered} \quad \text { MET } \\ \geq 1,000+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { GEM } 50 \\ \text { q.d. } \end{gathered}$	$\begin{aligned} & \text { MET } \\ & \geq 1,000+ \\ & \text { GEM } 25 \\ & \text { b.i.d. } \end{aligned}$	NA	
Wilding et al.	2012	Hungary, Poland, Romania, UK, Italy, US	Parallel	≥ 6 weeks	343	12 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { IPR } 12.5 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { IPR } 50 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { IPR } 150 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,50 \\ 0+ \\ \text { IPR } \\ 300 \end{gathered}$
Derosa et al.	2012	Italy	Parallel	8 ± 2 months	167	12 months	$\begin{gathered} \text { MET 2,500 } \\ \text { + PLA } \end{gathered}$	$\begin{gathered} \text { MET 2,500 } \\ + \text { VIL } 100 \end{gathered}$	NA		
Hermans et al.	2012	Belgium, France, Germany, Italy, Spain, Turkey, UK	Parallel	4 weeks	286	24 weeks	$\begin{gathered} \text { MET 2,000 } \\ \text { or } 2,500 \\ \hline \end{gathered}$	$\begin{gathered} \text { MET } 1,500 \\ + \text { SAX } 5 \\ \hline \end{gathered}$	NA		
Derosa et al.	2012	Italy	Parallel	8 months	178	12 months	$\begin{gathered} \text { MET 2,500 } \\ \text { + PLA } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET 2,500 } \\ & + \text { SIT } 100 \\ & \hline \end{aligned}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Guerci et al.	2012	NR	Parallel	3 months	38	8 weeks	$\begin{aligned} & \text { MET } 2,113 \\ & + \text { SIT } 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MET } 2,115 \\ & + \text { VIL } 100 \\ & \hline \end{aligned}$	NA		
Monnier et al.	2012	France	Parallel	≥ 12 weeks	21	12 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { GLM } 1 \text { to } \\ 4 \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { ROS } 4 \\ \text { to } 8 \end{gathered}$	NA		
Rizzo et al.	2012	Italy	Parallel	8 weeks	90	12 weeks	$\begin{aligned} & \text { MET 2,000 } \\ & + \text { SIT } 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MET 2,000 } \\ & + \text { VIL } 100 \\ & \hline \end{aligned}$	NA		
Seino et al.	2012	Japan	Parallel	12 weeks	288	12 weeks doubleblind, with 40 weeks open-label extension for AEs	MET 500 or 750 + PLA	MET 500 or $750+$ ALO 12.5	$\begin{gathered} \text { MET } 500 \text { or } \\ 750+\text { ALO } \\ 25 \end{gathered}$	NA	
Yang et al.	2012	NR	Parallel	10 weeks	395	24 weeks	$\begin{gathered} \text { MET } \\ 1,000 \text { or } \\ 1,700+ \\ \text { PLA } \end{gathered}$	MET 1,000 or 1,700 + SIT 100	NA		
Gallwitz et al.	2012	Bulgaria, Denmark, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Netherlands, Norway, Poland, South Africa, Sweden, UK, US	Parallel	NR	1,552	104 weeks	MET + GLM	MET + LIN 5	NA		
Srivastava et al.	2012	India	Parallel	≥ 3 months	50	18 weeks	$\begin{gathered} \text { MET + } \\ \text { GLM } 1 \text { to } 4 \end{gathered}$	$\begin{gathered} \text { MET + SIT } \\ 50 \text { to } 200 \end{gathered}$	NA		
Koren et al.	2012	Isreal	Crossover	NR	40	28	$\begin{aligned} & \text { MET + } \\ & \text { GLY } 5 \end{aligned}$	$\begin{gathered} \text { MET + SIT } \\ 100 \end{gathered}$	NA		
Pan et al.	2012	China	Parallel	≥ 4 weeks	438	24 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { VIL } 50 \\ \hline \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { VIL } 100 \\ \hline \end{gathered}$	NA	
Gallwitz et al.	2012	Austria, Czech Republic, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Mexico, Poland, Spain, Switzerland, and the UK	Parallel	NR	1,029	Time to treatment failure or 3 years	MET 1,989 $+G L M \geq 1$	MET 1,956 + EXE 10 or 20 mcg	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Aschner et al.	2012	Austria, Brazil, Colombia, Egypt, Greece, Hong Kong, India, Israel, Korea, Lebanon, Mexico, Netherlands, Portugal, Spain, Turkey, UK, US	Parallel	NR	515	6 months	$\begin{aligned} & \text { MET 1,835 } \\ & + \text { SIT } 100 \end{aligned}$	$\begin{aligned} & \text { MET } 1,852 \\ & + \text { IGA } \end{aligned}$	NA		
Rosenstock et al.	2012	Argentina, Bulgaria, Canada, Czech Republic, India, Malaysia, Mexico, Poland, Romania, Russia, UK, US	Parallel	3 months	451	12 weeks	$\begin{gathered} \text { MET 1,919 } \\ + \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET } 1,885 \\ & + \text { SIT } 100 \end{aligned}$	$\begin{aligned} & \text { MET 1,870 } \\ & \text { + CAN } 50 \end{aligned}$	$\begin{gathered} \text { MET } \\ \text { 1,903 + } \\ \text { CAN } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,904 \\ + \text { CAN } \\ 200 \end{gathered}$
DeFronzo et al.	2012	United States, Australia, Brazil, Bulgaria, Chile, Croatia, Estonia, Guatemala, India, Israel, Latvia, Mexico, New Zealand, Peru, Romania, Russian Federation, Serbia, South Africa, Ukraine	Parallel	≥ 2 months	1,554	26 weeks	$\begin{gathered} \text { MET } 1,937 \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,902 \\ + \text { ALO } \\ 12.5 \end{gathered}$	$\begin{aligned} & \text { MET 1,851 } \\ & + \text { ALO } 25 \end{aligned}$	$\begin{gathered} \text { MET } \\ 1,893+ \\ \text { PIO } 15 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,854 \\ + \text { PIO } \\ 30 \end{gathered}$
Bolinder et al.	2012	Bulgaria, Czech Republic, Hungary, Poland, Sweden	Parallel	≥ 12 weeks	182	24 weeks (primary outcome), 102 weeks (extension phase)	$\begin{gathered} \text { MET 1,901 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET 1,989 } \\ + \text { DAP10 } \end{gathered}$	NA		
Fonseca et al.	2012	US, Latin America	Parallel	8 weeks	282	18 weeks	MET 2,000	$\begin{aligned} & \text { MET } 1,500 \\ & + \text { SAX } 5 \end{aligned}$	NA		
Wang et al.	2011	Taiwan	Parallel	8 weeks	55	16 weeks	$\begin{gathered} \text { MET 1,500 } \\ + \text { GLY } \end{gathered}$	$\begin{gathered} \text { MET } 1,500 \\ + \text { ACA } \end{gathered}$	NA		
Yang et al.	2011	China, India and South Korea	Parallel	8 weeks	570	24 weeks	$\begin{gathered} \text { MET 1,606 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,620 \\ + \text { SAX } 5 \end{gathered}$	NA		
Stephens et al.	2011	UK	Parallel	NR	25	8 weeks	MET 1,500 to $3,000+$ GLY 2.5	MET 1,500 to $3,000+$ REP 3	NA		
Petrica et al.	2011	Romania	Parallel	≥ 6 months	78	12 months	$\begin{gathered} \text { MET } 1,700 \\ \text { + GLM4 } \end{gathered}$	$\begin{aligned} & \text { MET } 1,700 \\ & + \text { PIO } 30 \end{aligned}$	NA		
Lin et al.	2011	Taiwan	Parallel	At least 8 weeks	51	16 weeks	$\begin{aligned} & \text { MET 1,500 } \\ & + \text { GLY } 15 \end{aligned}$	$\begin{aligned} & \text { MET 1,500 } \\ & + \text { ACA } 300 \\ & \hline \end{aligned}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Terra et al.	2011	Colombia, Germany, Italy, Spain, Sweden, US	Parallel	2 months	302	12 weeks	$\begin{gathered} \text { MET + } \\ \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET + } \\ & \text { GOS } 2 \end{aligned}$	$\begin{aligned} & \text { MET + } \\ & \text { GOS } 5 \end{aligned}$	$\begin{gathered} \text { MET + } \\ \text { GOS } 10 \end{gathered}$	$\begin{gathered} \text { MET + } \\ \text { GOS } \end{gathered}$ 20
Derosa et al.	2011	Italy	Parallel	NR	111	12 months	MET 1,000 to $2,000+$ GLM 3 to 6	MET 1,000 to 2,000 + EXE 10 to 20 mcg	NA		
Derosa et al.	2011	Italy	Parallel	NR	201	12 months	$\begin{aligned} & \text { MET + } \\ & \text { GLY } 15 \end{aligned}$	$\begin{aligned} & \text { MET + } \\ & \text { PIO } 45 \end{aligned}$	NA		
Pfutzner et al.	2011	Germany	Parallel	NR	305	24 weeks	$\begin{aligned} & \text { MET } 1,700 \\ & + \text { GLM } 2 \end{aligned}$	$\begin{gathered} \text { MET 1,700 } \\ + \text { PIO } 30 \end{gathered}$	NA		
Zinman et al.	2011	Canada, India, South Africa, US	Parallel	1 week (metformin maintenance period)	245	16 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { IGA } \end{gathered}$	$\begin{gathered} \text { MET } 2,000 \\ + \text { IND } 3.1 \\ \text { q.d. } \end{gathered}$	$\begin{aligned} & \text { MET 2,000 } \\ & \text { + IND } 4.5 \\ & \text { q.d. } \end{aligned}$	$\begin{gathered} \text { MET } \\ 2,000+ \\ \text { IND } 3.4 \\ \text { Three } \\ \text { times a } \\ \text { week } \end{gathered}$	NA
Heise et al.	2011	France, Germany, Norway, Romania, Spain	Parallel	1 week	178	16 weeks	$\begin{gathered} \text { MET } \\ 1,500 \text { or } \\ 2,000+ \\ \text { IGA } \end{gathered}$	MET 1,500 or 2,000 + DSP 70/30	MET 1,500 or 2,000 + DSP 55/45	NA	
Gallwitz et al.	2011	Germany	Parallel	NR	363	26 weeks	MET + EXE 20 mcg	MET + IAM 28.4	NA		
Arechavalet a et al.	2011	Austria, Brazil, Chile, Colombia, Costa Rica, Denmark, Ecuador, France, Germany, Guatemala, India, Italy, Korea, Republic of, Malaysia, Mexico, New Zealand, Panama, Peru, Poland, Spain, Switzerland, United Kingdom	Parallel	12 weeks	1035	30 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLM } 1 \text { to } 6 \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	NA		
Yang et al.	2011	China, South Korea and India	Parallel	≥ 6 week metformin run-in and maintenance period	929	16 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { GLM } 4 \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { LIR } 0.6 \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { LIR } 1.2 \end{gathered}$	$\begin{gathered} \text { MET } \\ 2,000+ \\ \text { LIR } 1.8 \end{gathered}$	NA

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Taskinen et al.	2011	Czech Republic, Finland, Greece, India, Israel, Mexico, New Zealand, Russia, Sweden, US	Parallel	12 weeks	701	24 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIN } 5 \end{gathered}$	NA		
Forst et al.	2010	UK, Germany, France, Slovakia, Ukraine, Sweden	Parallel	NR	333	12 weeks	MET + GLM	$\begin{gathered} \text { MET + } \\ \text { PLA } \end{gathered}$	MET + LIN1	MET + LIN 5	MET + $\text { LIN } 10$
Goke et al.	2010	International	Parallel	8 weeks	858	52 weeks	MET 1,500 to $3,000+$ GLI 5 to 20	MET 1,500 to $3,000+$ SAX 5	NA		
Scheen et al.	2010	Argentina, Belgium, Denmark, France, Italy, Mexico, Norway, South Africa, Sweden	Parallel	8 weeks	801	18 weeks	$\begin{gathered} \text { MET } \\ 1,831.5+ \\ \text { SAX } 5 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,826.2+ \\ \text { SIT } 100 \end{gathered}$	NA		
Stenlof et al.	2010	United States, Israel, Sweden, Mexico, Puerto Rico, Argentina, Italy, and the Philippines	Parallel	≥ 8 weeks before enrolment and a 4-week MET XR lead-in period before randomization	93	4 weeks	$\begin{gathered} \text { MET 1,500 } \\ \text { to 2,000 + } \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,500 \\ \text { to } 2,000+ \\ \text { SAX } 5 \end{gathered}$	NA		
Ratner et al.	2010	Brazil, Canada, Poland, Romania, Russian, Ukraine, and US	Parallel	At least 3 months prior to enrolment	542	13 weeks	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { LIX } 5 \mathrm{mcg} \\ \text { q.d. } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { LIX } 5 \mathrm{mcg} \\ \text { b.i.d. } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { LIX } 10 \\ \text { mcg q.d. } \end{gathered}$	$\begin{array}{c\|} \hline \text { MET } \\ \geq 1,00 \\ 0+\text { LIX } \\ 10 \\ \mathrm{mcg} \\ \text { b.i.d. } \end{array}$
Bergenstal et al.	2010	United States, India, Mexico	Parallel	2 months	514	26 weeks	$\begin{aligned} & \text { MET } 1,583 \\ & + \text { SIT } 100 \end{aligned}$	$\begin{gathered} \text { MET } 1,504 \\ + \text { EXE } 2 \\ \text { q.w. } \end{gathered}$	$\begin{aligned} & \text { MET 1,480 } \\ & + \text { PIO } 45 \end{aligned}$	NA	
Bailey et al.	2010	United States, Canada, Argentina, Mexico, Brazil	Parallel	8 weeks	546	102 weeks (24 weeks with 78 weeks extension)	$\begin{gathered} \text { MET 1,861 } \\ + \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET 1,792 } \\ & + \text { DAP } 2.5 \end{aligned}$	$\begin{gathered} \text { MET } 1,854 \\ + \text { DAP } 5 \end{gathered}$	$\begin{gathered} \text { MET } \\ \text { 1,800 + } \\ \text { DAP } 10 \end{gathered}$	NA
Filozof et al.	2010	NR	Parallel	4 weeks	1,007	52 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \mathrm{GLL} \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { VIL } 100 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
DeFronzo et al.	2010	US	Parallel	6 weeks	141	20 weeks	MET + EXE 20 mcg	$\begin{gathered} \text { MET + } \\ \text { ROS } 4 \text { to } 8 \end{gathered}$	NA		
Pratley et al.	2010	Croatia, Germany, Ireland, Italy, Netherlands, Romania, Serbia, Slovakia, Slovenia, Spain, UK, US, Canada	Parallel	≥ 3 months	665	52 weeks	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIR } 1.2 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { LIR } 1.8 \end{gathered}$	NA	
Apovian et al.	2010	US	Parallel	6 weeks	196	24 weeks	MET + PLA	MET + EXE 10 to 20 mcg	$\begin{aligned} & \text { MET + SUL } \\ & \quad+\text { PLA } \end{aligned}$	$\begin{gathered} \text { MET + } \\ \text { SUL + } \\ \text { EXE10 to } \\ 20 \mathrm{mcg} \\ \hline \end{gathered}$	NA
Kadoglou et al.	2010	NR	Parallel	4 months	97	14 weeks	MET2550	$\begin{gathered} \text { MET } 850+ \\ \text { ROS } 8 \end{gathered}$	NA		
Petrica et al.	2009	NR	Parallel	6 months	44	12 months	$\begin{gathered} \text { MET } 1,700 \\ \text { + GLM4 } \end{gathered}$	$\begin{gathered} \text { MET 1,700 } \\ \text { + ROS4 } \\ \hline \end{gathered}$	NA		
Scheen et al.	2009	Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Slovakia, Sweden, Switzerland, United Kingdom	Parallel	NR	NR	Up to 48 months	$\begin{gathered} \text { MET } 1,721 \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,687 \\ + \text { PIO } 15 \\ \text { to } 45 \end{gathered}$	NA		
Blonde et al.	2009	US	Parallel	≥ 4 weeks	2664	12 weeks	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { VIL } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,000+ \\ \text { TZD } \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Defronzo et al.	2009	US, Brazil	Parallel	≥ 8 weeks	745	24 weeks; rescued patients (hypoglyce mia) and completers were eligible to continue 42-month long-term phase	$\begin{gathered} \text { MET 1,500 } \\ \text { to 2,500 + } \\ \text { PBO } \end{gathered}$	MET 1,500 to 2,500 + SAX 2.5	MET 1,500 to $2,500+$ SAX 5	$\begin{gathered} \text { MET } \\ 1,500 \text { to } \\ 2,500+ \\ \text { SAX } 10 \end{gathered}$	NA
Home et al.	2007	23 countries in Europe, Australia and New Zealand	Parallel	≥ 8 weeks	524	18 months	$\begin{gathered} \text { MET } \\ \leq 2,550+ \\ \text { SUL } \end{gathered}$	$\begin{gathered} \text { MET } \\ \leq 2,550+ \\ \text { ROS } 4 \text { to } 8 \end{gathered}$	NA		
Papathanas siou et al.	2009	Greece	Parallel	NR	28	6 months	MET + GLM 4	$\begin{aligned} & \text { MET + } \\ & \text { PIO } 30 \\ & \hline \end{aligned}$	NA		
Goodman et al.	2009	Multinational	Parallel	≥ 3 months	370	24 weeks (6 months)	$\begin{gathered} \text { MET } \geq \\ 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \mathrm{MET} \geq 1,50 \\ 0+\mathrm{VIL} \text { am } \\ 100 \end{gathered}$	$\begin{gathered} \mathrm{MET} \geq 1,50 \\ 0+\text { VIL pm } \\ 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500 \\ +\mathrm{VIL} \\ \text { total } 100 \end{gathered}$	NA
Bunck et al.	2009	Sweden, Finland, and the Netherlands	Parallel	≥ 2 months	69	156 weeks	MET 2,058 + EXE 10 to 60 mcg	$\begin{aligned} & \text { MET } 1,798 \\ & + \text { IGA } 33.6 \end{aligned}$	NA		
Kaku et al.	2009	NR	Parallel	NR (12 weeks observation period before randomization)	169	28 weeks	MET 500 or 750 + PLA	$\begin{gathered} \text { MET } 500 \\ \text { or } 750+ \\ \text { PIO } \end{gathered}$	NA		
Nauck et al.	2008	Multinational (" 115 sites in 15 countries")	Parallel	≥ 3 months	524	26 weeks	$\begin{gathered} \text { MET 1,847 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,847 \\ + \text { ALO } \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET 1,847 } \\ & \text { + ALO } 25 \end{aligned}$	NA	
Ferrannini et al.	2009	Canada, US, Europe, and multinational	Parallel	≥ 4 weeks	2,789	2 years	$\begin{aligned} & \text { MET 1,893 } \\ & + \text { GLM } 4.5 \end{aligned}$	$\begin{gathered} \text { MET } \\ 11,904+ \\ \text { VIL } 100 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Gao et al.	2009	China, India, Korea, Taiwan	Parallel	3 months	472	16 weeks	MET 1,000 to 3,000 + PLA (Note: MET + SU + PLA also mixed in. See comments)	MET 1,000 to $3,000+$ EXE 10 to 20 mcg	NA		
Nauck et al.	2009	Argentina, Australia, Belgium, Bulgaria, Croatia, Denmark, Germany, Hungary, India, Ireland, Italy, Netherlands, New Zealand, Norway, Romania, Russian Federation, Slovakia, South Africa, Spain, Sweden, United Kingdom	Parallel		385	26 weeks	$\begin{gathered} \text { MET } 1,500 \\ \text { to } 2,000 \\ + \text { PLA } \end{gathered}$	MET 1,500 to $2,000+$ GLM4	$\begin{gathered} \text { MET 1,500 } \\ \text { to } 2,000+ \\ \text { LIR } 0.6 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,500 \text { to } \\ 2,000+ \\ \text { LIR } 1.2 \end{gathered}$	$\begin{gathered} \text { MET } \\ 1,500 \\ \text { to } \\ 2,000 \\ +\mathrm{LIR} \\ 1.8 \end{gathered}$
Scott et al.	2008	Multinational	Parallel	10 weeks	273	18 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \\ \hline \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { ROS } 8 \\ \hline \end{gathered}$	NA	
Komajda et al.	2008	23 countries in Europe and Australasia	Parallel	NR	926	12 months	$\begin{gathered} \text { MET } \\ \leq 2,550+ \\ \text { SUL } \end{gathered}$	$\begin{gathered} \text { MET } \\ \leq 2,550+ \\ \text { ROS } 4 \text { to } 8 \end{gathered}$	NA		
Khanolkar et al.	2008	United Kingdom	Parallel	≥ 4 weeks	50	24 weeks	$\begin{aligned} & \text { MET 2,000 } \\ & + \text { GLC } 80 \end{aligned}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { ROS } 4 \end{gathered}$	NA		
Garcia-Soria et al.	2008	US, Mexico, Australia	Parallel	4 weeks	174	4 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { DUT } 100 \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { DUT } 200 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DUT } 400 \end{gathered}$	NA
Raz et al.	2008	Austria, Israel, Mexico, Peru and United States	Parallel	NR or 6-week run-in	190	30 weeks	$\begin{gathered} \text { MET } 1,500 \\ \text { to } 2,550+ \\ \text { PLA } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET } 1,500 \\ & \text { to } 2,550+ \\ & \text { SIT } 100 \end{aligned}$	NA		
Hamann et al.	2008	Multinational (Europe and Mexico)	Parallel	8 weeks	596	52 weeks	$\begin{aligned} & \text { MET 2,000 } \\ & + \text { SUL } \end{aligned}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { ROS } 4 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Bolli et al.	2008	Germany, UK, US, Spain, Italy, Switzerland, Austria, South Africa and Australia	Parallel	NR	576	52 weeks (24 weeks + 28 weeks extension)	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { VIL } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PIO } 30 \end{gathered}$	NA		
Bosi et al.	2007	US, France, Italy, Sweden	Parallel	4 weeks	544	24 weeks	$\begin{gathered} \text { MET 2,102 } \\ + \text { PLA } \\ \hline \end{gathered}$	$\begin{gathered} \text { MET 2,126 } \\ + \text { VIL } 50 \end{gathered}$	$\begin{aligned} & \text { MET 2,126 } \\ & + \text { VIL } 100 \end{aligned}$	NA	
Nauck et al.	2007	NR	Parallel	NR or 8 weeks	1172	52 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLI } 10.6 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	NA		
Brazg et al.	2007	NR	Crossover	≥ 6 weeks	28	4 weeks $\times 2$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	NA		
Derosa et al.	2007	Italy	Parallel	NR	103	12 months	$\begin{gathered} \text { MET 2,250 } \\ + \text { ROS } 4 \end{gathered}$	$\begin{gathered} \text { MET 2,250 } \\ + \text { PIO } 15 \end{gathered}$	NA		
Charbonnel et al.	2006	France, Israel, US	Parallel	Up to 19 weeks	464	24 weeks	$\begin{gathered} \text { MET } \\ >1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ > \\ 1,500+ \\ \text { SIT } 100 \\ \hline \end{gathered}$	NA		
Nauck et al.	2006	Europe and Austrlia	Parallel	2 weeks	144	5 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 2,000 \\ + \text { GLM } \\ 3.75 \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET 2,000 } \\ & \text { + LIR } 1.96 \end{aligned}$	NA	
Weissman et al.	2005	US	Parallel	4 to 7 weeks	766	24 weeks	MET 2,000	$\begin{gathered} \text { MET 1,000 } \\ + \text { ROS } 8 \end{gathered}$			
Bakris et al.	2006	North America, South America and Europe	Parallel	NR	389	32 weeks	$\begin{gathered} \text { MET 1,986 } \\ + \text { GLY } \\ 13.7 \end{gathered}$	$\begin{aligned} & \text { MET 1,958 } \\ & + \text { ROS } 7.2 \end{aligned}$	NA		
Ristic et al.	2006	Canada, France, Italy, Spain, Austria	Parallel	≥ 2 months	262	1 year	$\begin{gathered} \text { MET } 1,812 \\ + \text { GLC } 80 \\ \text { to } 240 \end{gathered}$	MET 1,921 + NAT 180 to 540	NA		
Umpierrez et al.	2006	US	Parallel	2 months	210	26 weeks	MET 1,470 to 1,490 + GLM 2 to 8	$\begin{gathered} \text { MET 1,540 } \\ \text { to } 1,570+ \\ \text { PIO } 30 \text { to } \\ 45 \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Garber et al.	2006	US	Parallel	≥ 8 weeks	318	24 weeks	MET 1,509 + GLY 7.6 (combinati on tablet)	$\begin{aligned} & \text { MET 1,819 } \\ & + \text { ROS } 7.1 \end{aligned}$	NA		
Kvapil et al.	2006	Croatia, Czech Republic, Denmark, France, Greece, Hungary, Norway, Poland, Portugal, Russia, Spain		≥ 1 month			$\begin{gathered} \text { MET 1,660 } \\ \text { + GLY } \\ 1.75 \text { to } \\ 10.75 \end{gathered}$	$\begin{gathered} \text { MET } 1,660 \\ + \text { IAS } \end{gathered}$	NA		
Poon et al.	2005	US	Parallel	≥ 3 months	156	28 days	$\begin{gathered} \text { MET + } \\ \text { PBO } \end{gathered}$	MET + EXE 5 mcg	$\begin{gathered} \text { MET + EXE } \\ 10 \mathrm{mcg} \end{gathered}$	MET + EXE 15 mcg	$\begin{gathered} \hline \text { MET + } \\ \text { EXE } \\ 20 \\ \mathrm{mcg} \end{gathered}$
Feinglos et al.	2005	United States	Parallel	≥ 3 months	122	16 weeks	$\begin{gathered} \text { MET 1,509 } \\ + \text { GLI } 2.5 \end{gathered}$	$\begin{gathered} \text { MET } 1,513 \\ + \text { PLA } \end{gathered}$	NA		
DeFronzo et al.	2005	United States	Parallel	3 months	336	30 weeks	MET + PLA	MET + EXE 10 mcg	$\begin{gathered} \text { MET + EXE } \\ 20 \mathrm{mcg} \end{gathered}$	NA	
Matthews et al.	2005	Multinational	Parallel	NR	630	52 weeks (ID \#6199) and 2 years (ID \#6104)	$\mathrm{MET}+$ GLC 212	$\begin{aligned} & \text { MET + } \\ & \text { PIO } 39 \end{aligned}$	NA		
Ahrén et al.	2004	Sweden, Spain, Germany and Switzerland	Parallel	≥ 3 months	107	52 weeks	$\begin{gathered} \text { MET 1,500 } \\ \text { to 3,000 + } \\ \text { PLA } \\ \hline \end{gathered}$	$\begin{gathered} \text { MET } 1,500 \\ \text { to } 3,000+ \\ \text { VIL } 50 \\ \hline \end{gathered}$	NA		
Schernthane ret al.	2004	10 European countries	Parallel	≥ 3 months	845	27 weeks	MET + GLM 2.9	$\begin{gathered} \text { MET + } \\ \text { GLL } 76.2 \end{gathered}$	NA		
Raskin et al.	2003	US	Parallel	NR	192	16 weeks	$\begin{gathered} \text { MET 2,000 } \\ + \text { REP } 3 \\ \text { to } 12 \end{gathered}$	MET 2,000 + NAT 180 to 360	NA		
Phillips et al.	2003	Australia and New Zealand	Parallel	4-weeks	83	24 weeks	$\begin{gathered} \text { MET 1,700 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,700 \\ + \text { ACA } 100 \\ \text { or } 200 \\ \hline \end{gathered}$	NA		
Marre et al.	2002	Multinational	Parallel	2 weeks	411	16 weeks	MET 1,650	$\begin{gathered} \text { MET } 1,250 \\ + \text { GLY } \\ 6.25 \end{gathered}$	$\begin{aligned} & \text { MET } 1,150 \\ & + \text { GLY } 11.5 \end{aligned}$		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Marre et al.	2002	Multinational	Parallel	≥ 4 weeks	467	24 weeks	$\begin{gathered} \text { MET 2,000 } \\ \text { + PLA } \end{gathered}$	$\begin{aligned} & \text { MET 2,000 } \\ & \text { + NAT } 180 \end{aligned}$	$\begin{aligned} & \text { MET 2,000 } \\ & + \text { NAT } 360 \\ & \hline \end{aligned}$	NA	
Gomez- Perez et al.	2002	Mexico	Parallel	NR	116	6 months	$\begin{gathered} \text { MET 2,500 } \\ \text { + PLA } \end{gathered}$	$\begin{gathered} \text { MET 2,500 } \\ + \text { ROS } 4 \end{gathered}$	$\begin{gathered} \text { MET 2,500 } \\ + \text { ROS } 8 \end{gathered}$	NA	
Van Gaal et al.	2001	Belgium, Israel, Astria, Czech	Parallel	≥ 3 months	153	32 weeks	$\begin{gathered} \text { MET 1,500 } \\ \text { or 1,700 or } \\ 2,550+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,500 \\ \text { or } 1,700 \text { or } \\ 2,550+ \\ \text { MIG } 75 \\ \text { to } 300 \end{gathered}$	NA		
Charpentier et al.	2001	France	Parallel	≥ 4 weeks	379	5 months	$\begin{gathered} \text { MET 2,550 } \\ + \text { GLM } 1 \text { to } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { MET 2,550 } \\ + \text { PLA } \end{gathered}$	NA		
Halimi et al.	2000	France	Parallel	$850 \mathrm{mg} /$ day for at least 2 months	152	6 months	MET 1,700 or 2,550 + PLA	$\begin{gathered} \text { MET } 1,700 \\ \text { or } 2,550+ \\ \text { ACA 150 } \\ \text { or } 300 \end{gathered}$	NA		
Einhorn et al.	2000	US	Parallel	≥ 30 days	328	16 weeks	$\begin{gathered} \text { MET + } \\ \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET + } \\ & \text { PIO } 30 \end{aligned}$	NA		
Fonseca et al.	2000	US	Parallel	MET maintenance period phase: for at least 4 weeks ($2,500 \mathrm{mg} / \mathrm{d}$)	348	26 weeks	$\begin{gathered} \text { MET 2,500 } \\ + \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET 2,500 } \\ + \text { ROS } 4 \end{gathered}$	$\begin{aligned} & \text { MET 2,500 } \\ & + \text { ROS } 8 \end{aligned}$	NA	
Moses	1999	Australia	Parallel	4 to 5 weeks	83	4 to 5 months	$\begin{gathered} \text { MET 1,000 } \\ \text { to 3,000 + } \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } 1,000 \\ \text { to } 3,000+ \\ \text { REP } 1.5 \\ \text { to } 12 \end{gathered}$	$\begin{aligned} & \text { PLA + REP } \\ & 1.5 \text { to } 12 \end{aligned}$	NA	
Rosenstock et al.	1998	US	Parallel	56 days	84	24 weeks	$\begin{gathered} \text { MET 2,000 } \\ \text { to 2,500 + } \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ \text { to } 2,500+ \\ \text { ACA 150 } \\ \text { to } 300 \end{gathered}$	NA		
Wolever et al.	1997	Canada	Parallel	NR	83	12 months	MET + PLA	MET + ACA 150 to 600	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Strozik et al.	2015	Poland	Parallel	≥ 3 months	61	12 weeks	MET 1,500	MET 3,000	$\begin{aligned} & \text { MET 1,500 } \\ & + \text { VIL } 100 \end{aligned}$	$\begin{gathered} \text { MET } \\ 3,000+ \\ \text { VIL } 100 \end{gathered}$	NA
Qiu et al.	2014	Canada, Czech Republic, Mexico, Romania, Russia, Slovakia, US	Parallel	≥ 8 weeks	279	18 weeks	$\begin{gathered} \text { MET 2,131 } \\ + \text { PLA } \end{gathered}$	$\begin{aligned} & \text { MET 2,137 } \\ & + \text { CAN } 100 \end{aligned}$	$\begin{aligned} & \text { MET 2,128 } \\ & + \text { CAN } 300 \end{aligned}$	NA	
Gaal et al.	2014	United States, Australia, Brazil, Canada, Chile, Germany, Guatemala, Mexico, Peru, Poland, Romania, Russian Federation, Ukraine	Parallel	≥ 3 months	319	24 weeks	$\begin{aligned} & \text { MET 1,937 } \\ & + \text { SIT } 100 \end{aligned}$	$\begin{gathered} \text { MET } 1,985 \\ + \text { LIX } \\ 20 \mathrm{mcg} \end{gathered}$	NA		
Bhandare et al.	2013	India	Parallel	≥ 2 months	73	12 weeks	MET 2,000	$\begin{aligned} & \text { MET 1,000 } \\ & + \text { VIL } 100 \\ & \hline \end{aligned}$	NA		
Raskin	2007	US	Parallel	≥ 3 months	157	28 weeks	MET 1,500 to $2,550+$ IAS 80	$\begin{gathered} \text { MET } 1,500 \\ \text { to } 2,550+ \\ \text { IGA } 49 \end{gathered}$	NA		
Leiter	2005	Canada	Parallel	≥ 3 months	236	32 weeks	$\begin{aligned} & \text { MET } 1,500 \\ & \text { to } 2,000 \end{aligned}$	$\begin{gathered} \text { MET } 1,500 \\ + \text { ROS } 4 \\ \text { to } 8 \\ \hline \end{gathered}$	NA		
Kilo et al.	2003	US	Parallel	4 weeks	140	12 weeks	$\begin{aligned} & \text { MET 2,200 } \\ & + \text { NIN } \end{aligned}$	$\begin{gathered} \text { MET 2,200 } \\ + \text { IAM } \end{gathered}$	$\begin{aligned} & \text { MET 2,200 } \\ & + \text { NIR } \end{aligned}$	NA	
Ohira et al.	2014	Japan	Parallel	NR	60	6 months	$\begin{gathered} \text { MET } 500+ \\ \text { GLM } 1 \end{gathered}$	$\begin{gathered} \text { MET } 500+ \\ \text { PIO } 15 \end{gathered}$	NA		
Yang et al.	2015	China, India, South Korea	Parallel	≥ 8 weeks	445	24 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DAP } 5 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { DAP } 10 \end{gathered}$	NA	
Merck Sharp \& Dohme Corp.	2015	Argentina, Canada, Croatia, Estonia, Georgia, Hungary, Israel, Malaysia, Philippines, Poland, Romania, South Africa, US	Parallel	12 weeks	642	24 weeks	$\begin{aligned} & \quad \text { MET } \\ & \geq 1,500+ \\ & \text { SIT } 100 \end{aligned}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { OMA } 25 \\ \text { q.w. } \end{gathered}$	NA		

Author	Year	Country	Design	Duration of Stable Background Therapy	Number Randomized	Treatment Duration	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Daiichi Sankyo Inc.	2009	Colombia, Mexico, US	Parallel	NR	169	16 weeks	$\begin{gathered} \text { MET + SIT } \\ 100 \end{gathered}$	$\begin{aligned} & \text { MET + } \\ & \text { ROS } 4 \end{aligned}$	NA		
Merck Sharp \& Dohme Corp.	2012	Croatia, Germany, Hungary, South Korea, Lebanon, Lithuania, Malaysia, Poland, Romania, US	Parallel	12 weeks	751	54 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { GLM } 1 \text { to } 6 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { OMA } 25 \\ \text { q.w. } \end{gathered}$	NA		
NCT record	2010 (last updated)	"Not provided", France is listed as a "Removed Location Countries"	Parallel	NR	84	36 months	$\begin{gathered} \text { MET 2,000 } \\ + \text { GLC } 80 \\ \text { to } 320 \end{gathered}$	$\begin{gathered} \text { MET 2,000 } \\ + \text { ROS } 4 \text { to } \\ 8 \end{gathered}$	NA		
NCT record	2015 last update	Republic of Korea	Parallel	NR	228	16 weeks	$\begin{gathered} \mathrm{MET}+\mathrm{VIL} \\ 100 \end{gathered}$	$\begin{aligned} & \text { MET + } \\ & \text { PIO } 30 \end{aligned}$	NA		
NCT record	2015 (last update)	EUROPE: Czech Republic, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, United Kingdom	Parallel	≥ 90 days	404	26 weeks	MET 1,000 to $3,000+$ LIR 1.8	MET 1,000 to $3,000+$ 20 mcg	NA		
NCT record	2016 (last update)	China, Beijing	Parallel	60 days	368	26 weeks	$\begin{gathered} \text { MET } \\ > \\ \text { SIT } 1000+ \end{gathered}$	$\begin{gathered} \text { MET } \\ > \\ > \\ \text { LIR } 1.000+8 \end{gathered}$	NA		
LavalleGonzalez et al.	2013	Argentina, Bulgaria, Colombia, Czech Republic, Estonia, Greece, India, Italy, Latvia, Malaysia, Mexico, Peru, Poland, Portugal, Russia, Singapore, Slovakia, Sweden, Thailand, Turkey, Ukraine, US	Parallel	8 weeks	1,284	52 weeks	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { PLA } \end{gathered}$	$\begin{gathered} \quad \text { MET } \\ \geq 1,500+ \\ \text { SIT } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { CAN } 100 \end{gathered}$	$\begin{gathered} \text { MET } \\ \geq 1,500+ \\ \text { CAN } 300 \end{gathered}$	NA
Chen et al.	NA	China	Parallel	≥ 12 weeks	120	12 weeks	$\begin{gathered} \text { MET } 1,500 \\ + \text { PLA } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MET } 1,500 \\ & + \text { PGL } 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MET 1,500 } \\ & + \text { PGL } 0.2 \\ & \hline \end{aligned}$	NA	

[^0]Funding Information

Author	Year	Registration Number	Country	Sponsor

Author	Year	Registration Number	Country	Sponsor
Aaboe et al.	2015	NCT00411411	Denmark	Surope, South Africa

Author	Year	Registration Number	Country	Sponsor
Derosa et al.	2013	NR	Italy	NR
Henry et al.	2013	NCT00943917	US	Intarcia Therapeutics
Ahrén et al.	2013	NCT00712673	Australia, Canada, Chile, Czech Republic, Germany, Croatia, Mexico, Morocco, the Philippines, Romania, Russian Federation, South Africa, Spain, Ukraine, US, and Venezuela	Sanofi
Kapitza et al.	2013	NCT01175473	Germany	Sanofi
Charbonnel et al.	2013	NCT01296412	21 countries	Merck Sharp \& Dohme Corp.
Forst et al.	2013	NCT01565096	Germany	Novartis Pharma GmbH Nurnberg
Rhee et al.	2013	NCT00562172	Korea, India	LG Life Sciences Ltd.
Wilding et al.	2012	NCT01117584	Hungary, Poland, Romania, UK, Italy, US	Astellas Pharma Inc. and Kotobuki Pharmaceutical Co. Ltd.
Derosa et al.	2012	NR	Italy	NR
Hermans et al.	2012	NCT01006590	Belgium, France, Germany, Italy, Spain, Turkey, UK	AstraZeneca, Bristol-Myers Squibb
Derosa et al.	2012	NR	Italy	NR
Guerci et al.	2012	NCT01193296	NR	Novartis
Monnier et al.	2012	NCT00318656	France	GlaxoSmithKline Laboratories
Rizzo et al.	2012	NR	Italy	NR
Seino et al.	2012	NCT01318109	Japan	Takeda
Yang et al.	2012	NCT00813995	NR	Merck Sharp \& Dohme Corp.
Gallwitz et al.	2012	NCT00622284	Bulgaria, Denmark, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Netherlands, Norway, Poland, South Africa, Sweden, UK, US	Boehringer Ingelheim
Srivastava et al.	2012	NR	India	NR
Koren et al.	2012	NR	Isreal	NR
Pan et al.	2012	NR	China	Novartis Beijing, China
Gallwitz et al.	2012	NCT00359762	Austria, Czech Republic, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Mexico, Poland, Spain, Switzerland, and the UK	AstraZeneca
Aschner et al.	2012	NCT00751114	Austria, Brazil, Colombia, Egypt, Greece, Hong Kong, India, Israel, Korea, Lebanon, Mexico, Netherlands, Portugal, Spain, Turkey, UK, US	Sanofi
Rosenstock et al.	2012	NCT00642278	Argentina, Bulgaria, Canada, Czech Republic, India, Malaysia, Mexico, Poland, Romania, Russia, UK, US	Janssen Global Services, LLC

Author	Year	Registration Number	Country	Sponsor
DeFronzo et al.	2012	NCT00328627	United States, Australia, Brazil, Bulgaria, Chile, Croatia, Estonia, Guatemala, India, Israel, Latvia, Mexico, New Zealand, Peru, Romania, Russian Federation, Serbia, South Africa, Ukraine	Takeda
Bolinder et al.	2012	NCT00855166	Bulgaria, Czech Republic, Hungary, Poland, Sweden	AstraZeneca
Fonseca et al.	2012	NCT00960076	US, Latin America	AstraZeneca, Bristol-Myers Squibb
Wang et al.	2011	NR	Taiwan	Research grant from the National Science Council (Taiwan), Veterans General Hospitals University System of Taiwan Joint Research Program, and Bayer Schering Pharma
Yang et al.	2011	NCT00661362	China, India and South Korea	AstraZeneca LP and BristolMyers Squibb
Stephens et al.	2011	NR	UK	Novo Nordisk
Petrica et al.	2011	NR	Romania	NR
Lin et al.	2011	NR	Taiwan	The National Science Council, Taiwan; Veterans General Hospitals University System of Taiwan Joint Research Program; and Bayer Schering Pharma, Taiwan Branch
Terra et al.	2011	NCT00473525	Colombia, Germany, Italy, Spain, Sweden, US	Pfizer Inc.
Derosa et al.	2011	NR	Italy	NR
Derosa et al.	2011	NR	Italy	NR
Pfutzner et al.	2011	NCT00770653	Germany	Takeda Pharma
Zinman et al.	2011	NCT00611884	Canada, India, South Africa, US	Novo Nordisk A/S
Heise et al.	2011	NCT00614055	France, Germany, Norway, Romania, Spain	Novo Nordisk A/S
Gallwitz et al.	2011	NCT00434954	Germany	AstraZeneca
Arechavaleta et al.	2011	NCT00701090	Austria, Brazil, Chile, Colombia, Costa Rica, Denmark, Ecuador, France, Germany, Guatemala, India, Italy, Korea, Republic of, Malaysia, Mexico, New Zealand, Panama, Peru, Poland, Spain, Switzerland, United Kingdom	Merck Sharp \& Dohme Corp.
Yang et al.	2011	NR	China, South Korea and India	Novo Nordisk
Taskinen et al.	2011	NCT00601250	Czech Republic, Finland, Greece, India, Israel, Mexico, New Zealand, Russia, Sweden, US	Boehringer Ingelheim
Forst et al.	2010	NCT00309608	UK, Germany, France, Slovakia, Ukraine, Sweden	Boehringer Ingelheim

Author	Year	Registration Number	Country	Sponsor
Goke et al.	2010	NR	International	Bristol-Myers Squibb and AstraZeneca
Scheen et al.	2010	NCT00666458	Argentina, Belgium, Denmark, France, Italy, Mexico, Norway, South Africa, Sweden	AstraZeneca and BristolMyers Squibb
Stenlof et al.	2010	NR	the United States, Israel, Sweden, Mexico, Puerto Rico, Argentina, Italy, and the Philippines.	Bristol-Myers Squibb and AstraZeneca
Ratner et al.	2010	NR	Brazil, Canada, Poland, Romania, Russian, Ukraine, and US	sanofi-aventis
Bergenstal et al.	2010	NCT00637273	United States, India, Mexico	Amylin Pharmaceuticals and Eli Lilly
Bailey et al.	2010	NCT00528879	US, Canada, Argentina, Mexico, Brazil	Bristol-Myers Squibb and AstraZeneca
Filozof et al.	2010	NR	NR	Novartis
DeFronzo et al.	2010	NCT00135330	US	AstraZeneca, Eli Lilly
Pratley et al.	2010	NCT00700817	Croatia, Germany, Ireland, Italy, Netherlands, Romania, Serbia, Slovakia, Slovenia, Spain, UK, US, Canada	Novo Nordisk
Apovian et al.	2010	NR	US	Lilly USA, LLC
Kadoglou et al.	2010	NCT00373178	NR	European Social Fund and National Resources- (EPEAEK II) "PYTHAGORAS II" and Alexander S Onassis Public Benefit Foundation
Petrica et al.	2009	NR	NR	NR
Scheen et al.	2009	$\begin{gathered} \text { ISRCTN, } \\ \text { NCT00174993 } \end{gathered}$	Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Slovakia, Sweden, Switzerland, United Kingdom	Takeda
Blonde et al.	2009	NCT00396227	US	Novartis
Defronzo et al.	2009	NCT00121667	US, Brazil	Bristol-Myers Squibb; AstraZeneca
Home et al.	2007	NR	23 countries in Europe, Australia and New Zealand	GlaxoSmithKline
Papathanassiou et al.	2009	NR	Greece	University of Ioannina
Goodman et al.	2009	NR	Multinational	Supported by Novartis Pharmaceuticals Corporation
Bunck et al.	2009	NCT00097500	Sweden, Finland, and the Netherlands	Amylin Pharmaceuticals and Eli Lilly and Company
Kaku et al.	2009	$\begin{gathered} \text { UMINOOOOON11 } \\ 10 \end{gathered}$	NR	Takeda
Nauck et al.	2008	NCT00286442	Multinational ("115 sites in 15 countries")	Takeda Global Research \& Development Cente
Ferrannini et al.	2009	NCT00106340	Canada, US, Europe, and multinational	Novartis Pharmaceuticals

Author	Year	Registration Number	Country	Sponsor
Gao et al.	2009	NCT00324363	China, India, Korea, Taiwan	Amylin Pharmaceuticals; Eli Lilly and Company
Nauck et al.	2009	NCT00318461	Argentina, Australia, Belgium, Bulgaria, Croatia, Denmark, Germany, Hungary, India, Ireland, Italy, Netherlands, New Zealand, Norway, Romania, Russian Federation, Slovakia, South Africa, Spain, Sweden, United Kingdom	Novo Nordisk
Scott et al.	2008	NCT00541775	Multinational	Merck
Komajda et al.	2008	NCT00379769	23 countries in Europe and Australasia	GlaxoSmithKline
Khanolkar et al.	2008	NR	United Kingdom	NR
Garcia-Soria et al.	2008	NR	US, Mexico, Australia	Phenomix Corporation
Raz et al.	2008	NCT00337610	Austria, Israel, Mexico, Peru and United States	Merck \& Co., Inc.
Hamann et al.	2008	NR	Multinational (Europe and Mexico)	NR
Bolli et al.	2008	$\begin{gathered} \text { NCT } \\ 00237237 \end{gathered}$	Germany, UK, US, Spain, Italy, Switzerland, Austria, South Africa and Australia	Novartis Pharmaceuticals Corporation
Bosi et al.	2007	NCT00099892	US, France, Italy, Sweden	Novartis Pharmaceuticals Corporation
Nauck et al.	2007	NCT00094770	NR	Merck \& Co.
Brazg et al.	2007	NR	NR	byMerck \& Co., Inc.
Derosa et al.	2007	NR	Italy	NR
Charbonnel et al.	2006	NCT00086515 (note: NCT in publication is missing a zero)	France, Israel, US	Sponsored by Merck Research Laboratory
Nauck et al.	2006	NR	Europe and Austrlia	NR
Weissman et al.	2005	NR	US	GlaxoSmithKline Pharmaceuticals
Bakris et al.	2006	NR	North America, South America and Europe	GlaxoSmithKline Pharmaceuticals
Ristic et al.	2006	NR	Canada, France, Italy, Spain, Austria	Sponsored by Novartis Pharma
Umpierrez et al.	2006	NR	US	Sanofi-Aventis
Garber et al.	2006	NR	US	Authors from Bristol-Meyers Squibb
Kvapil et al.	2006	NR	Croatia, Czech Republic, Denmark, France, Greece, Hungary, Norway, Poland, Portugal, Russia, Spain	
Poon et al.	2005	NR	US	Amylin Pharmaceuticals
Feinglos et al.	2005	NR	United States	Pfizer Inc

Author	Year	Registration Number	Country	Sponsor

Author	Year	Registration Number	Country	Sponsor
Yang et al.	2015	NCT01095666	China, India, South Korea	Bristol-Myers Squibb and AstraZeneca
Merck Sharp \& Dohme Corp.	2015	NCT01841697	Argentina, Canada, Croatia, Estonia, Georgia, Hungary, Israel, Malaysia, Philippines, Poland, Romania, South Africa, US	Merck Sharp \& Dohme Corp.
Daiichi Sankyo Inc.	2009	NCT00484419	Colombia, Mexico, US	Daiichi Sankyo Inc.
Merck Sharp \& Dohme Corp.	2012	NCT01682759	Croatia, Germany, Hungary, South Korea, Lebanon, Lithuania, Malaysia, Poland, Romania, US	Merck Sharp \& Dohme Corp.
NCT record	2010 (last update)	NCT00367055	"Not provided", France is listed as a "Removed Location Countries"	GlaxoSmithKline
NCT record	2015 (last update)	NCT01882907	Republic of Korea	Pusan National University Hospital
NCT record	2015 (last update)	NCT01973231	EUROPE: Czech Republic, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, United Kingdom	Novo Nordisk A/S
NCT record	2016 (last update)	NCT02008682	China, Beijing	Novo Nordisk A/S
Lavalle-Gonzalez et al.	2013	NCT01106677	Argentina, Bulgaria, Colombia, Czech Republic, Estonia, Greece, India, Italy, Latvia, Malaysia, Mexico, Peru, Poland, Portugal, Russia, Singapore, Slovakia, Sweden, Thailand, Turkey, Ukraine, US	Janssen Research \& Development, LLC
Chen et al.	NA	NCT01965509	China	Hansoh Pharmaceutical Co., Ltd. (Jiangsu)

EudraCT = European Union Drug Regulating Authorities Clinical Trials; ISRCTN = International Standard Randomised Controlled Trial Number; JapicCTI = Japan Pharmaceutical Information Center - Clinical Trials Information; NA = not available; NCT = clinicaltrials.gov identifier; NR = not reported; UMIN = University Hospital Medical Information Network.

Appendix 5: Research Question 1 - Inclusion Criteria and Criteria for Inadequate Control for Included Randomized Controlled Trials

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Nauck et al.	2014	18 to 75 years, T2DM, A1C > 8\% and $\leq 9.5 \%$ (diet and exercise alone) or $\geq 7 \%$ and $\leq 9.5 \%$ (on oral antihyperglycemic medication monotherapy or combination therapy), BMI 25 to $40 \mathrm{~kg} / \mathrm{m}^{2}$, stable weight during the 3-month period before study	An A1C value of 0.8% ($64 \mathrm{mmol} / \mathrm{mol}$) and $9.5 \%(80 \mathrm{mmol} / \mathrm{mol})$ on diet and exercise alone or 7% ($53 \mathrm{mmol} / \mathrm{mol}$) and $9.5 \% ~(80 \mathrm{mmol} / \mathrm{mol}$) on oral antihyperglycemic drug (OAD) monotherapy or combination therapy (metformin plus another OAD)
Ross et al.	2015	Adults with T2DM, BMI $\leq 45 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{~A} 1 \mathrm{C} \geq 7 \%$ and $\leq 10 \%$ on diet and exercise with stable metformin IR $(\geq 1,500 \mathrm{mg} / \mathrm{d})$	A1C 7\% to 10% on metformin at screening
Moon et al.	2014	18 to 75 years, T2DM, A1C 7.5\% to 12.0\% on metformin ($>1,000 \mathrm{mg} / \mathrm{d}$), $\mathrm{BMI}<35 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.5% to 12.0% on metformin
Gupta et al.	2015	Uncomplicated T2DM with or without stable comorbid conditions, A1C $\geq 6.5 \%$ on metformin (1,000 to $2,500 \mathrm{mg} / \mathrm{d}$), fasting blood glucose $\geq 126 \mathrm{mg} / \mathrm{dL}$, postprandial blood glucose $\geq 200 \mathrm{mg} / \mathrm{dL}$	A1C $\geq 6.5 \%$ on metformin
Hissa et al.	2015	18 to 70 years, T2DM, A1C $>7.5 \%$ on metformin ($\geq 1,000 \mathrm{mg} / \mathrm{d}$), BMI ≥ 22 and $\leq 40 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 7.5\%
Inagak et al.	2015	Outpatients, ≥ 20 years, T2DM for at least 3 months, A1C $\geq 7.0 \%$ to $\leq 10.0 \%$ (monotherapy) or $\geq 7.0 \%$ to $\leq 10.6 \%$ (combination therapy) were eligible for the present study. Patients who had used a sulfonylurea (glimepiride, gliclazide, or glibenclamide), a glinide (nateglinide or mitiglinide), an alpha-glucosidase inhibitor (voglibose, miglitol or acarbose), a biguanide (metformin), a thiazolidinedione (pioglitazone) or a dipeptidyl peptidase-4 inhibitor (sitagliptin, vildagliptin, or alogliptin) for ≥ 83 days before week 0 were eligible for combination therapy in the present study.	$\geq 7.0 \%$ to $\leq 10.0 \%$ (monotherapy, baseline diet/exercise only) or $\geq 7.0 \%$ to $\leq 10.6 \%$ (combination therapy, baseline diet/exercise + 1 OAD)
Odawara et al.	2014	≥ 20 to <75 years, T2DM, $\mathrm{BMI} \geq 20 \mathrm{~kg} / \mathrm{m}^{2}$ to $\leq 35 \mathrm{~kg} / \mathrm{m}^{2}$, $\mathrm{A} 1 \mathrm{C} \geq 7.0 \%$ to $\leq 10.0 \%$, inadequately controlled on diet, exercise and metformin	A1C 7\% to 10\% on metformin
Chen et al.	2014	Outpatients, 30 to 70 years, T2DM, A1C 7.0\% to 11.0% on mono- or dual-OAD therapy	A1C 7\% to 11\% on metformin
Kawamori et al.	2014	>20 years, T2DM, A1C 6.9\% to 9.4\% on metformin (750, 1,500 or $2,250 \mathrm{mg} / \mathrm{d}$) in addition to diet and exercise	A1C 6.9\% to 9.4\% on metformin
White et al.	2014	18 to 78 years, A1C level 7.0% to 10.0%, stable metformin IR monotherapy ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), fasting C-peptide value $\geq 0.8 \mathrm{ng} / \mathrm{mL}, \mathrm{BMI} \leq 45.0 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 10.0\%
Kadowaki et al.	2013	20 to < 75 years, T2DM	A1C > 6.9\% and < 10.5\%
Neutel et al.	2013	18 to 78 years, T2DM, A1C 7.5\% to 11.5% (metformin IR or $X R \geq 850$ and $\leq 1,500 \mathrm{mg}$), fasting C-peptide ≥ 1.0 $\mathrm{ng} / \mathrm{mL}, \mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$ at screening	A1C 7.5\% to 11.5\%

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Chawla et al.	2013	≥ 18 years, T2DM, A1C 7.5% to 11% (metformin monotherapy $\geq 1,500 \mathrm{mg} / \mathrm{d}$), fasting plasma glucose $\geq 140 \mathrm{mg} / \mathrm{dL}$	A1C 7.5\% to 11\%
Bergenstal et al.	2012	18 to 75 years, T2DM, A1C $\geq 7.0 \%$ to $\leq 10.0 \%$ (metformin $\geq 1,500 \mathrm{mg} / \mathrm{d}$ or maximally tolerated dose, $\mathrm{BMI} \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ (23 for Asians) to $\leq 45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 10.0\%
Cho et al.	2010	30 to 70 years, T2DM, duration of diabetes of < 10 years, BMI 20 to $35 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 7.5% to 11%	$\mathrm{A} 1 \mathrm{C}>7.0 \%$ at the end of the metformin run-in phase
Wang et al.	2015	Outpatients, >60 years, fasting blood glucose $>8.5 \mathrm{mmol} / \mathrm{L}, \mathrm{A} 1 \mathrm{C}>7.5 \%$ on metformin	NR
Jin et al.	2015	19 to 75 years, T2DM for at least 3 months, A1C 7.0% to 10.0% (metformin $\geq 1,000 \mathrm{mg} / \mathrm{d}$), fasting blood glucose of $\leq 270 \mathrm{mg} / \mathrm{dL}$	A1C between 7.0\% and 10.0\% on metformin monotherapy of $\geq 1,000 \mathrm{mg} /$ day for ≥ 4 weeks
Xiao et al.	2015	T2DM, A1C $\geq 7.0 \%$ on metformin	A1C $\geq 7 \%$ on metformin
Rosenstock et al.	2015	≥ 18 years, T2DM, A1C $\geq 8.0 \%$ and $\leq 12.0 \%$ on metformin ($\geq 1,500 \mathrm{mg} /$ day), C-peptide concentrations $\geq 1.0 \mathrm{ng} / \mathrm{mL}$, $\mathrm{BMI} \leq 45.0 \mathrm{~kg} / \mathrm{m}^{2}$	A1C $\geq 8.0 \%$ and $\leq 12.0 \%$
Rosenstock et al.	2015	18 to 75 years, T2DM, fasting plasma glucose $<270 \mathrm{mg} / \mathrm{dL}$, metformin ($>1,500 \mathrm{mg} / \mathrm{d}$)	A1C 7\% to 10.5\%
Kim et al.	2015	T2DM, A1C 7.0% to 10.0%, metformin ($\geq 1,000 \mathrm{mg} /$ day)	A1C 7\% to 10\% on metformin
Kashiwagi et al.	2015	≥ 20 years, T2DM, A1C 7.4% to 9.9% on metformin, BMI $20.0 \mathrm{~kg} / \mathrm{m}^{2}$ to $45.0 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.4% to 9.9% and a BMI $20.0 \mathrm{~kg} / \mathrm{m}^{2}$ to $45.0 \mathrm{~kg} / \mathrm{m}^{2}$
Aaboe et al.	2015	Outpatients, ≥ 18 years; A1C 7.0% to 10.0%, metformin $(\geq 1,000 \mathrm{mg} / \mathrm{d})$, $\mathrm{BMI} \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 10.0\%
SchummDraeger et al.	2015	18 to 77 years, T2DM, A1C $\geq 6.7 \%$ and $\leq 10.5 \%$, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 6.7\% to 10.5\%
Han et al.	2015	Women, ≥ 18 and ≤ 80 years, T2DM A1C $\geq 7.0 \%$ and $\leq 10.5 \%$, metformin or metformin + sulphonylurea (both at maximum or near-maximum effective doses)	$\mathrm{A1C} \geq 7.0 \%$ and $\leq 10.5 \%$
Gurkan et al.	2014	40 to 70 years, T2DM, A1C 7% to 9.5%, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, metformin ($2.1 \mathrm{~g} / \mathrm{d}$)	NR
Del Prato et al.	2014	18 to 80 years, T2DM, BMI $\geq 23 \mathrm{~kg} / \mathrm{m}^{2}$ and $\leq 45 \mathrm{~kg} / \mathrm{m}^{2}$ (Asian $\geq 20 \mathrm{~kg} / \mathrm{m}^{2}$ and $\leq 35 \mathrm{~kg} / \mathrm{m}^{2}$), A1C 7.0% to 9.0% with fasting plasma glucose $<15.3 \mathrm{mmol} / \mathrm{L}$ on stable metformin ($\geq 1,500 \mathrm{mg}$ or maximum tolerated dose [MTD]), or A1C of 7.5% to 10% on metformin $<1,500 \mathrm{mg}$ without documented MTD, with A1C values 7.0% to 9.0% and fasting blood glucose < $15.3 \mathrm{mmol} / \mathrm{L}$ after metformin stabilization ($\geq 1,500 \mathrm{mg}$ or MTD)	(i) glycated haemoglobin (A1C) level 7.0% to 9.0% with fasting plasma glucose $<15.3 \mathrm{mmol} / \mathrm{L}$ on stable metformin ($\geq 1,500 \mathrm{mg}$ or MTD), or (ii) A1C of 7.5% to 10% on metformin $<1,500 \mathrm{mg}$ without documented MTD, with A1C values 7.0% to 9.0% and fasting blood glucose < $15.3 \mathrm{mmol} / \mathrm{L}$ after metformin stabilization ($\geq 1,500 \mathrm{mg}$ or MTD) for 8 weeks.
Nandy et al.	2014	40 to 70 years, $\mathrm{BMI} \geq 40 \mathrm{~kg} / \mathrm{m}^{2}$, T2DM, A 1 C of 6.5% to 9.0%, lifestyle changes alone or metformin	NR
Forst et al.	2014	45 to 75 years, T2DM, A1C 6.5\% to 8.5\% on metformin	A1C 6.5\% to 8.5\% on metformin
Dungan et al.	2014	≥ 18 years of age, T2DM, diet and exercise and metformin $(\geq 1,500 \mathrm{mg} / \mathrm{d})$, A1C value of $\geq 7 \cdot 0 \%$ to $\leq 10.0 \%$, stable weight ($\pm 5 \%$) for at least 3 months, $\mathrm{BMI} \leq 45 \mathrm{~kg} / \mathrm{m}^{2}$	NR

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Ridderstrale et al.	2014	≥ 18 years T2DM, $\mathrm{BMI} \leq 45 \mathrm{~kg} / \mathrm{m}^{2}$, $\mathrm{A} 1 \mathrm{C} 7 \%$ to 10%, metformin immediate release $(\geq 1,500 \mathrm{mg} / \mathrm{d}$, maximum tolerated dose, or maximum dose according to the local label)	A1C 7\% to 10\%
Ohira et al.	2014	T2DM, inadequately controlled despite ongoing treatment with metformin $500 \mathrm{mg} / \mathrm{d}$	NR
Ahren et al.	2014	≥ 18 years, T2DM, inadequate glycemic control on metformin ($\geq 1,500 \mathrm{mg}$ or maximum tolerated dose), A1C 7.0% to 10.0%, BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$; creatinine clearance $>60 \mathrm{~mL} / \mathrm{min}$, and normal thyoid-stimulating hormone concentration or were clinically euthyroid	A1C 7.0\% to 10.0\% on metformin
Derosa et al.	2014	≥ 18 years, T2DM, inadequately controlled T2DM, A1C 7.0% to 9.0% on metformin	A1C 7.0\% to 9.0\% on metformin
Diamant et al.	2014	≥ 18 years, T2DM, suboptimum glycemic control, A1C 7.1% to 11.0% on maximum tolerated doses of metformin alone or with a sulfonylurea, stable body weight for at least 3 months, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}\left(23 \mathrm{~kg} / \mathrm{m}^{2}\right.$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$ in South Korea and Taiwan)	A1C 7.1\% to 11.0\%
Haring et al.	2014	≥ 18 years, $\mathrm{BMI} \leq 45 \mathrm{~kg} / \mathrm{m}^{2}$, inadequately controlled T2DM, $A 1 C \geq 7 \%$ to $\leq 10 \%$ despite diet and exercise program and stable immediate release metformin	A1C $\geq 7 \%$ to $\leq 10 \%$ on diet and exercise program and metformin
Bolli et al.	2014	24 to 79 years, T2DM (≥ 1 year since diagnosis), metformin ($1.5 \mathrm{~g} / \mathrm{d}$), A1C 7% to 10%	A1C 7\% to 10\%, inclusive, on metformin
Berndt-Zipfel et al.	2013	30 to 80 years, A1C 6.5\% to 9.5\% on metformin	A1C 6.5\% to 9.5\% on metformin
Genovese et al.	2013	35 to 75 years, T2DM taking metformin (2,000 to $3,000 \mathrm{mg} / \mathrm{d}$), reduced HDL-C levels ($<40 \mathrm{mg} / \mathrm{dL}$ in males, $<50 \mathrm{mg} / \mathrm{dL}$ in females), irrespective of statin treatment, central obesity (waist circumference $\geq 94 \mathrm{~cm}$ for men, $\geq 80 \mathrm{~cm}$ for women)	NR
Rosenstock et al.	2013	21 to 84 years, T2DM, taking metformin ($\geq 1.5 \mathrm{~g} / \mathrm{d}$), A1C 7% to 10%	A1C 7\% to 10\% (between 53 and $86 \mathrm{mmol} / \mathrm{mol}$) on metformin
Kim et al.	2013	18 to 80 years, T2DM for < 10 years, A1C 6.5\% to 8.0\%, BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $30 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 6.5\% to 8.0\% on metformin
Cefalu et al.	2013	18 to 80 years, T2DM, A1C 7.0% to 9.5%, metformin ($\geq 2,000 \mathrm{mg} / \mathrm{d}$ or $\geq 1,500 \mathrm{mg} / \mathrm{d}$ if unable to tolerate a higher dose). Participants takin metformin in combination with one other oral non-thiazolidinedione antihyperglycemic drug at screening discontinued the second antihyperglycemic drug and, if needed, had their metformin dose increased	A1C 7\% to 9.5\% on metformin
Derosa et al.	2013	>18 years, T2DM, naive to treatment, poor glycemic control (A1C > 7.5%), $\mathrm{BMI} \geq 25$, weight $<34.9 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 7.5\%
Henry et al.	2013	18 to 70 years, T2DM for a minimum of 6 months, stable dose of metformin for at least 3 months, A1C $\geq 7 \%$ and $\leq 10 \%$, fasting blood glucose $<240 \mathrm{mg} / \mathrm{dL}$, BMI $\leq 40 \mathrm{~kg} / \mathrm{m}^{2}$, stable body weight for 3 months before study entry	NR
Ahrén et al.	2013	T2DM, inadequately controlled on metformin ($\geq 1.5 \mathrm{~g} / \mathrm{d}$), A1C 7\% to 10\%	A1C 7\% to 10\% on metformin

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Kapitza et al.	2013	37 to 74 years, T2DM, A1C 6.5% to 9.0%, on meformin $\geq 1.5 \mathrm{~g} / \mathrm{d}$	A1C 6.5\% to 9.0\% on metformin
Charbonnel et al.	2013	18 to 79 years, T2DM on metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), A1C $\geq 7.0 \%$ and $\leq 11.0 \%$, fasting finger stick glucose < $15 \mathrm{mmol} / \mathrm{L}$	A1C 7\% to 11\% on metformin
Forst et al.	2013	30 to 80 years, T2DM, A1C $>6.5 \%$ to $\leq 9.5 \%$. Patients with cardiovascular preconditions (CHD or MI): A1C $>7.0 \% \leq 9.5 \%$, metformin at maximal or maximal tolerated dosage	A1C $>6.5 \%$ and $\leq 9.5 \%$ on metformin; A1C $>7.0 \%$ and $\leq 9.5 \%$ for patients with cardiovascular preconditions
Rhee et al.	2013	18 to 75 years, T2DM, metformin ($1,000 \mathrm{mg} / \mathrm{d}$ or higher)	NR
Wilding et al.	2012	≥ 18 years, T2DM for ≥ 6 months, A1C of 7.0% to 9.5%, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), had received routine advice about diet and exercise as part of their usual clinical care, BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 9.5\%
Derosa et al.	2012	"Caucasian", > 18 years, T2DM for 6 months, treatment naive, poor glycemic control, A1C level $>63.9 \mathrm{mmol} / \mathrm{mol}$ to $<96.7 \mathrm{mmol} / \mathrm{mol}, \mathrm{BMI} \geq 25$ to $<30 \mathrm{~kg} / \mathrm{m}^{2}$	A1C $63.9 \mathrm{mmol} / \mathrm{mol}$ to $96.7 \mathrm{mmol} / \mathrm{mol}$
Hermans et al.	2012	>18 years, T2DM, insufficient glycemic control on submaximal metformin (1,500 to $1,700 \mathrm{mg} / \mathrm{d}$; A1C 7.0% to 10.0\%)	A1C 7.0\% to 10.0\%
Derosa et al.	2012	"Caucasian", > 18 years, T2DM drug-naive, poor glycemic control, A1C level $>8.0 \%, \mathrm{BMI} \geq 25$, and $<30 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 8.0\%
Guerci et al.	2012	18 to 80 years, BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, T2DM, A1C 6.5% to 8.0% on metformin (maximum tolerated daily dose of at least $1,500 \mathrm{mg}$)	A1C 6.5\% to 8.0\%
Monnier et al.	2012	T2DM, inadequate glycemic control, A1C level > 7\% on metformin monotherapy (1,700 to $3,000 \mathrm{mg} / \mathrm{d}$) provided that A1C was not greater than 9%	A1C level > 7\% on metformin
Rizzo et al.	2012	T2DM, without adequate glycemic control (A1C > 7.5\%) on metformin treatment at maximal dose ($2,000 \mathrm{mg} / \mathrm{d}$)	A1C > 7.5\%
Seino et al.	2012	≥ 20 and <65 years, T2DM, A1C value $\geq 6.9 \%$ to $<10.4 \%$ on metformin plus specific dietary and exercise therapies.	A1C 6.9\% to 10.4\%
Yang et al.	2012	Chinese, 18 to 78 years, T2DM, inadequate glycemic control (i.e., A1C $\geq 7.5 \%$ and $\leq 11.0 \%$) while on metformin monotherapy (1,000 or $1,700 \mathrm{mg}$ d)	A1C 7.5\% to 11\%
Gallwitz et al.	2012	18 to 80 years, T2DM, metformin at a stable dose ($1,500 \mathrm{mg} / \mathrm{d}$ or more or a maximum tolerated dose less than $1,500 \mathrm{mg} / \mathrm{d}$) alone or with one other oral antidiabetic drug, A1C 6.5% to 10.0% (on metformin alone) or 6.0% to 9.0% (on metformin and one additional oral antidiabetic drug), BMI $40 \mathrm{~kg} / \mathrm{m}^{2}$ or less	A1C 6.0\% to 9.0\%
Srivastava et al.	2012	>18 years, T2DM, using metformin with inadequate glycemic control (A1C > 7\% and < 10\%)	A1C levels $>7 \%$ and $<10 \%$ on metformin
Koren et al.	2012	18 to 75 years, T2DM, inadequate glycemic control (A1C $>7 \%$) on metformin	A1C > 7\%
Pan et al.	2012	18 to 78 years, T2DM, inadequately controlled by metformin, A1C 7.0 T to 10.0% (at least $1,500 \mathrm{mg} / \mathrm{d}$), BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, fasting plasma glucose $<270 \mathrm{mg} / \mathrm{dL}$ ($15 \mathrm{mmol} / \mathrm{L}$)	A1C 7.0\% to 10.0\%

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Gallwitz et al.	2012	18 to 85 years, T2DM, $\mathrm{BMI} \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ to $<40 \mathrm{~kg} / \mathrm{m}^{2}$, maximum tolerated doses of metformin, and suboptimum glycemic control, A1C 6.5\% and more or 9.0\% and less	A1C 6.5\% and more or 9.0\% and less
Aschner et al.	2012	35 to 70 years, T2DM for at least 6 months, A1C of 7% or greater and less than $11 \%, \mathrm{BMI} 25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7\% to 11\%
Rosenstock et al.	2012	18 to 65 years, T2DM for at least 3 months, A1C $\geq 7 \%$ and $\leq 10.5 \%$, metformin monotherapy ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), stable body weight, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$ ($24 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$ for those of Asian descent), serum creatinine levels $<1.5 \mathrm{mg} / \mathrm{dL}$ for men and $<1.4 \mathrm{mg} / \mathrm{dL}$ for women	A1C 7\% to 10.5\%
DeFronzo et al.	2012	18 to 80 years, $\mathrm{BMI} 23 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$; fasting C-peptide $\geq 0.26 \mathrm{nmol} / \mathrm{L}$, T2DM, inadequately controlled by metformin monotherapy ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), systolic/diastolic blood pressure no greater than $160 / 100 \mathrm{~mm} \mathrm{Hg}$, hemoglobin of at least $12 \mathrm{~g} / \mathrm{dL}$ for men and at least $10 \mathrm{~g} / \mathrm{dL}$ for women, alanine aminotransferase no more than 2.5 times the upper limit of normal, TSH no greater than the upper limit of normal, serum creatinine below $133 \mu \mathrm{~mol} / \mathrm{L}$ (for men) or below $124 \mu \mathrm{~mol} / \mathrm{L}$ (for women)	A1C 7.5 to 10%, on metformin
Bolinder et al.	2012	Women aged 55 to 75 years who were postmenopausal for at least 5 years or men aged 30 to 75 years; T2DM, A1C 6.5% to 8.5%; fasting plasma glucose $\leq 240 \mathrm{mg} / \mathrm{dL}$, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ or higher; weight no higher than 120 kg , metformin (at least $1,500 \mathrm{mg} / \mathrm{d}$)	A1C $\geq 6.5 \%$ and $\leq 8.5 \%$
Fonseca et al.	2012	Adults, T2DM, inadequate glycemic control, A1C 7.5\% to 11.0%, metformin ($850 \mathrm{mg} / \mathrm{d}$ to $1,500 \mathrm{mg} / \mathrm{d}$), fasting C-peptide levels $\geq 1.0 \mathrm{ng} / \mathrm{mL}, \mathrm{BMI} \leq 45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.5\% to 11.0\%
Wang et al.	2011	Outpatients, 30 to 70 years, T2DM, mono- or dual-OAD therapy A1C 7.0% to 11.0%	A1C 7.0\% to 11.0\%
Yang et al.	2011	≥ 18 years, T2DM, A1C 7.0% to 10.0% on metformin ($1,500 \mathrm{mg} / \mathrm{d}$), C-peptide level $0.33 \mathrm{nmol} / \mathrm{L}$	A1C 7.0\% to 10.0\%
Stephens et al.	2011	40 to 70 years, T2DM (diagnosed after the age of 40 years with no history of ketosis), nonsmokers (≥ 12 months), monotherapy with metformin ($1.5 \mathrm{~g} / \mathrm{d}$ to $3.0 \mathrm{~g} / \mathrm{d}$), A1C 7.5% to 10.5%	A1C 7.5% to 10.5% on metformin
Petrica et al.	2011	T2DM for at least 5 years, poor glycemic control (A1C > 7\%) on metformin	A1C > 7\%
Lin et al.	2011	Outpatients, 30 to 70 years, T2DM, treated with one or two oral antidiabetic drugs, A1C 7.0\% to 11.0\%.	A1C 7% to 11% on one or two oral antidiabetic drugs The baseline A1C level and reduction of A1C value during this 8 -week run-in period were not different between the two groups.
Terra et al.	2011	18 to 70 years, T2DM, inadequate glycemic control, $\mathrm{A} 1 \mathrm{C}>7 \%$ to $<11 \%$ on metformin, $\mathrm{BMI}>25 \mathrm{~kg} / \mathrm{m}^{2}$ and $<45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7\% to 11\%

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Derosa et al.	2011	≥ 18 years, T2DM, poor glycemic control, A1C $>8.0 \%$, BMI ≥ 25 and $<30 \mathrm{~kg} / \mathrm{m}^{2}$, metformin (1,000 to $2,000 \mathrm{mg} /$ day) and were intolerant to metformin at the highest dosages (2,500 to $3,000 \mathrm{mg} /$ day)	A1C > 8.0\%
Derosa et al.	2011	"Caucasian", ≥ 18 years, T2DM, uncontrolled T2DM, A1C > 7.0\% on diet, physical activity, and metformin (mean dosage: $1,700 \pm 850 \mathrm{mg} / \mathrm{d}$).	A1C > 7.0\%
Pfutzner et al.	2011	18 to 75 years, T2DM, metformin (individually maximal tolerated dosage), A1C of $\geq 6.5 \%$, HDL cholesterol $\leq 1.03 \mathrm{mmol} / \mathrm{L}(40 \mathrm{mg} / \mathrm{dL})$ and/or triglycerides $\geq 1.7 \mathrm{mmol} / \mathrm{L}(150 \mathrm{mg} / \mathrm{dL})$	NR
Zinman et al.	2011	18 to 75 years, T2DM for at least 3 months, A1C 7.0% to 11.0%, BMI $23 \mathrm{~kg} / \mathrm{m}^{2}$ to $42 \mathrm{~kg} / \mathrm{m}^{2}$, insulin-naive, treated with one or two oral antidiabetic drugs (metformin, alphaglucosidase inhibitors, sulphonylurea, or meglitindes) for more than 2 months at stable half-maximum to maximum allowed doses	A1C 7% to 10% on one or two oral antidiabetic drugs (metformin, alphaglucosidase inhibitors, sulfonylurea, or meglitindes)
Heise et al.	2011	18 to 75 years, T2DM, A1C 7% to 11%, BMI of 25 to $37 \mathrm{~kg} / \mathrm{m}^{2}$, insulin-naive (no previous insulin treatment or insulin treatment for ≤ 14 days in the 3 months before trial), treated with up to two OADs in the 2 months before trial at stable maximum doses or at least half maximum allowed doses	A1C of 7% to 11%
Gallwitz et al.	2011	Adults, T2DM, A1C 6.5\% to 10.0\%	A1C 6.5% to 10.0% on metformin
Arechavaleta et al.	2011	≥ 18 years, T2DM, with inadequate glycemic control, A1C $\geq 6.5 \%$ and $\leq 9.0 \%$ on metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$) as well as diet and exercise	A1C 6.5\% to 9.0\% on metformin
Yang et al.	2011	18 to 80 years (18 to 75 years for Chinese subjects), T2DM, one or more oral antidiabetic drugs (OADs) for at least 3 months, A1C level $\geq 7.0 \%$ and $\leq 11.0 \%$ for subjects on OAD monotherapy or $\geq 7.0 \%$ and $\leq 10.0 \%$ for subjects on OAD combination therapy, $\mathrm{BMI} \leq 45.0 \mathrm{~kg} / \mathrm{m}^{2}$	A1C $\geq 7.0 \%$ and $\leq 11.0 \%$ on metformin
Taskinen et al.	2011	18 to 80 years, T2DM, $\mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$, metformin ($\geq 1,500 \mathrm{mg} /$ day or maximum tolerated dose) and not more than one other oral antidiabetes medication, A1C 7.0% to 10.0%	A1C 7.0% to 10.0% on metformin and not more than one other OAD
Forst et al.	2010	21 to 75 years, T2DM for at least 3 months, BMI 25 to $40 \mathrm{~kg} / \mathrm{m}^{2}$, inadequate glycemic control despite treated with metformin alone or with metformin and one other oral hypoglycemic drug other than rosiglitazone or pioglitazone. For patients previously treated with metformin and one other OAD, inadequate glycemic control was defined as A1C level 7.0% to 9.0%; for patients previously treated with metformin alone, inadequate glycemic control was defined as A1C from 7.5% to 10.0%	A1C 7.5\% to 10\%
Goke et al.	2010	≥ 18 years, T2DM, A1C $>6.5 \%$ to 10.0% on metformin $\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 6.5\% to 10.0\%
Scheen et al.	2010	≥ 18 years, T2DM, uncontrolled (A1C 6.5\% to 10.0\%) despite metformin ($\geq 1,500 \mathrm{mg}$)	A1C 6.5\% to 10.0\%

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Stenlof et al.	2010	18 to 77 years, T2DM, inadequate glycemic control (A1C 7% to 10%) on metformin IR or metformin XR $1,500 \mathrm{mg} / \mathrm{d}$, $\mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$, fasting C-peptide concentration $1 \mathrm{ng} / \mathrm{mL}$ ($0.33 \mathrm{nmol} / \mathrm{L}$)	A1C 7\% to 10\% on metformin
Ratner et al.	2010	30 to 75 years, T2DM of at least 1 year's duration, inadequately controlled (A1C ≥ 7.0 and $<9.0 \%$ on metformin, $\geq 1,000 \mathrm{mg} / \mathrm{d}$	A1C $\geq 7.0 \%$ and $<9.0 \%$ on metformin
Bergenstal et al.	2010	≥ 18 years T2DM, otherwise healthy, A1C of 7.1% to 11.0% on metformin, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C of 7.1% to 11.0% on metformin
Bailey et al.	2010	18 to 77 years, T2DM, A1C 7\% to 10\%, C-peptide concentration $0.34 \mathrm{nmol} / \mathrm{L}$ or more, $\mathrm{BMI} 45 \mathrm{~kg} / \mathrm{m}^{2}$ or less, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 7\% to 10\%
Filozof et al.	2010	18 to 78 years, T2DM, A1C 7.5% to 11.0%, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 7.5\% to 11.0\%
DeFronzo et al.	2010	18 to 75 years, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, stable body weight for at least 6 months, A1C 6.8 to 10.0\%, metformin, absence of islet cell autoantibodies	NR
Pratley et al.	2010	18 to 80 years, T2DM, A1C 7.5% to 10.0%, BMI $45.0 \mathrm{~kg} / \mathrm{m}^{2}$ or lower, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 7.5\% to 10.0\%
Apovian et al.	2010	18 to 75 years, T2DM, metformin or a sulfonylurea, A1C 6.6% to 10.0%, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $39.9 \mathrm{~kg} / \mathrm{m}^{2}$, stable body weight (not varying by 5% for at least 6 months before screening)	NR
Kadoglou et al.	2010	Inadequaate control on metformin ($850 \mathrm{mg} / \mathrm{d}$), $\mathrm{A} 1 \mathrm{C}>6.5 \%, \mathrm{BMI}>25 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 6.5\%
Petrica et al.	2009	T2DM for at least 5 years, poor glycemic control, A1C > 7\% on metformin	A1C > 7\%
Scheen et al.	2009	35 to 75 years, T2DM, A1C $>6.5 \%$ despite diet alone or oral glucose-lowering drugs, with or without insulin	A1C > 6.5\%
Blonde et al.	2009	18 to 80 years, T2DM, inadequately controlled A1C of 7% to 10% on metformin ($\geq 1,000 \mathrm{mg} /$ day), BMI 22 to $41 \mathrm{~kg} / \mathrm{m}^{2}$, fasting plasma glucose $<270 \mathrm{mg} / \mathrm{dL}$ ($15 \mathrm{mmol} / \mathrm{L}$)	A1C 7\% to 10\%
Defronzo et al.	2009	18 to 77 years, T2DM, A1C $\geq 7.0 \%$ and $\leq 10.0 \%$; metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$, but not $>2,550 \mathrm{mg} / \mathrm{d}$), fasting C-peptide concentration $\geq 1.0 \mathrm{ng} / \mathrm{mL}, \mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$.	A1C $\geq 7.0 \%$ and $\leq 10.0 \%$
Home et al.	2007	40 to 75 years, T2DM, inadequately controlled, metformin or sulphonylureas, $\mathrm{BMl}>25.0 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{~A} 1 \mathrm{C}>7.0 \%$ to 9.0%	A1C > 7.0\% to 9.0\%
Papathanassio u et al.	2009	T2DM, A1C > 6.5\% on metformin, normal liver enzymes and renal function	A1C > 6.5\%
Goodman et al.	2009	18 to 78 years, A1C 7.5% to 11%, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, fasting blood glucose $<270 \mathrm{mg} / \mathrm{dL}$ ($<15 \mathrm{mmol} / \mathrm{L}$)	A1C 7.5\% to 11\%
Bunck et al.	2009	30 to 75 years, A1C 6.5% to 9.5%, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, metformin	A1C 6.5% to 9.5% on metformin
Kaku et al.	2009	≥ 20 and <65 years, T2DM, treated with diet and exercise, but no antidiabetic drugs other than metformin	A1C 6.5\% to 10\%

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Nauck et al.	2008	18 to 80 years, "historical" diagnosis of T2DM, inadequate glycemic control, A1C 7.0% to 10.0% despite metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), BMI 23 to $45 \mathrm{~kg} / \mathrm{m}^{2}$, C-peptide concentration $\geq 0.26 \mathrm{nmol} / \mathrm{L}(0.8 \mathrm{ng} / \mathrm{mL})$, serum creatinine $<1.5 \mathrm{mg} / \mathrm{dL}$ (men) or $<1.4 \mathrm{mg} / \mathrm{dL}$ (women), fasting plasma glucose < $275 \mathrm{mg} / \mathrm{dL}$ ($<15.3 \mathrm{mmol} / \mathrm{L}$)	A1C 7.0\% to 10.0\%
Ferrannini et al.	2009	18 to 73 years, T2DM, A1C 6.5% to 8.5%, metformin ($1,500 \mathrm{mg} / \mathrm{d}$), BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 6.5\% to 8.5\%
Gao et al.	2009	21 to 75 years, treated immediate release metformin ($\geq 1,000 \mathrm{mg} / \mathrm{d}$) and SU; or SU/metformin combination therapy, A1C 7.1% and $11.0 \%, \mathrm{BMI}>21 \mathrm{~kg} / \mathrm{m}^{2}$ and $<35 \mathrm{~kg} / \mathrm{m}^{2}$.	A1C $\geq 7 \%$ to $\leq 11 \%$
Nauck et al.	2009	18 to 80 years, T2DM, $\mathrm{A} 1 \mathrm{C} 7 \%$ to 11%, $\mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$	A1C between 7\% and 11\%
Scott et al.	2008	18 to 75 years, T2DM, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), inadequate glycemic control (A1C $\geq 7 \%$ and $\leq 11 \%$)	A1C 7\% to 11\%
Komajda et al.	2008	40 to 75 years, T2DM, $\mathrm{BMI}>25.0 \mathrm{~kg} / \mathrm{m}^{2}$ and $\mathrm{A} 1 \mathrm{C} 7.1 \%$ to 9.0%, on maximum permitted or tolerated doses of metformin or a sulfonylurea (glibenclamide [glyburide], glimepiride or gliclazide), blood press $<180 / 105 \mathrm{~mm} \mathrm{Hg}$	A1C 7.1% to 9.0% on metformin or sulfonylurea monotherapy
Khanolkar et al.	2008	T2DM, suboptimal glycemic control (A1C > 6.5\%) on metformin	A1C > 6.5\% on metformin
Garcia-Soria et al.	2008	T2DM for > 6 months but < 10 years, metformin alone ($\geq 1,500 \mathrm{mg} / \mathrm{d}$ or highest tolerated dose) or in combination with a glitazone (any labelled dose)	NR
Raz et al.	2008	18 to 78 years, T2DM, metformin monotherapy or any other single ODA, or being treated with metformin in combination with another ODA, A1C value 8\% to 11%	A1C 8\% to 11\% on metformin
Hamann et al.	2008	Overweight (BMI $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$), T2DM, A1C $\geq 7 \%$ and $<10 \%$, metformin ($\geq 850 \mathrm{mg} /$ day)	A1C 7\% to 10\%
Bolli et al.	2008	18 to 77 years, T2DM, A1C 7.5% to 11.0%, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, fasting plasma glucose < $15 \mathrm{mmol} / \mathrm{L}$	A1C of 7.5% to 11.0% at the screening visit while receiving a stable dose of metformin $\geq 1,500 \mathrm{mg} /$ day (inadequately controlled with prior metformin monotherapy)
Bosi et al.	2007	18 to 78 years, T2DM, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), A1C 7.5% to 11.0%, BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, fasting blood glucose < $15 \mathrm{mmol} / \mathrm{L}$	A1C 7.5\% to 11.0\% on metformin
Nauck et al.	2007	18 to 78 years, T2DM, not on an ODA, ODA monotherapy, or metformin in combination with another ODA	A1C 6.5\% and 10\% after the metformin dose-stable period (8-weeks run-in)
Brazg et al.	2007	25 to 75 years, T2DM, inadequate glycemic control, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), $\mathrm{A1C} \geq 6.5 \%$ and $<10 \%$, fasting plasma glucose $\leq 240 \mathrm{mg} / \mathrm{dL}$ at screening	On a stable dose of $1,500 \mathrm{mg} /$ day for 6 weeks before the screening visit and A1C 6.5\% and < 10\% and fasting plasma glucose $240 \mathrm{mg} / \mathrm{dL}$

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Derosa et al.	2007	"Caucasian", ≥ 18 years, T2DM, poor glycemic control (A1C > 7.5\%) or experienced adverse effects with diet and oral hypoglycemic drugs, such as SU or metformin, and diagnosed metabolic syndrome and triglyceridemia (triglycerides $\geq 1.70 \mathrm{mmol} / \mathrm{L} 10$), hypertension (systolic/diastolic blood pressure, $\geq 30 / 85 \mathrm{~mm} \mathrm{Hg}$), fasting C-peptide level $>0.33 \mathrm{nmol} / \mathrm{L}, \mathrm{BMI} 25.0 \mathrm{~kg} / \mathrm{m}^{2}$ to $28.1 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 7.5\%
Charbonnel et al.	2006	18 to 78 years, T2DM, inadequate glycemic control, A1C ≥ 7 and $\leq 10 \%$ on metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C ≥ 7 and $\leq 10 \%$
Nauck et al.	2006	18 to 70 years, T2DM for a minimum of 1 year, treated with at least 50% of maximum dose of 1 or 2 ODA(s) (except TZD), BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 8% to 13%, fasting plasma glucose $\geq 10 \mathrm{mmol} / \mathrm{L}$	At least 50% of maximum dose of one or two ODA(s) (except a TZD)
Weissman et al.	2005	18 to 75 years, T2DM, A1C of 6.5% to 8.5% for subjects having received prior combination treatment (metformin + SU) and 7\% to 10\% for drug-naive or prior monotherapy subjects; fasting plasma glucose of 7.0 to $15.0 \mathrm{mmol} / \mathrm{L}$ (126 to $270 \mathrm{mg} / \mathrm{dL}$); and a BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$. Previous treatment could include either diet and exercise or oral therapy (acarbose, SU, metformin or metformin + SU). Any subject previously receiving metformin or metformin + SU must have received metformin $\leq 1,000 \mathrm{mg} /$ day for at least 3 months prior to study entry. Subjects must have stopped previous treatment with TZDs at least 3 months prior to screening.	A1C of 6.5% to 8.5% for subjects having received prior combination treatment (metformin + SU) and 7\% to 10\% for drug-naive or prior monotherapy subjects
Bakris et al.	2006	40 to 80 years, T2DM, previously treated with diet and exercise alone, a single OAD, or combination oral antidiabetic therapy; capillary fasting plasma glucose levels $>6.6 \mathrm{mmol} / \mathrm{L}$ at visit 3; able to tolerate netformin at a minimum dose of $1 \mathrm{~g} / \mathrm{d}$	Fasting plasma glucose levels $>6 \mathrm{mmol} / \mathrm{L}$ on previous treatment with diet and exercise alone, a single OAD, or combination oral antidiabetic therapy, baseline A1C is 8.3% to 8.5%.
Ristic et al.	2006	T2DM for ≥ 6 months, inadequately controlled on metformin ($\geq 1,000 \mathrm{mg} / \mathrm{d}$) and diet and exercise, A1C 6.8% to 9.0%, BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $35 \mathrm{~kg} / \mathrm{m}^{2}$	6.8\% to 9.0\%
Umpierrez et al.	2006	18 to 79 years, T2DM for at least 6 months, metformin (1 g / d to $2.5 \mathrm{~g} / \mathrm{d}$) or extended release metformin ($0.5 \mathrm{~g} / \mathrm{d}$ to $2.0 \mathrm{~g} / \mathrm{d}$), $\mathrm{BMI} \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 7.5% to 10%, fasting blood glucose 126 to $235 \mathrm{mg} / \mathrm{dL}(7 \mathrm{mmol} / \mathrm{L}$ to $13 \mathrm{mmol} / \mathrm{L})$, C-peptide concentration $\geq 0.27 \mathrm{nmol} / \mathrm{L}$	A1C 7.5\% to 10\% on metformin
Garber et al.	2006	20 to 78 years with T2DM requiring oral therapy, metformin ($1,500 \mathrm{mg} / \mathrm{d}$), A1C $>7.0 \%$ and $\leq 12.0 \%$, BMI $\geq 23 \mathrm{~kg} / \mathrm{m}^{2}$ and $\leq 45 \mathrm{~kg} / \mathrm{m}^{2}$.	A1c $>7.0 \%$ to $<=\leq 12 \%$ on MET
Kvapil et al.	2006	Not adequately controlled on metformin ($850 \mathrm{mg} / \mathrm{d}$), A1C 7.5% to 13.0%	
Poon et al.	2005	18 to 65 years, T2DM, A1C 6.8% to 9.0% on metformin, fasting blood glucose $<240 \mathrm{mg} / \mathrm{dL}$, BMI $27 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, stable body wieght, no clinically relevant abnormal laboratory test values	NR
Feinglos et al.	2005	30 to 81 years, T2DM for at least 6 months, A1C 7.0% to 8.5%, inadequate controlled metformin ($\geq 1,000 \mathrm{mg} / \mathrm{d}$), BMI $27 \mathrm{~kg} / \mathrm{m}^{2}$ to $38 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0% to 8.5% on metformin

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
DeFronzo et al.	2005	19 to 78 years, T2DM, meformin, fasting blood glucose $<13.3 \mathrm{mmol} / \mathrm{L}(<240 \mathrm{mg} / \mathrm{dL})$, $\mathrm{BMI} 27 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 7.1% to 11.0%, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), stable weight stable for 3 months, no clinically significant abnormal laboratory test values (> 25% outside normal laboratory values)	A1C 7.1\% to 11\%
Matthews et al.	2005	35 to 75 years, A1C $\geq 7.5 \%$ or $\leq 11.0 \%$; fasting C-peptide of $\geq 1.5 \mathrm{ng} / \mathrm{mL}(0.50 \mathrm{nmol} / \mathrm{L})$ and stable or worsening glycemic control for ≥ 3 months before screening	Patients inadequately managed with metformin alone (at $\geq 50 \%$ of the maximum recommended dose or at the maximum tolerated dose for ≥ 3 months) were screened
Ahrén et al.	2004	≥ 30 years, T2DM for at least 6 months, A1C 7.0\% to 9.5% on metformin, BMI $20 \mathrm{~kg} / \mathrm{m}^{2}$ to $35 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 9.5\% on metformin
Schernthaner et al.	2004	> 35 years, T2DM, diet alone or in combination with metformin or an alpha-glucosidase inhibitor (acarbose or miglitol), A1C 6.9\% to 11.5%	A1C 6.9% to 11.5%, and have been treated for at least 3 months with diet alone or in combination with metformin or an alpha-glucosidase inhibitor (acarbose or miglitol)
Raskin et al.	2003	>18 years, T2DM for at least 3 months and BMI values of $24 \mathrm{~kg} / \mathrm{m}^{2}$ to $42 \mathrm{~kg} / \mathrm{m}^{2}$. Subjects were stratified by baseline A1C value (9% or 9%). Enrolled patients had A1C values 7% and 12% in previous monotherapy with a sulfonylurea (at 25% of the maximum dose), metformin ($1,000 \mathrm{mg} /$ day), or low-dose Glucovance (glyburide 2.5 mg and metformin 500 mg).	A1C values 7% and 12% in previous monotherapy with a sulfonylurea (at 25% of the maximum dose), metformin ($1,000 \mathrm{mg} / \mathrm{day}$), or low-dose Glucovance (glyburide 2.5 mg and metformin 500 mg).
Phillips et al.	2003	≥ 40 years, T2DM for 6 months or longer, insufficiently controlled by metformin, BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $35 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 6.8% to 10.2%	A1C 7\% to 10\% on metformin
Marre et al.	2002	>18 years, T2DM, fasting blood glucose $\geq 7 \mathrm{mmol} / \mathrm{L}$ ($126 \mathrm{mg} / \mathrm{dL}$) despite metformin ($\geq 850 \mathrm{mg}$ b.i.d. or $\geq 500 \mathrm{mg}$ t.i.d.) and diet and exercise, $\mathrm{BMI}<40 \mathrm{~kg} / \mathrm{m}^{2}$	NR
Marre et al.	2002	≥ 30 years, T2DM for ≥ 6 months, metformin ($>1,500 \mathrm{mg} / \mathrm{d}$), BMI 20 to $35 \mathrm{~kg} / \mathrm{m}^{2}$, A1C 6.8% to 11%	6.8% to 11% i
Gomez-Perez et al.	2002	40 to 80 years, T2DM, fasting C-peptide level ≥ 0.8 $\mathrm{ng} / \mathrm{mL}$, fasting plasma glucose level $\geq 140 \mathrm{mg} / \mathrm{dL}$ and $\leq 300 \mathrm{mg} / \mathrm{dL}$ at weeks 0 and 2 of the metformin maintenance period	NR
Van Gaal et al.	2001	30 to 75 years, T2DM of at least 1 year, inadequately controlled by diet and metformin, A1C $\geq 7.5 \%$ to $\leq 10.5 \%$, $\mathrm{BMI} \mathrm{kg} / \mathrm{m}^{2} 23$ to $40 \mathrm{~kg} / \mathrm{m}^{2}$, stable body weight (<5\% change) over the 3 months preceding enrolment	Metformin >3 months, $\mathrm{A} 1 \mathrm{C} \geq 7.5 \%$
Charpentier et al.	2001	35 to 70 years, newly diagnosed (< 1 year) T2DM, inadequately controlled, metformin monotherapy, fasting blood glucose 7.8 to $13.9 \mathrm{mmol} / \mathrm{L}$, serum creatinine $<110 \mu \mathrm{~mol} / \mathrm{L}, \mathrm{BMI} \geq 23.0 \mathrm{~kg} / \mathrm{m}^{2}$ (women) or $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$ (men), no evidence or history of spontaneous weight loss or ketonuria associated with glucosuria	Fasting blood glucose criteria ($7.8 \mathrm{mmol} / \mathrm{L}$ to $13.9 \mathrm{mmol} / \mathrm{L}$)

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Halimi et al.	2000	30 to 70 years, T2DM diagnosed at least 1 year before study, $\mathrm{BMI} \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$ and $\leq 35.0 \mathrm{~kg} / \mathrm{m}^{2}$, poor glycemic control ($\mathrm{A} 1 \mathrm{C} \geq 7.0 \%$ and $<11.0 \%$) on metformin ($850 \mathrm{mg} / \mathrm{d}$), serum creatinine level < $135 \mu \mathrm{~mol} / \mathrm{L}$, transaminases, alkaline phophatase and bilirubin liver function parameters less than twice the upper limit of normal, a gamma-GT liver function test less than three times the upper limit of normal, and a fasting C-peptide value of $\geq 0.20 \mu \mathrm{~g} / \mathrm{L}$	A1C $>7.0 \%$ and $\leq 11.0 \%$ for any assay performed during the previous 3 months
Einhorn et al.	2000	A1C value $\geq 8.0 \%$ on metformin, $\mathrm{BMI} 25 \mathrm{~kg} / \mathrm{m}^{2}$ to $45 \mathrm{~kg} / \mathrm{m}^{2}$, fasting C-peptide level $>1.0 \mathrm{ng} / \mathrm{mL}$	A1C $\geq 8.0 \%$, fasting C-peptide ~ 1.0 $\mathrm{ng} / \mathrm{mL}$, patients who had been receiving a stable regimen of metformin for ≥ 30 days.
Fonseca et al.	2000	40 to 80 years, T2DM, FPG concentrations 7.8 to $16.7 \mathrm{mmol} / \mathrm{L}$ (140 and $300 \mathrm{mg} / \mathrm{dL}$) on metformin ($2.5 \mathrm{~g} / \mathrm{d}$), fasting C-peptide $\geq 0.27 \mathrm{nmol} / \mathrm{L}(0.8 \mathrm{ng} / \mathrm{mL})$, BMI $22 \mathrm{~kg} / \mathrm{m}^{2}$ to $38 \mathrm{~kg} / \mathrm{m}^{2}$, stable weight (no more than 10% change between screening and baseline)	Fasting blood glucose $7.7 \mathrm{mmol} / \mathrm{L}$ to $16.7 \mathrm{mmol} / \mathrm{L}(140 \mathrm{mg} / \mathrm{dL}$ to $300 \mathrm{mg} / \mathrm{dL})$
Moses	1999	40 to 75 years, T2DM, A1C > 7.1\% on metformin (1 to 3 $\mathrm{g} /$ day), $\mathrm{BMI} \geq 21 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 7.1\%
Rosenstock et al.	1998	>30 years, T2DM, inadequately controlled on diet and metformin (2,000 or $2,500 \mathrm{mg} / \mathrm{d}$), no other pharmacological therapy for type 2 diabetes was allowed for at least 56 days before screening, A1C 7% to 10%, stable body weight (within 3 kg) for at least 4 weeks	A1C 7\% to 10\%
Wolever et al.	1997	≥ 18 years, T2DM for at least 6 months, A1C >7\%, except for patients in the diet only group (>6.5\%).	A1C > 7.0\% for treatment groups, $>6.5 \%$ for diet alone subgroup
Strozik et al.	2015	T2DM, A1C 7.5%, metformin ($1,500 \mathrm{mg} / \mathrm{d}$), BMI $25 \mathrm{~kg} / \mathrm{m}^{2}$ to $35 \mathrm{~kg} / \mathrm{m}^{2}$	NR
Qiu et al.	2014	18 to 80 years, T2DM, inadequate glycemic control (A1C $\geq 7.0 \%$ [$53 \mathrm{mmol} / \mathrm{mol}]$ and $\leq 10.5 \%[91 \mathrm{mmol} / \mathrm{mol}]$) on metformin monotherapy ($\geq 2,000 \mathrm{mg} /$ day, or $\geq 1,500 \mathrm{mg} / \mathrm{d}$ if unable to tolerate a higher dose), fasting plasma glucose $<15 \mathrm{mmol} / \mathrm{L}$ at week 2 , and fasting fingerstick glucose ≥ 6.1 and $<15 \mathrm{mmol} / \mathrm{L}$ on day 1	A1C 7.0\% to 10.5\%
Gaal et al.	2014	Obese ($\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$), ≥ 18 to <50 years, T2DM diagnosed at least 1 year before screening, insufficiently controlled with metformin ($1.5 \mathrm{~g} / \mathrm{d}$), $\mathrm{A} 1 \mathrm{C} \geq 7.0 \%$ and $\leq 10 \%$	$\mathrm{A} 1 \mathrm{C} \geq 7.0 \%$ and $\leq 10 \%$
Bhandare et al.	2013	>18 years, $\mathrm{A1C}>6.5 \%$, fasting plasma glucose $<270 \mathrm{mg} / \mathrm{dL}$, metformin ($1,000 \mathrm{mg} / \mathrm{d}$), inadequate glycemic control	A1C > 6.5\% on metformin
Raskin	2007	18 to 75 years, insulin-naive, $\mathrm{BMI}<40 \mathrm{~kg} / \mathrm{m}^{2}$, body weight $<125 \mathrm{~kg}$ (275 lbs), A1C $\geq 8 \%$, metformin ($\geq 1,000 \mathrm{mg} / \mathrm{d}$) as a single drug or in OAD combination therapy	A1C $\geq 8 \%$, and to have been previously treated with metformin $\geq 1,000 \mathrm{mg} /$ day, as a single drug or in OAD combination therapy, for at least 3 months before the trial
Leiter	2005	20 to 80 years, T2DM, fasting blood glucose $\geq 7 \mathrm{mmol} / \mathrm{L}$, A1C $\leq 9.5 \%$, metformin ($\leq 1700 \mathrm{mg} / \mathrm{d}$)	$\begin{aligned} & \text { FPG }>7.0 \mathrm{mmol} / \mathrm{L} \text { and } \leq 14.0 \mathrm{mmol} / \mathrm{L} \\ & \text { plus A1C } \leq 9.5 \% \end{aligned}$

Author	Year	Inclusion Criteria	Criteria for Inadequate Control
Kilo et al.	2003	≥ 18 years, T2DM, body weight $\leq 100 \mathrm{~kg}, \mathrm{BMI} \leq 40 \mathrm{~kg} / \mathrm{m}^{2}$, naive insulin treatment, inadequate glycemic control ($\mathrm{A} 1 \mathrm{C} \geq 7.5 \%$), metformin as monotherapy or in combination with a sulfonylurea or repaglinide, fasting blood glucose $>126 \mathrm{mg} / \mathrm{dL}$ ($>6.99 \mathrm{mmol} / \mathrm{L}$)	Not able to achieve the fasting blood glucose target of $90 \mathrm{mg} / \mathrm{dL}$ to $126 \mathrm{mg} / \mathrm{dL}$ on metformin only
Ohira et al.	2014	T2DM, A1C > 7.0\%, metformin ($500 \mathrm{mg} / \mathrm{d}$)	A1C > 7.0\% on metformin
Yang et al.	2015	≥ 18 years, inadequately controlled T2DM (A1C $\geq 7.5 \%$ and $\leq 10.5 \%$), metformin monotherapy ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	A1C 7.5\% to 10.5\%
NCT01841697	2015	T2DM, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$)	NR
NCT00484419	2009	A1C 7.0% to 10.0% on metformin, may be withdrawn from other (non-metformin) drugs if A1C is 6.5% to 9.5% at screening	A1C 7% to 10% (6.5\% to 9.5% if on other OADs)
NCT01682759	2012	T2DM, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), inadequate glycemic control	NR
NCT00367055	2010 (last updated)	40 to 75 years, T2DM for at least 1 year, metformin (1.5 g to 3 g$), \mathrm{A} 1 \mathrm{C}>6.5 \%$ and $<8 \%, \mathrm{BMI}>25 \mathrm{~kg} / \mathrm{m}^{2}$ and $<35 \mathrm{~kg} / \mathrm{m}^{2}$	A1C > 6.5\% and $<8 \%$ on metformin
NCT01882907	2015 (last update)	18 to 80 years, A1C 7% to 11%, fasting blood glucose $<270 \mathrm{mg} / \mathrm{dL}$ ($15 \mathrm{mmol} / \mathrm{L}$)	A1C 7\% to 11\%
NCT01973231	2015 (last update)	T2DM, metformin (at least $1,000 \mathrm{mg} / \mathrm{d}$ and up to $3,000 \mathrm{mg} / \mathrm{d}$), A1C 7.5% to $10.5 \%, \mathrm{BMI} \geq 20 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.5\% to 10.5\%
NCT02008682	2016 (last update)	≥ 18 years, T2DM, metformin (at least $1,500 \mathrm{mg} / \mathrm{d}$ or maximum tolerated dose above or equal to $1,000 \mathrm{mg} / \mathrm{d}$), $\mathrm{A} 1 \mathrm{C} 7.0 \%$ to $10.0 \%, \mathrm{BMI} \leq 45.0 \mathrm{~kg} / \mathrm{m}^{2}$	A1C 7.0\% to 10.0\%
LavalleGonzalez et al.	2013	≥ 18 to ≤ 80 years, inadequate glycemic control (A1C $\geq 7.0 \%$ to $\leq 10.5 \%$), metformin ($\geq 2,000 \mathrm{mg} /$ day [or $\geq 1,500 \mathrm{mg} / \mathrm{d}$ if unable to tolerate higher dose]), fasting plasma glucose $<15 \mathrm{mmol} / \mathrm{L}$, fasting fingerstick glucose $\geq 6.1 \mathrm{mmol} / \mathrm{L}$ and $<15 \mathrm{mmol} / \mathrm{L}$ on day 1	A1C 7.0\% to 10.5\%
Chen et al.	NA	20 to 70 years, $\mathrm{BMI} 19 \mathrm{~kg} / \mathrm{m}^{2}$ to $35 \mathrm{~kg} / \mathrm{m}^{2}$; T2DM, metformin ($\geq 1,500 \mathrm{mg} / \mathrm{d}$), A1C 7.0% to 11%	A1C 7.5% to 11% during screening or A1C 7.0% to 11% before randomization

A1C = glycated hemoglobin; b.i.d. = twice daily; BMI = body mass index; CHD = coronary heart disease; HDL-C = high-density lipoprotein cholesterol; IR = immediate release; $\mathrm{MI}=$ myocardial infarction; $\mathrm{NA}=$ not available; $\mathrm{NR}=$ not reported; $\mathrm{OAD}=$ oral antidiabetes drugs; $\mathrm{SU}=$ sulfonylurea; T2DM = type 2 diabetes mellitus;
t.i.d. = three times daily; TSH = thyroid-stimulating hormone; TZD = thiazolidinediones; XR = extended release.

Appendix 6: Research Question 2 - Study Characteristics

Trial Name	First Author (Last Name)	Year of Publication	Description of Background Therapy Drugs	Trial Registration Number, If Provided	Number of Countries	Primary Outcome of Interest	Funding	Parallel RCT	Double Blind?
ELIZA	Pfeffer	2015	Insulin + oral drug, MET+SUL	NCT01147250	49	Composite (CV death, nonfatal MI, nonfatal stroke, or hospitalization for unstable angina)	Sanofi, ELIXA	YES	YES
TECOS	Green	2015	Medications taken alone or in combination: MET+SUL+TZD+INS	NCT00790205	-	Composite (CV death, nonfatal MI, nonfatal stroke, or unstable angina requiring hospitalization)	Merck Sharp \& Dohme Corp.	YES	YES
EMPA-REG	Zinman	2014	Monotherapy: MET, INS; dual therapy: MET+SUL, MET+INS	NCT01131676	-	Composite (CV death, including fatal stroke and fatal MI, nonfatal MI, and nonfatal stroke)	Boehringer Ingelheim Eli Lilly	YES	YES
LEADER	Marso	2013	Monotherapy: insulin (human NPH, long-acting analog, and premix); dual: OADs, INS + OADs	NCT01179048	410 sites in 32 countries	Composite (CV death, nonfatal MI or nonfatal stroke)	Novo Nordisk	YES	YES
EXAMINE	White	2013	"Existing antihyperglycemic... therapy" (other than DPP-4 or GLP-1)	NCT00968708	49 countries	Composite (CV death, nonfatal MI, nonfatal stroke	Takeda Development Centre Americas	YES	YES
SAVOR- TMI	Scirica	2013	Insulin, SU, and or MET (combinations and types not provided)	NCT01107886	26 countries (790 centres)	Composite (CV death, fatal MI or fatal ischemic stroke)	AstraZeneca and Bristol-Myers Squibb	YES	YES

Trial Name	First Author (Last Name)	Year of Publication	Description of Background Therapy Drugs	Trial Registration Number, If Provided	Number of Countries	Primary Outcome of Interest	Funding	Parallel RCT	Double Blind?
CANVAS	Neal	2013	Insulin, SU, MET at baseline	NCT01032629	386 centres in 24 countries	Composite of cardiovascular death, nonfatal MI, and nonfatal stroke	Janssen Global Services, LLC	YES	YES
SPREAD- DIMACD	Hong	2013	SU, MET, TZD, Glinide, INS, but not specified	NCT00513630	Single country, sites NR China	Composite of recurrent cardiovascular events, including nonfatal MI, nonfatal stroke or arterial revascularization by percutaneous transluminal coronary angioplasty or by coronary artery bypass graft, death from a cardiovascular cause, and death from any cause	Shanghai Jiao Tong University School of Medicine	YES	YES
PROactive	Dormandy	2005	Monotherapy: MET only, SU only, INS only; Dual therapy: MET+SUL, MET+INS, SUL+INS; triple therapy: MET+SUL+INS; other combinations of "glucoselowering drugs and other medications"	NCT00174993	321 centres in 19 European countries	Composite (all-cause mortality, nonfatal MI including silent MI, stroke, acute coronary syndrome, endovascular or surgical intervention on the coronary or leg arteries, or amputation above the ankle)	Takeda Pharmaceutical Company and Eli Lilly and Company	YES	YES
NA	Giles	2008	Pioglitazone or glyburide with or without insulin	NCT00521820	US + non-US sites: Argentina, Colombia, Mexico	Progression of congestive heart failure progression, defined as a composite of CV mortality and hospitalization or ER visit for heart failure	Takeda Pharmaceuticals	YES	YES

Trial Name	First Author (Last Name)	Year of Publication	Description of Background Therapy Drugs	Trial Registration Number, If Provided	Number of Countries	Primary Outcome of Interest	Funding	Parallel RCT	Double Blind?
RECORD	Home	2007	MET or SUL	NCT00379769	Europe and Australasia	The primary end point was hospitalization (for acute MI, congestive heart failure, stroke, unstable angina pectoris, transient ischemic attack, unplanned cardiovascular revascularization, amputation of extremities, or any other definite cardiovascular reason) or death from cardiovascular causes (including heart failure, acute MI , sudden death, and death caused by acute vascular events including stroke); time to first occurrence	GlaxoSmithKline	YES	NO Open label

CV = cardiovascular; DPP-4 = dipeptidyl peptidase 4 inhibitor; GLP-1 = glucagon-like peptide-1 receptor agonist; $\mathrm{HR}=; \mathrm{INS}=$ insulin; $\mathrm{MET}=\mathrm{metformin} ; \mathrm{MI}=\mathrm{myocardial}$ infarction; $\mathrm{NCT}=$ clinicaltrials.gov identifier; NPH = neutral protamine Hagedorn; NR = not reported; OAD = oral diabetes drug; SUL = sulfonylurea; TZD = thiazolidinediones.

Appendix 7: Research Question 2 - Patient Characteristics of Included Studies

Trial Name	First Author (Last Name)	Year	Included Population	Treatment (Number Randomized)	Mean Age, Years, Mean (SD)	\% Male	\% Smoker	BMI	Previous MI
ELIZA	Pfeffer	2015	T2DM and had an acute coronary event within 180 days before screening	PLA $(3,034)$ LIX $20 \mathrm{mcg} / \mathrm{d}(3,034)$	60 (9.7)	0.69	0.12	$\begin{aligned} & 30.2 \\ & (5.7) \end{aligned}$	44\%
TECOS	Green	2015	≥ 50 years, T2DM and cardiovascular disease, A1C 6.5\% to 8.0\%	$\begin{gathered} \text { PLA }(7,339) \\ \text { SIT } 100 \mathrm{mg} / \mathrm{d} \\ (7,332) \end{gathered}$	65.5 (8.0)	0.70	0.11	$\begin{aligned} & 30.2 \\ & (5.6) \end{aligned}$	85\%
EMPA-REG	Zinman	2014	≥ 18 years with T2DM, $\geq 7.0 \%$ and $\leq 9.0 \%$ (drug-naive) or with $\mathrm{A} 1 \mathrm{C} \geq 7.0 \%$ and $\leq 10.0 \%$ (any background antidiabetes therapy), high risk of CV events (≥ 1 of the following: history of $\mathrm{MI}>2$ months earlier; multi-vessel CAD; single-vessel CAD; unstable angina >2 months earlier with evidence of single- or multi-vessel CAD; stroke > 2 months earlier; occlusive peripheral artery disease)	PLA $(2,333)$ EMP $10 \mathrm{mg} / \mathrm{d}$ $(2,345)$ EMP $25 \mathrm{mg} / \mathrm{d}$ $(2,342)$	63.1 (8.6)	0.71	0.13	NR	46\%
LEADER	Marso	2013	T2DM, A1C $\geq 7.0 \%, \geq 50$ and ≥ 1 of coronary heart disease, cerebrovascular disease, peripheral vascular disease, chronic kidney disease stage 3 or greater, or chronic heart failure NYHA Class II or III) or ≥ 60 years and at least one cardiovascular risk factor (microalbuminuria, proteinuria, hypertension, and left ventricular hypertrophy, left ventricular systolic or diastolic dysfunction or an ankle-brachial index of less than 0.9)	PLA $(4,672)$ LIR $1.8 \mathrm{mg} / \mathrm{d}(4,668)$	64.3 (7.2)	0.64	0.12	$\begin{aligned} & 32.5 \\ & \text { (6.3) } \end{aligned}$	30\%
EXAMINE	White	2013	T2DM and an acute coronary syndrome (acute MI or unstable angina requiring hospitalization) within previous 15 to 90 days. Further criteria for the diagnosis. A1C 6.5% to 11.0% (insulin) or A1C 7.0% to 11.0%	$\begin{gathered} \text { PLA }(2,679) \\ \text { ALO } 6.25 \text { to } 25 \mathrm{mg} / \mathrm{d} \\ (2,701) \end{gathered}$	61.0	0.68	0.14	NR	88\%
SAVOR- TMI	Scirica	2013	≥ 40 years, T2DM, A1C $\geq 6.5 \%$ and $\leq 12.0 \%$, and either a history of established CV disease or multiple risk factors (55 years old [male] or 60 years old [female] and have at least one of the following additional risk factors: dyslipidemia, hypertension, or active smoking) for vascular disease but without established CV disease	PLA $(8,212)$ SAX $5 \mathrm{mg} / \mathrm{d}(8,280)$	65.0 (8.6)	0.67	0.13	$\begin{gathered} \text { Median: } \\ 30.5 \end{gathered}$	75\%

Trial Name	First Author (Last Name)	Year	Included Population	Treatment (Number Randomized)	Mean Age, Years, Mean (SD)	\% Male	\% Smoker	BMI	Previous MI
CANVAS	Neal	2013	≥ 30 years, T2DM and a history of cardiovascular events or ≥ 50 years old with T2DM and high risk of CV events, $\mathrm{A} 1 \mathrm{C} \geq 7.0 \% \text { to } \leq 10.5 \%$	PLA $(1,442)$ CAN $100 \mathrm{mg} / \mathrm{d}$ $(1,445)$	62.4 (8.0)	0.66	18.00	$\begin{aligned} & 32.1 \\ & (6.2) \end{aligned}$	NR
SPREADDIMACD	HONG	2013	≤ 80 years, T2DM and diagnosed CAD. Fasting plasma glucose $7 \mathrm{mmol} / \mathrm{L}$ and/or 2-hour oral glucose tolerance test $11.1 \mathrm{mmol} / \mathrm{L}$ and fasting plasma glucose, $15 \mathrm{mmol} / \mathrm{L}$	MET $1,500 \mathrm{mg} / \mathrm{d}$ (156) GLI $30 \mathrm{mg} / \mathrm{d}$ (148)	NR	0.78	0.38	$\begin{aligned} & 25.2 \\ & (3.0) \end{aligned}$	54\%
PROactive	Dormandy	2005	35 to 75 years, T2DM, A1C $>6.5 \%$ and evidence of extensive macrovascular disease	PLA $(2,633)$ PIO $45 \mathrm{mg} / \mathrm{d}(2,605)$	61.8 (7.7)	0.66	0.14	$\begin{aligned} & 30.9 \\ & (4.8) \\ & \hline \end{aligned}$	94\%
NA	Giles	2008	>18 years age, $\mathrm{A} 1 \mathrm{C}>7.0 \%, \mathrm{BMI}<48 \mathrm{~kg} / \mathrm{m}^{2}$, NYHA functional Class II/III HF, left ventricular systolic dysfunction	GLY $15 \mathrm{mg} / \mathrm{d}$ (256) PIO $45 \mathrm{mg} / \mathrm{d}$ (262)	63.4 (9.38)	0.77	NR	NR	NR
RECORD	Home	2007	40 to 75 years, T2DM, $\mathrm{BMI}>25.0$; $\mathrm{A} 1 \mathrm{C} 7.0 \%$ to 9.0%	PLA $(2,227)$ ROS $8 \mathrm{mg} / \mathrm{d}(2,220)$	58.8 (8.3)	0.52	0.15	$\begin{aligned} & 31.5 \\ & (4.9) \\ & \hline \end{aligned}$	5\%

 LIX = lixisenatide; MET = metformin; $\mathrm{MI}=$ myocardial infarction; $\mathrm{NA}=$ not available; $\mathrm{NR}=$ not reported; $\mathrm{NYHA}=$ New York Heart Association; $\mathrm{PIO}=$ pioglitazone; $\mathrm{PLA}=$ placebo; ROS = rosiglitazone; SAX = saxagliptin; SD = standard deviation; SIT= sitagliptin; T2DM = type 2 diabetes mellitus.
Note: Data are those reported for the whole population. If not reported, characteristics are for control group.

Appendix 8: Research Question 1 - Risk Of Bias Assessment

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
Nauck et al. 2014	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Ross et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Moon et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gupta et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Hissa et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Inagaki et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Odawara et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Chen et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Kawamori et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
White et al. 2014	Yes (low risk of bias)				
Kadowaki et al. 2013	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Neutel et al. 2013	Yes (low risk of bias)				
Chawla et al. 2013	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Bergenstal et al. 2012	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Cho et al. 2010	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Wang et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Jin et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Xiao et al. 2015	Yes (low risk of bias)	Not applicable			
Rosenstock et al. 2015	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Rosenstock et al. 2015	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	Yes (low risk of bias)
Kim et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Kashiwagi et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Aaboe et al. 2015	Unclear	Unclear	Yes (low risk of bias)	Unclear	Not applicable
Schumm-Draeger et al. 2015	Yes (low risk of bias)				
Ji et al. 2015	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gurkan et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Unclear	Not applicable
Del Prato et al. 2014	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Nandy et al. 2014	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
Forst et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Dungan et al. 2014	Yes (low risk of bias)				
Ridderstrale et al. 2014	Yes (low risk of bias)				
Ohira et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Unclear	Not applicable
Ahren et al. 2014	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Derosa et al. 2014	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Unclear	Unclear
Diamant et al. 2014	Yes (low risk of bias)				
Haring et al. 2014	Yes (low risk of bias)				
Bolli et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Berndt-Zipfel et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Genovese et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Rosenstock et al. 2013	Yes (low risk of bias)				
Kim et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Cefalu et al. 2013	Yes (low risk of bias)				
Derosa et al. 2013	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Henry et al. 2013	Yes (low risk of bias)				
Ahrén et al. 2013	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Kapitza et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Charbonnel et al. 2013	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Forst et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Rhee et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Wilding et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Derosa et al. 2012	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Hermans et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Derosa et al. 2012	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Guerci et al. 2012	Unclear	Yes (low risk of bias)			
Monnier et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Rizzo et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Seino et al. 2012	Yes (low risk of bias)				
Yang et al. 2012	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gallwitz et al. 2012	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Srivastava et al. 2012	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Unclear	Unclear

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
Koren et al. 2012	No (high risk of bias)	No (high risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Unclear
Pan et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gallwitz et al. 2012	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Aschner et al. 2012	Yes (low risk of bias)				
Rosenstock et al. 2012	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
DeFronzo et al. 2012	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Bolinder et al. 2012	Yes (low risk of bias)				
Fonseca et al. 2012	Yes (low risk of bias)				
Wang et al. 2011	Yes (low risk of bias)	No (high risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Yang et al. 2011	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Stephens et al. 2011	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Petrica et al. 2011	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Terra et al. 2011	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Derosa et al. 2011	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Derosa et al. 2011	Yes (low risk of bias)				
Pfutzner et al. 2011	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Zinman et al. 2011	Yes (low risk of bias)				
Heise et al. 2011	Yes (low risk of bias)				
Gallwitz et al. 2011	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Arechavaleta et al. 2011	Yes (low risk of bias)				
Yang et al. 2011	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Taskinen et al. 2011	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Forst et al. 2010	Unclear	Yes (low risk of bias)			
Goke et al. 2010	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Scheen et al. 2010	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Stenlof et al. 2010	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Ratner et al. 2010	Yes (low risk of bias)				
Bergenstal et al. 2010	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Bailey et al. 2010	Yes (low risk of bias)				
Filozof et al. 2010	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
DeFronzo et al. 2010	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Pratley et al. 2010	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
Apovian et al. 2010	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Kadoglou et al. 2010	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Petrica et al. 2009	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	Not applicable
Scheen et al. 2009	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Blonde et al. 2009	Yes (low risk of bias)				
Defronzo et al. 2009	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Home et al. 2009	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Unclear	Unclear
Papathanassiou et al. 2009	No (high risk of bias)	No (high risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Goodman et al. 2009	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Bunck et al. 2009	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Kaku et al. 2009	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Nauck et al. 2008	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Ferrannini et al. 2009	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gao et al. 2009	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Nauck et al. 2009	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Scott et al. 2008	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Komajda et al. 2008	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	Not applicable
Khanolkar et al. 2008	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Garcia-Soria et al. 2008	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Raz et al. 2008	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Hamann et al. 2008	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	Unclear	Yes (low risk of bias)
Bolli et al. 2008	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Home et al. 2007	Yes (low risk of bias)	Not applicable			
Bosi et al. 2007	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Nauck et al. 2007	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Brazg et al. 2007	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
Derosa et al. 2007	Yes (low risk of bias)				
Charbonnel et al. 2006	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Nauck et al. 2006	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Ristic et al. 2006	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Umpierrez et al. 2006	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Garber et al. 2006	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
Kvapil et al. 2006	Yes (low risk of bias)				
Poon et al. 2005	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Feinglos et al. 2005	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
DeFronzo et al. 2005	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Matthews et al. 2005	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Ahrén et al. 2004	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Schernthaner et al. 2004	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Phillips et al. 2003	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Marre et al. 2002	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Marre et al. 2002	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gomez-Perez et al. 2002	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Van Gaal et al. 2001	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Charpentier et al. 2001	Yes (low risk of bias)				
Halimi et al. 2000	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Unclear	Unclear
Einhorn et al. 2000	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
Fonseca et al. 2000	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Moses 1999	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Rosenstock et al. 1998	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Wolever et al. 1997	Unclear	Unclear	Yes (low risk of bias)	Unclear	Unclear
Strozik et al. 2015	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Unclear	Unclear
Qiu et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Gaal et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Bhandare et al. 2013	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Raskin 2007	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Leiter 2005	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Kilo et al. 2003	Yes (low risk of bias)				
Ohira et al. 2014	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
Yang et al. 2015	Yes (low risk of bias)				

CADTH

Studies	Adequate Sequence Generation2	Allocation Concealment	Blinding of Participants, Personnel and Outcome Assessors	Incomplete Outcome Data for Efficacy	Incomplete Outcome Data for Safety
21399 Merck Sharp \& Dohme Corp. 2015	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
21508 Daiichi Sankyo Inc. 2009	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Not applicable
21509 Merck Sharp \& Dohme Corp. 2012	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
21577 NCT record 2010 (last updated)	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
21670 NCT record 2015 last update	Unclear	Unclear	Yes (low risk of bias)	No (high risk of bias)	No (high risk of bias)
21802 NCT record 2015 (last update)	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
21811 NCT record 2016 (last update)	Unclear	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
$\begin{aligned} & 22053 \text { Lavalle-Gonzalez } \\ & 2013 \end{aligned}$	Yes (low risk of bias)	Unclear	Yes (low risk of bias)	Yes (low risk of bias)	Yes (low risk of bias)
22343 Chen 2016	Yes (low risk of bias)				

Appendix 9: Research Question 1 — Detailed Network Meta-Analysis Results for the Reference-Case Analysis

Glycated Hemoglobin (A1C)

Table 1: A1C: Mean Differences for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	-0.70 (-0.83 to -0.58)
MET + MEG		-0.52 (-0.81 to -0.25)
MET + DPP-4		-0.58 (-0.68 to -0.48)
MET + SGLT-2		-0.67 (-0.84 to -0.49)
MET + GLP-1		-0.88 (-1.05 to -0.71)
MET + AGI		-0.21 (-0.86 to 0.43)
MET + TZD		-0.77 (-0.92 to -0.63)
MET + INS-BA		-0.85 (-1.16 to -0.53)
MET + INS-BI		-0.94 (-1.41 to -0.48)
MET + MEG	MET + SUL	0.18 (-0.11 to 0.47)
MET + DPP-4		0.12 (0.01 to 0.24)
MET + SGLT-2		0.04 (-0.16 to 0.24)
MET + GLP-1		-0.18 (-0.35 to 0.00)
MET + AGI		0.49 (-0.14 to 1.12)
MET + TZD		-0.07 (-0.20 to 0.07)
MET + INS-BA		-0.15 (-0.45 to 0.17)
MET + INS-BI		-0.24 (-0.69 to 0.21)
MET + DPP-4	MET + MEG	-0.06 (-0.34 to 0.24)
MET + SGLT-2		-0.14 (-0.47 to 0.19)
MET + GLP-1		-0.36 (-0.68 to -0.03)
MET + AGI		0.31 (-0.38 to 1.01)
MET + TZD		-0.25 (-0.55 to 0.05)
MET + INS-BA		-0.33 (-0.73 to 0.09)
MET + INS-BI		-0.42 (-0.94 to 0.11)
MET + SGLT-2	MET + DPP-4	-0.09 (-0.28 to 0.10)
MET + GLP-1		-0.30 (-0.46 to -0.13)
MET + AGI		0.37 (-0.28 to 1.00)
MET + TZD		-0.19 (-0.33 to -0.05)
MET + INS-BA		-0.27 (-0.57 to 0.04)
MET + INS-BI		-0.36 (-0.82 to 0.10)
MET + GLP-1	MET + SGLT-2	-0.21 (-0.45 to 0.03)
MET + AGI		0.45 (-0.22 to 1.11)
MET + TZD		-0.11 (-0.32 to 0.11)
MET + INS-BA		-0.18 (-0.53 to 0.18)

Treatment	Reference	MD (95\% Crl)
MET + INS-BI		-0.27 (-0.76 to 0.22)
MET + AGI	MET + GLP-1	0.67 (0.00 to 1.32)
MET + TZD		0.11 (-0.09 to 0.30)
MET + INS-BA		0.03 (-0.27 to 0.33)
MET + INS-BI		-0.06 (-0.53 to 0.41)
MET + TZD	MET + AGI	-0.56 (-1.20 to 0.09)
MET + INS-BA		-0.64 (-1.34 to 0.08)
MET + INS-BI		-0.73 (-1.51 to 0.06)
MET + INS-BA	MET + TZD	-0.08 (-0.40 to 0.25)
MET + INS-BI		-0.17 (-0.63 to 0.30)
MET + INS-BI	MET + INS-BA	-0.09 (-0.56 to 0.37)
Random-effects model		

AGI = alpha-glucosidase inhibitor; CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; MD = mean difference; MEG = meglitinide; MET = metformin; INS-BA = basal insulin; INS-BI = biphasic insulin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 1: Consistency Plot for A1C (Reference-Case Analysis)

Nonsevere Hypoglycemia

Table 2: Nonsevere Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for
All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + SUL	MET	7.59 (5.25 to 11.22)	6.88 (4.89 to 9.83)	9.11 (6.16 to 13.10)
MET + MEG		7.08 (3.33 to 15.73)	6.47 (3.20 to 12.97)	8.44 (3.52 to 17.73)
MET + DPP-4		0.77 (0.55 to 1.10)	0.77 (0.55 to 1.10)	-0.35 (-0.80 to 0.13)
MET + SGLT-2		1.00 (0.62 to 1.58)	1.00 (0.63 to 1.57)	-0.01 (-0.63 to 0.81)
MET + GLP-1		0.75 (0.46 to 1.25)	0.75 (0.46 to 1.25)	-0.38 (-0.94 to 0.36)
MET + TZD		0.58 (0.32 to 1.01)	0.58 (0.32 to 1.01)	-0.64 (-1.17 to 0.02)
MET + INS-BA		3.18 (1.73 to 5.80)	3.08 (1.71 to 5.42)	3.21 (1.14 to 6.64)
MET + INS-BI		6.92 (3.34 to 14.52)	6.34 (3.22 to 12.13)	8.25 (3.47 to 16.73)
MET + MEG	MET + SUL	0.93 (0.43 to 2.05)	0.94 (0.47 to 1.86)	-0.64 (-6.56 to 8.45)
MET + DPP-4		0.10 (0.07 to 0.14)	0.11 (0.08 to 0.15)	-9.46 (-13.26 to -6.60)
MET + SGLT-2		0.13 (0.08 to 0.21)	0.14 (0.09 to 0.23)	-9.10 (-13.02 to -6.14)
MET + GLP-1		0.10 (0.06 to 0.16)	0.11 (0.07 to 0.18)	-9.48 (-13.35 to -6.56)
MET + TZD		0.08 (0.04 to 0.14)	0.08 (0.05 to 0.15)	-9.75 (-13.68 to -6.76)
MET + INS-BA		0.42 (0.24 to 0.72)	0.45 (0.26 to 0.74)	-5.79 (-9.52 to -2.46)
MET + INS-BI		0.91 (0.46 to 1.77)	0.92 (0.49 to 1.64)	-0.82 (-5.92 to 6.73)
MET + DPP-4	MET + MEG	0.11 (0.05 to 0.24)	0.12 (0.06 to 0.25)	-8.79 (-18.05 to -3.85)
MET + SGLT-2		0.14 (0.06 to 0.32)	0.15 (0.07 to 0.34)	-8.43 (-17.68 to -3.46)
MET + GLP-1		0.11 (0.04 to 0.25)	0.12 (0.05 to 0.26)	-8.80 (-18.05 to -3.84)
MET + TZD		0.08 (0.03 to 0.20)	0.09 (0.04 to 0.21)	-9.07 (-18.38 to -4.09)
MET + INS-BA		0.45 (0.17 to 1.12)	0.48 (0.20 to 1.11)	-5.15 (-14.60 to 0.65)
MET + INS-BI		0.97 (0.36 to 2.70)	0.98 (0.40 to 2.43)	-0.23 (-10.25 to 9.40)
MET + SGLT-2	MET + DPP-4	1.29 (0.79 to 2.07)	1.28 (0.79 to 2.04)	0.34 (-0.29 to 1.14)
MET + GLP-1		0.97 (0.60 to 1.56)	0.97 (0.61 to 1.55)	-0.03 (-0.54 to 0.63)
MET + TZD		0.74 (0.41 to 1.35)	0.74 (0.41 to 1.34)	-0.30 (-0.85 to 0.37)
MET + INS-BA		4.13 (2.35 to 7.05)	3.98 (2.31 to 6.59)	3.56 (1.55 to 6.88)
MET + INS-BI		8.96 (4.47 to 17.61)	8.17 (4.28 to 14.79)	8.59 (3.89 to 16.99)
MET + GLP-1	MET + SGLT-2	0.75 (0.41 to 1.41)	0.76 (0.42 to 1.41)	-0.37 (-1.25 to 0.48)
MET + TZD		0.58 (0.29 to 1.16)	0.58 (0.29 to 1.16)	-0.64 (-1.53 to 0.19)
MET + INS-BA		3.19 (1.63 to 6.38)	3.09 (1.61 to 5.99)	3.20 (1.09 to 6.63)
MET + INS-BI		6.96 (3.17 to 15.54)	6.36 (3.03 to 13.16)	8.24 (3.47 to 16.74)
MET + TZD	MET + GLP-1	0.77 (0.37 to 1.52)	0.77 (0.38 to 1.51)	-0.26 (-1.06 to 0.47)
MET + INS-BA		4.25 (2.34 to 7.52)	4.09 (2.29 to 7.05)	3.58 (1.62 to 6.80)
MET + INS-BI		9.25 (4.40 to 19.24)	8.43 (4.20 to 16.34)	8.62 (3.93 to 16.99)
MET + INS-BA	MET + TZD	5.56 (2.55 to 11.87)	5.34 (2.50 to 11.11)	3.85 (1.71 to 7.26)
MET + INS-BI		12.13 (5.01 to 28.48)	11.01 (4.77 to 24.15)	8.89 (4.08 to 17.32)
MET + INS-BI	MET + INS-BA	2.18 (1.24 to 3.85)	2.06 (1.22 to 3.44)	4.97 (1.08 to 11.82)
Random-effects model	Residual deviance	128.8 vs. 140 data points		
	Deviance information criteria	678.986		

[^1]Figure 2: Consistency Plot for Nonsevere Hypoglycemia (Reference-Case Analysis)

Severe Hypoglycemia

Table 3: Severe Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + SUL	MET	$6.40(2.24$ to 17.51$)$	$6.30(2.23$ to 17.01$)$	$1.43(0.43$ to 3.56$)$
MET + MEG		$1.16(0.00$ to 838.50$)$	$1.16(0.00$ to 283.50$)$	$0.04(-0.39$ to 61.12$)$
MET + DPP-4		$0.91(0.34$ to 2.41$)$	$0.91(0.34$ to 2.41$)$	$-0.02(-0.29$ to 0.25$)$
MET + SGLT-2		$0.61(0.13$ to 2.36$)$	$0.61(0.14$ to 2.36$)$	$-0.10(-0.37$ to 0.29$)$
MET + GLP-1		$1.80(0.63$ to 5.96$)$	$1.79(0.63$ to 5.90$)$	$0.21(-0.13$ to 1.14$)$
MET + TZD		$2.32(0.30$ to 16.08$)$	$2.31(0.30$ to 15.51$)$	$0.35(-0.23$ to 3.78$)$
MET + INS-BA		$3.08(0.65$ to 27.65$)$	$3.06(0.65$ to 26.17$)$	$0.55(-0.12$ to 5.67$)$
MET + INS-BI		$0.18(0.33$ to 91.77$)$	$3.34(0.33$ to 77.51$)$	$0.64(-0.23$ to 14.82$)$
MET + MEG		$0.14(0.07$ to 0.26$)$	$0.15(0.07$ to 0.26$)$	$-1.46(-3.45$ to -0.58$)$
MET + DPP-4		$0.09(0.02$ to 0.44$)$	$0.10(0.02$ to 0.45$)$	$-1.52(-3.68$ to -0.47$)$
MET + SGLT-2		$0.29(0.09$ to 0.89$)$	$0.29(0.09$ to 0.89$)$	$-1.15(-3.25$ to -0.11$)$
MET + GLP-1				

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD		0.36 (0.04 to 2.65)	0.36 (0.05 to 2.59)	-0.98 (-3.14 to 2.24)
MET + INS-BA		0.52 (0.10 to 2.83)	0.53 (0.10 to 2.75)	-0.71 (-2.73 to 3.43)
MET + INS-BI		0.55 (0.06 to 8.71)	0.56 (0.06 to 7.72)	-0.64 (-2.79 to 12.59)
MET + DPP-4	MET + MEG	0.78 (0.00 to 724.70)	0.78 (0.00 to 723.50)	-0.07 (-60.77 to 0.43)
MET + SGLT-2		0.51 (0.00 to 440.00)	0.51 (0.00 to 438.50)	-0.14 (-61.04 to 0.44)
MET + GLP-1		1.54 (0.00 to 1,528.00)	1.54 (0.01 to 1,517.00)	0.15 (-60.61 to 1.26)
MET + TZD		2.19 (0.00 to 2,691.00)	2.17 (0.00 to 2,653.00)	0.22 (-60.69 to 3.58)
MET + INS-BA		2.82 (0.00 to 3,962.00)	2.80 (0.01 to 3,774.00)	0.40 (-60.08 to 4.54)
MET + INS-BI		3.09 (0.01 to 6 to 114.00)	3.03 (0.01 to 5,225.00)	0.35 (-59.18 to 12.48)
MET + SGLT-2	MET + DPP-4	0.66 (0.15 to 2.98)	0.66 (0.15 to 2.97)	-0.08 (-0.38 to 0.34)
MET + GLP-1		2.02 (0.68 to 6.16)	2.01 (0.68 to 6.11)	0.24 (-0.10 to 1.12)
MET + TZD		2.54 (0.32 to 19.19)	2.53 (0.32 to 18.41)	0.37 (-0.22 to 3.81)
MET + INS-BA		3.61 (0.74 to 20.31)	3.59 (0.74 to 19.19)	0.59 (-0.07 to 5.53)
MET + INS-BI		3.92 (0.42 to 60.32)	3.89 (0.42 to 51.22)	0.67 (-0.15 to 14.74)
MET + GLP-1	MET + SGLT-2	2.97 (0.61 to 17.70)	2.96 (0.61 to 17.55)	0.31 (-0.17 to 1.27)
MET + TZD		3.89 (0.33 to 35.21)	3.87 (0.33 to 34.19)	0.45 (-0.25 to 3.90)
MET + INS-BA		5.25 (0.73 to 56.37)	5.21 (0.73 to 53.43)	0.65 (-0.09 to 5.73)
MET + INS-BI		5.54 (0.44 to 139.60)	5.50 (0.44 to 121.50)	0.74 (-0.18 to 14.87)
MET + TZD	MET + GLP-1	1.20 (0.15 to 10.72)	1.19 (0.15 to 10.38)	0.09 (-0.81 to 3.49)
MET + INS-BA		1.73 (0.36 to 12.74)	1.72 (0.36 to 12.04)	0.33 (-0.62 to 5.24)
MET + INS-BI		1.91 (0.18 to 34.90)	1.90 (0.18 to 30.66)	0.41 (-0.77 to 14.53)
MET + INS-BA	MET + TZD	1.37 (0.15 to 30.36)	1.37 (0.15 to 28.60)	0.19 (-3.00 to 5.24)
MET + INS-BI		1.45 (0.09 to 67.31)	1.44 (0.10 to 58.50)	0.22 (-2.56 to 14.49)
MET + INS-BI	MET + INS-BA	1.04 (0.16 to 11.39)	1.04 (0.16 to 9.89)	0.03 (-1.96 to 11.35)
Random-effects model	Residual deviance	57.31 vs. 100 data points		
	Deviance information criteria	299.795		

[^2]Figure 3: Consistency Plot for Severe Hypoglycemia (Reference-Case Analysis)

Body Mass Index (BMI)

Table 4: BMI: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	0.80 (-0.36 to 2.08)
MET + DPP-4		-0.33 (-1.30 to 0.58)
MET + GLP-1		-1.11 (-2.54 to 0.38)
MET + AGI		0.22 (-2.59 to 3.11)
MET + TZD		1.41 (0.22 to 2.67)
MET + INS-BA		2.57 (-1.04 to 6.20)
MET + DPP-4	MET + SUL	-1.13 (-2.78 to 0.32)
MET + GLP-1		-1.91 (-3.39 to -0.49)
MET + AGI		-0.58 (-3.19 to 2.02)
MET + TZD		0.61 (-0.62 to 1.81)
MET + INS-BA		1.77 (-1.86 to 5.41)
MET + GLP-1	MET + DPP-4	-0.78 (-2.43 to 1.04)
MET + AGI		0.54 (-2.39 to 3.61)
MET + TZD		1.74 (0.28 to 3.36)
MET + INS-BA		2.89 (-0.78 to 6.61)
MET + AGI	MET + GLP-1	1.32 (-1.64 to 4.30)
MET + TZD		2.52 (0.83 to 4.23)

Treatment	Reference	MD (95\% CrI)
MET + INS-BA		$3.68(0.36$ to 7.01$)$
MET + TZD	MET + AGI	$1.20(-1.66$ to 4.07)
MET + INS-BA		$2.35(-2.14$ to 6.82$)$
MET + INS-BA	MET + TZD	$1.16(-2.58$ to 4.91)
Random-effects model	Residual deviance	28.3 vs. 28 data points
	Deviance information criteria	41.431

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; MD = mean difference; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 4: Consistency Plot for BMI (Reference-Case Analysis)

Weight

Table 5: Weight: Mean Difference for All Treatment Comparisons — Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	$2.11(1.59$ to 2.63)
MET + MEG		$1.26(0.28$ to 2.28$)$
MET + DPP-4		$0.18(-0.22$ to 0.58$)$
MET + SGLT-2		$-2.21(-2.75$ to -1.67$)$
MET + GLP-1	$-1.44(-2.07$ to -0.81$)$	
MET + TZD		$3.20(2.57$ to 3.82$)$

Treatment	Reference	MD (95\% Crl)
MET + INS-BA		2.76 (1.56 to 4.01)
MET + INS-BI		2.91 (0.85 to 5.04)
MET + MEG	MET + SUL	-0.85 (-1.96 to 0.30)
MET + DPP-4		-1.93 (-2.37 to -1.49)
MET + SGLT-2		-4.32 (-5.00 to -3.66)
MET + GLP-1		-3.55 (-4.26 to -2.85)
MET + TZD		1.09 (0.48 to 1.70)
MET + INS-BA		0.65 (-0.57 to 1.95)
MET + INS-BI		0.80 (-1.26 to 2.96)
MET + DPP-4	MET + MEG	-1.08 (-2.18 to -0.02)
MET + SGLT-2		-3.47 (-4.63 to -2.35)
MET + GLP-1		-2.70 (-3.89 to -1.52)
MET + TZD		1.94 (0.77 to 3.10)
MET + INS-BA		1.50 (-0.06 to 3.07)
MET + INS-BI		1.65 (-0.64 to 3.98)
MET + SGLT-2	MET + DPP-4	-2.39 (-2.98 to -1.80)
MET + GLP-1		-1.62 (-2.25 to -0.99)
MET + TZD		3.02 (2.43 to 3.61)
MET + INS-BA		2.59 (1.41 to 3.82)
MET + INS-BI		2.73 (0.70 to 4.84)
MET + GLP-1	MET + SGLT-2	0.78 (-0.02 to 1.57)
MET + TZD		5.41 (4.63 to 6.18)
MET + INS-BA		4.98 (3.68 to 6.31)
MET + INS-BI		5.13 (3.03 to 7.30)
MET + TZD	MET + GLP-1	4.64 (3.85 to 5.42)
MET + INS-BA		4.20 (3.03 to 5.40)
MET + INS-BI		4.35 (2.33 to 6.46)
MET + INS-BA	MET + TZD	-0.44 (-1.70 to 0.90)
MET + INS-BI		-0.29 (-2.39 to 1.90)
MET + INS-BI	MET + INS-BA	0.15 (-1.54 to 1.82)
Random-effects model	Residual deviance	138.4 vs. 148 data points
	Deviance information criteria	307.531

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MEG = meglitinide; MET = metformin; MD = mean difference; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. $=$ versus.

Figure 5: Consistency Plot for Weight (Reference-Case Analysis)

Systolic Blood Pressure (SBP)

Table 6: Systolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	
MET + DPP-4		$0.28(-1.54$ to 2.06)
MET + SGLT-2		$-1.04(-2.34$ to 0.22$)$
MET + GLP-1		$-4.06(-5.24$ to -2.89$)$
MET + TZD		$-2.79(-4.57$ to -1.07$)$
MET + INS-BA		$-2.02(-4.02$ to -0.11$)$
MET + INS-BI		$1.01(-3.04$ to 5.16)
MET + DPP-4		$0.15(-5.62$ to 5.93$)$
MET + SGLT-2		$-1.31(-3.19$ to 0.57$)$
MET + GLP-1		$-4.33(-6.17$ to -2.47$)$
MET + TZD		$-3.07(-5.35$ to -0.78$)$
MET + INS-BA		$-2.29(-3.87$ to -0.76$)$
MET + INS-BI		$0.73(-3.61$ to 5.10$)$
MET + SGLT-2		$-0.13(-6.10$ to 5.84$)$
MET + GLP-1		$-3.02(-4.39$ to -1.61$)$
MET + TZD		$-1.75(-3.46$ to -0.02$)$
MET + INS-BA		$-0.98(-3.01$ to 1.01$)$

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MD = mean difference; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 6: Consistency Plot for SBP (Reference-Case Analysis)

Nocturnal Hypoglycemia

Table 7: Nocturnal Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLP-1	MET + DPP-4	1.45 (0.44 to 5.10)	1.43 (0.45 to 4.59)	1.27 (-1.93 to 9.64)
MET + INS-BA		5.92 (1.82 to 20.08)	5.15 (1.76 to 13.64)	12.38 (2.56 to 32.26)
MET + INS-BI		9.72 (2.37 to 41.27)	7.64 (2.26 to 20.65)	20.11 (4.19 to 50.52)
MET + INS-BA	MET + GLP-1	4.09 (0.73 to 22.49)	3.60 (0.76 to 16.04)	10.90 (-2.21 to 31.18)
MET + INS-BI		6.74 (1.02 to 43.42)	5.35 (1.02 to 23.23)	18.52 (0.16 to 49.09)
MET + INS-BI	MET + INS-BA	1.64 (0.77 to 3.65)	1.48 (0.81 to 2.60)	7.26 (-2.88 to 24.97)
Random-effects model	Residual deviance	10.97 vs. 10 data points		
	Deviance information criteria	61.45		

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; vs. = versus.

Diastolic Blood Pressure (DBP)
Table 8: Diastolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	-0.30 (-1.43 to 0.80)
MET + DPP-4		-1.07 (-1.87 to -0.21)
MET + SGLT-2		-2.22 (-2.99 to -1.41)
MET + GLP-1		-1.09 (-2.13 to -0.01)
MET + TZD		-1.61 (-2.91 to -0.36)
MET + DPP-4	MET + SUL	-0.77 (-1.89 to 0.42)
MET + SGLT-2		-1.92 (-3.05 to -0.73)
MET + GLP-1		-0.79 (-2.11 to 0.58)
MET + TZD		-1.31 (-2.20 to -0.45)
MET + SGLT-2	MET + DPP-4	-1.15 (-2.15 to -0.14)
MET + GLP-1		-0.02 (-1.04 to 0.99)
MET + TZD		-0.54 (-1.87 to 0.69)
MET + GLP-1	MET + SGLT-2	1.13 (-0.11 to 2.36)
MET + TZD		0.61 (-0.77 to 1.88)
MET + TZD	MET + GLP-1	-0.52 (-1.98 to 0.85)
Random-effects model Residual deviance 49.78 vs. 53 data points Deviance information criteria 141.401		

[^3]
LDL Cholesterol

Table 9: Low-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	0.06 (-0.09 to 0.20)
MET + MEG		0.06 (-0.23 to 0.35)
MET + DPP-4		-0.02 (-0.12 to 0.08)
MET + SGLT-2		0.14 (0.02 to 0.27)
MET + GLP-1		-0.02 (-0.17 to 0.13)
MET + TZD		0.23 (0.11 to 0.35)
MET + INS-BA		-0.18 (-0.47 to 0.11)
MET + MEG	MET + SUL	0.00 (-0.32 to 0.33)
MET + DPP-4		-0.07 (-0.22 to 0.07)
MET + SGLT-2		0.08 (-0.10 to 0.27)
MET + GLP-1		-0.08 (-0.27 to 0.11)
MET + TZD		0.17 (0.05 to 0.29)
MET + INS-BA		-0.24 (-0.55 to 0.07)
MET + DPP-4	MET + MEG	-0.08 (-0.39 to 0.23)
MET + SGLT-2		0.08 (-0.24 to 0.40)
MET + GLP-1		-0.08 (-0.41 to 0.25)
MET + TZD		0.17 (-0.14 to 0.48)
MET + INS-BA		-0.24 (-0.65 to 0.17)
MET + SGLT-2	MET + DPP-4	0.16 (0.02 to 0.30)
MET + GLP-1		0.00 (-0.15 to 0.15)
MET + TZD		0.25 (0.13 to 0.37)
MET + INS-BA		-0.16 (-0.43 to 0.11)
MET + GLP-1	MET + SGLT-2	-0.16 (-0.35 to 0.02)
MET + TZD		0.09 (-0.07 to 0.25)
MET + INS-BA		-0.32 (-0.63 to -0.02)
MET + TZD	MET + GLP-1	0.25 (0.08 to 0.42)
MET + INS-BA		-0.16(-0.45 to 0.13)
MET + INS-BA	MET + TZD	-0.41(-0.71 to -0.11)
Random-effects model	Residual deviance	71.91 vs. 68 data points
	Deviance information criteria	-131.999

[^4]Figure 7: Consistency Plot for LDL (Reference-Case Analysis)

HDL Cholesterol

Table 10: High-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	-0.02 (-0.06 to 0.01)
MET + MEG		0.00 (-0.06 to 0.05)
MET + DPP-4		-0.01 (-0.03 to 0.02)
MET + SGLT-2		0.06 (0.03 to 0.09)
MET + GLP-1		-0.02 (-0.06 to 0.02)
MET + TZD		0.10 (0.07 to 0.13)
MET + INS-BA		-0.02 (-0.09 to 0.06)
MET + INS-BI		0.03 (-0.05 to 0.11)
MET + MEG	MET + SUL	0.02 (-0.04 to 0.08)
MET + DPP-4		0.02 (-0.01 to 0.05)
MET + SGLT-2		0.09 (0.05 to 0.13)
MET + GLP-1		0.01 (-0.04 to 0.05)
MET + TZD		0.12 (0.10 to 0.15)
MET + INS-BA		0.01 (-0.07 to 0.08)
MET + INS-BI		0.05 (-0.02 to 0.12)
MET + DPP-4	MET + MEG	0.00 (-0.06 to 0.06)
MET + SGLT-2		0.07 (0.01 to 0.13)
MET + GLP-1		-0.01 (-0.08 to 0.05)
MET + TZD		0.11 (0.05 to 0.16)
MET + INS-BA		-0.01 (-0.11 to 0.08)

Treatment	Reference	MD (95\% Crl)
MET + INS-BI		0.03 (-0.06 to 0.13)
MET + SGLT-2	MET + DPP-4	0.07 (0.04 to 0.10)
MET + GLP-1		-0.01 (-0.04 to 0.03)
MET + TZD		0.11 (0.08 to 0.13)
MET + INS-BA		-0.01 (-0.08 to 0.06)
MET + INS-BI		0.03 (-0.04 to 0.11)
MET + GLP-1	MET + SGLT-2	-0.08 (-0.12 to -0.03)
MET + TZD		0.04 (0.00 to 0.08)
MET + INS-BA		-0.08 (-0.16 to 0.00)
MET + INS-BI		-0.04 (-0.12 to 0.05)
MET + TZD	MET + GLP-1	0.12 (0.08 to 0.16)
MET + INS-BA		0.00 (-0.08 to 0.08)
MET + INS-BI		0.04 (-0.04 to 0.13)
MET + INS-BA	MET + TZD	-0.12 (-0.20 to -0.04)
MET + INS-BI		-0.07 (-0.15 to 0.00)
MET + INS-BI	MET + INS-BA	0.04 (-0.06 to 0.15)
Random-effects model Residual deviance 84.6 vs .78 data points Deviance information criteria -333.356		

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MD = mean difference; MEG = meglitinide; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 8: Consistency Plot for High-Density Lipoprotein Cholesterol (Reference-Case Analysis)

Total Adverse Events

Table 11: Total Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	1.14 (0.99 to 1.32)	1.07 (1.00 to 1.15)	3.35 (-0.25 to 6.89)
MET + MEG		1.10 (0.72 to 1.66)	1.05 (0.83 to 1.26)	2.36 (-8.04 to 12.52)
MET + DPP-4		0.97 (0.87 to 1.08)	0.98 (0.93 to 1.04)	-0.81 (-3.52 to 1.93)
MET + SGLT-2		1.03 (0.88 to 1.21)	1.02 (0.93 to 1.10)	0.82 (-3.20 to 4.78)
MET + GLP-1		1.38 (1.12 to 1.68)	1.16 (1.06 to 1.27)	7.94 (2.79 to 12.74)
MET + TZD		1.05 (0.87 to 1.28)	1.03 (0.93 to 1.13)	1.30 (-3.43 to 6.16)
MET + INS-BA		2.20 (1.47 to 3.33)	1.39 (1.20 to 1.57)	18.99 (9.55 to 27.38)
MET + INS-BI		2.32 (1.42 to 3.79)	1.42 (1.18 to 1.63)	20.08 (8.70 to 29.83)
MET + MEG	MET + SUL	0.96 (0.62 to 1.50)	0.98 (0.77 to 1.20)	-1.00 (-11.95 to 9.98)
MET + DPP-4		0.85 (0.76 to 0.95)	0.92 (0.87 to 0.97)	-4.16 (-6.93 to -1.33)
MET + SGLT-2		0.90 (0.75 to 1.10)	0.95 (0.86 to 1.05)	-2.55 (-7.28 to 2.27)
MET + GLP-1		1.20 (0.96 to 1.50)	1.09 (0.98 to 1.20)	4.58 (-1.05 to 10.02)
MET + TZD		0.92 (0.77 to 1.10)	0.96 (0.88 to 1.05)	-2.04 (-6.43 to 2.44)
MET + INS-BA		1.93 (1.29 to 2.89)	1.30 (1.12 to 1.48)	15.65 (6.26 to 23.98)
MET + INS-BI		2.03 (1.26 to 3.27)	1.32 (1.11 to 1.52)	16.73 (5.66 to 26.16)
MET + DPP-4	MET + MEG	0.88 (0.57 to 1.36)	0.94 (0.77 to 1.19)	-3.13 (-13.88 to 7.58)
MET + SGLT-2		0.94 (0.60 to 1.47)	0.97 (0.79 to 1.23)	-1.53 (-12.75 to 9.45)
MET + GLP-1		1.25 (0.79 to 1.98)	1.11 (0.90 to 1.41)	5.58 (-5.86 to 16.92)
MET + TZD		0.96 (0.60 to 1.53)	0.98 (0.79 to 1.25)	-1.03 (-12.52 to 10.46)
MET + INS-BA		2.01 (1.12 to 3.59)	1.33 (1.05 to 1.71)	16.58 (2.76 to 29.86)
MET + INS-BI		2.11 (1.10 to 4.05)	1.35 (1.04 to 1.76)	17.70 (2.23 to 32.03)
MET + SGLT-2	MET + DPP-4	1.07 (0.90 to 1.27)	1.03 (0.94 to 1.13)	1.61 (-2.68 to 5.97)
MET + GLP-1		1.42 (1.16 to 1.73)	1.18 (1.08 to 1.29)	8.74 (3.73 to 13.60)
MET + TZD		1.09 (0.91 to 1.31)	1.04 (0.95 to 1.14)	2.10 (-2.44 to 6.71)
MET + INS-BA		2.28 (1.54 to 3.37)	1.42 (1.22 to 1.59)	19.78 (10.67 to 27.82)
MET + INS-BI		2.39 (1.48 to 3.87)	1.44 (1.21 to 1.65)	20.89 (9.81 to 30.34)
MET + GLP-1	MET + SGLT-2	1.33 (1.04 to 1.71)	1.15 (1.02 to 1.28)	7.10 (0.95 to 13.19)
MET + TZD		1.02 (0.81 to 1.29)	1.01 (0.90 to 1.14)	0.49 (-5.35 to 6.37)
MET + INS-BA		2.13 (1.39 to 3.30)	1.37 (1.16 to 1.58)	18.10 (8.21 to 27.27)
MET + INS-BI		2.25 (1.36 to 3.74)	1.39 (1.15 to 1.62)	19.31 (7.63 to 29.52)
MET + TZD	MET + GLP-1	0.77 (0.59 to 1.00)	0.88 (0.78 to 1.00)	-6.65 (-13.13 to 0.05)
MET + INS-BA		1.60 (1.04 to 2.49)	1.20 (1.02 to 1.38)	11.01 (0.89 to 20.44)
MET + INS-BI		1.69 (1.01 to 2.85)	1.22 (1.00 to 1.43)	12.16 (0.23 to 22.88)
MET + INS-BA	MET + TZD	2.10 (1.36 to 3.21)	1.36 (1.15 to 1.57)	17.69 (7.53 to 26.75)
MET + INS-BI		2.20 (1.32 to 3.64)	1.38 (1.14 to 1.61)	18.78 (6.92 to 28.89)
MET + INS-BI	MET + INS-BA	1.06 (0.67 to 1.63)	1.02 (0.87 to 1.16)	1.19 (-8.91 to 10.29)
Random-effects model	Residual deviance	118.5 vs. 120 data points		
	Deviance information criteria	828.862		

[^5]
Serious Adverse Events

Table 12: Serious Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	0.96 (0.76 to 1.21)	0.96 (0.76 to 1.21)	-0.10 (-0.62 to 0.44)
MET + MEG		3.81 (1.17 to 23.71)	3.57 (1.16 to 15.92)	5.98 (0.39 to 32.42)
MET + DPP-4		0.91 (0.72 to 1.15)	0.91 (0.73 to 1.14)	-0.21 (-0.71 to 0.31)
MET + SGLT-2		1.11 (0.83 to 1.51)	1.11 (0.84 to 1.49)	0.26 (-0.41 to 1.06)
MET + GLP-1		1.05 (0.71 to 1.51)	1.05 (0.71 to 1.50)	0.11 (-0.70 to 1.11)
MET + TZD		1.05 (0.81 to 1.37)	1.05 (0.81 to 1.36)	0.11 (-0.48 to 0.79)
MET + INS-BA		1.48 (0.63 to 3.74)	1.46 (0.63 to 3.53)	1.06 (-0.88 to 5.75)
MET + INS-BI		1.73 (0.42 to 8.43)	1.70 (0.43 to 7.18)	1.63 (-1.36 to 14.28)
MET + MEG	MET + SUL	3.96 (1.23 to 24.36)	3.71 (1.22 to 16.34)	6.06 (0.52 to 32.43)
MET + DPP-4		0.95 (0.82 to 1.10)	0.95 (0.82 to 1.10)	-0.12 (-0.44 to 0.20)
MET + SGLT-2		1.17 (0.87 to 1.55)	1.16 (0.87 to 1.53)	0.36 (-0.31 to 1.11)
MET + GLP-1		1.10 (0.74 to 1.61)	1.09 (0.75 to 1.59)	0.21 (-0.61 to 1.21)
MET + TZD		1.09 (0.89 to 1.37)	1.09 (0.89 to 1.36)	0.19 (-0.26 to 0.77)
MET + INS-BA		1.54 (0.67 to 3.83)	1.52 (0.68 to 3.61)	1.15 (-0.72 to 5.77)
MET + INS-BI		1.83 (0.45 to 8.70)	1.80 (0.45 to 7.43)	1.75 (-1.25 to 14.36)
MET + DPP-4	MET + MEG	0.24 (0.04 to 0.79)	0.26 (0.06 to 0.79)	-6.17 (-32.56 to -0.58)
MET + SGLT-2		0.29 (0.05 to 0.93)	0.31 (0.07 to 0.93)	-5.67 (-32.09 to -0.19)
MET + GLP-1		0.28 (0.04 to 0.96)	0.29 (0.06 to 0.96)	-5.83 (-32.34 to -0.10)
MET + TZD		0.28 (0.04 to 0.92)	0.29 (0.06 to 0.92)	-5.86 (-32.24 to -0.22)
MET + INS-BA		0.39 (0.05 to 1.72)	0.41 (0.07 to 1.68)	-4.70 (-31.69 to 2.51)
MET + INS-BI		0.43 (0.04 to 3.24)	0.45 (0.06 to 2.94)	-4.13 (-31.66 to 9.21)
MET + SGLT-2	MET + DPP-4	1.23 (0.91 to 1.66)	1.23 (0.91 to 1.64)	0.48 (-0.21 to 1.26)
MET + GLP-1		1.16 (0.80 to 1.66)	1.15 (0.80 to 1.64)	0.32 (-0.44 to 1.28)
MET + TZD		1.15 (0.92 to 1.47)	1.15 (0.92 to 1.46)	0.31 (-0.17 to 0.93)
MET + INS-BA		1.63 (0.72 to 4.02)	1.60 (0.72 to 3.79)	1.26 (-0.58 to 5.85)
MET + INS-BI		1.93 (0.47 to 9.13)	1.89 (0.47 to 7.77)	1.85 (-1.14 to 14.41)
MET + GLP-1	MET + SGLT-2	0.94 (0.60 to 1.49)	0.94 (0.61 to 1.47)	-0.16 (-1.19 to 1.03)
MET + TZD		0.93 (0.69 to 1.33)	0.93 (0.70 to 1.32)	-0.18 (-0.96 to 0.70)
MET + INS-BA		1.33 (0.55 to 3.34)	1.32 (0.56 to 3.16)	0.82 (-1.25 to 5.46)
MET + INS-BI		1.57 (0.38 to 7.77)	1.54 (0.38 to 6.64)	1.39 (-1.68 to 14.04)
MET + TZD	MET + GLP-1	1.00 (0.67 to 1.51)	1.00 (0.67 to 1.50)	-0.01 (-1.06 to 0.91)
MET + INS-BA		1.41 (0.61 to 3.46)	1.40 (0.62 to 3.27)	0.95 (-1.03 to 5.43)
MET + INS-BI		1.68 (0.39 to 7.83)	1.65 (0.40 to 6.75)	1.55 (-1.60 to 14.04)
MET + INS-BA	MET + TZD	1.41 (0.58 to 3.48)	1.40 (0.59 to 3.29)	0.96 (-1.08 to 5.50)
MET + INS-BI		1.67 (0.40 to 7.99)	1.64 (0.41 to 6.79)	1.54 (-1.53 to 14.13)
MET + INS-BI	MET + INS-BA	1.18 (0.37 to 4.11)	1.17 (0.38 to 3.67)	0.54 (-2.73 to 11.25)
Random-effects model	Residual deviance	129.3 vs. 140 data points		
	Deviance information criteria	701.988		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; $\operatorname{INS}-\mathrm{BA}=$ basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; $M E G=$ meglitinide; $M E T=$ metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 9: Consistency Plot for Serious Adverse Events (Reference-Case Analysis)

Withdrawals Due to Adverse Events

Table 13: Withdrawals Due to Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + SUL	MET	$0.74(0.51$ to 1.11$)$	$0.75(0.52$ to 1.10$)$	$-0.72(-1.51$ to 0.28$)$
MET + MEG		$0.72(0.21$ to 2.42$)$	$0.72(0.21$ to 2.33$)$	$-0.79(-2.36$ to 3.77$)$
MET + DPP-4		$0.78(0.56$ to 1.09$)$	$0.78(0.57$ to 1.08$)$	$-0.63(-1.36$ to 0.22$)$
MET + SGLT-2		$1.00(0.61$ to 1.66$)$	$1.00(0.62$ to 1.63$)$	$-0.01(-1.15$ to 1.71$)$
MET + GLP-1		$1.81(1.12$ to 2.99$)$	$1.77(1.11$ to 2.84$)$	$2.20(0.34$ to 5.06$)$
MET + TZD		$1.00(0.64$ to 1.64$)$	$1.00(0.65$ to 1.61$)$	$0.00(-1.09$ to 1.64$)$
MET + INS-BA		$0.33(0.07$ to 1.40$)$	$0.34(0.07$ to 1.39$)$	$-1.88(-2.88$ to 1.10$)$
MET + INS-BI		$3.27(0.41$ to 54.86$)$	$3.07(0.42$ to 21.39$)$	$5.93(-1.67$ to 59.10$)$
MET + MEG		$0.96(0.27$ to 3.34$)$	$0.97(0.27$ to 3.19$)$	$-0.08(-1.83$ to 4.48$)$
MET + DPP-4		$1.04(0.76$ to 1.45$)$	$1.04(0.76$ to 1.44$)$	$0.09(-0.66$ to 0.77$)$
MET + SGLT-2		$2.34(0.76$ to 2.39$)$	$1.33(0.77$ to 2.34$)$	$0.70(-0.62$ to 2.42$)$
MET + GLP-1		$1.35(0.91$ to 2.04$)$	$1.34(0.91$ to 2.00$)$	$0.71(-0.22$ to 2.03$)$
MET + TZD				

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BA		0.45 (0.09 to 1.90)	0.45 (0.09 to 1.87)	-1.15 (-2.37 to 1.76)
MET + INS-BI		4.38 (0.56 to 75.00)	4.07 (0.56 to 29.26)	6.63 (-0.96 to 59.76)
MET + DPP-4	MET + MEG	1.09 (0.32 to 3.88)	1.08 (0.33 to 3.81)	0.17 (-4.40 to 1.85)
MET + SGLT-2		1.39 (0.38 to 5.32)	1.38 (0.39 to 5.17)	0.77 (-3.89 to 3.08)
MET + GLP-1		2.51 (0.68 to 9.70)	2.44 (0.69 to 9.15)	2.91 (-1.89 to 6.32)
MET + TZD		1.39 (0.39 to 5.25)	1.38 (0.40 to 5.11)	0.78 (-3.82 to 3.00)
MET + INS-BA		0.46 (0.06 to 3.16)	0.47 (0.07 to 3.10)	-1.03 (-5.55 to 2.17)
MET + INS-BI		4.72 (0.41 to 94.24)	4.34 (0.42 to 41.27)	6.51 (-2.27 to 59.31)
MET + SGLT-2	MET + DPP-4	1.28 (0.74 to 2.22)	1.27 (0.75 to 2.17)	0.62 (-0.66 to 2.34)
MET + GLP-1		2.33 (1.44 to 3.79)	2.26 (1.42 to 3.58)	2.82 (1.01 to 5.57)
MET + TZD		1.29 (0.84 to 2.02)	1.28 (0.84 to 1.98)	0.63 (-0.40 to 2.07)
MET + INS-BA		0.43 (0.09 to 1.78)	0.44 (0.09 to 1.74)	-1.25 (-2.31 to 1.65)
MET + INS-BI		4.21 (0.53 to 72.11)	3.93 (0.54 to 28.14)	6.54 (-1.07 to 59.75)
MET + GLP-1	MET + SGLT-2	1.82 (0.93 to 3.56)	1.77 (0.93 to 3.37)	2.19 (-0.26 to 5.24)
MET + TZD		1.01 (0.54 to 1.91)	1.01 (0.55 to 1.88)	0.02 (-1.88 to 1.87)
MET + INS-BA		0.33 (0.07 to 1.51)	0.34 (0.07 to 1.49)	-1.82 (-3.69 to 1.20)
MET + INS-BI		3.29 (0.38 to 57.58)	3.08 (0.39 to 22.51)	5.89 (-2.01 to 59.10)
MET + TZD	MET + GLP-1	0.55 (0.31 to 1.00)	0.57 (0.33 to 1.00)	-2.17 (-5.00 to -0.02)
MET + INS-BA		0.19 (0.04 to 0.77)	0.19 (0.04 to 0.78)	-3.95 (-6.89 to -0.97)
MET + INS-BI		1.80 (0.22 to 31.25)	1.73 (0.23 to 12.65)	3.65 (-4.52 to 56.64)
MET + INS-BA	MET + TZD	0.33 (0.07 to 1.43)	0.34 (0.07 to 1.41)	-1.83 (-3.60 to 1.05)
MET + INS-BI		3.25 (0.40 to 57.58)	3.05 (0.41 to 22.34)	5.88 (-1.87 to 58.97)
MET + INS-BI	MET + INS-BA	9.89 (1.32 to 161.30)	8.90 (1.31 to 77.99)	7.59 (0.36 to 60.08)
Random-effects model	Residual deviance	146 vs. 149 data points		
	Deviance information criteria	773.773		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MEG = meglitinide; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 10: Consistency Plot for Withdrawals Due to Adverse Events(Reference-Case Analysis)

Urogenital Adverse Events

Table 14: Urogenital Adverse Events (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	$\mathbf{R R}$ (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	$1.02(0.69$ to 1.49$)$	$1.02(0.70$ to 1.48$)$	$0.06(-0.90$ to 1.12$)$
MET + DPP-4		$1.23(0.90$ to 1.72$)$	$1.22(0.90$ to 1.69$)$	$0.59(-0.30$ to 1.59$)$
MET + SGLT-2		$1.06(0.70$ to 1.58$)$	$1.05(0.70$ to 1.56$)$	$0.14(-0.89$ to 1.38$)$
MET + GLP-1		$1.17(0.59$ to 2.27$)$	$1.16(0.59$ to 2.20$)$	$0.42(-1.18$ to 3.05$)$
MET + TZD		$0.71(0.23$ to 2.06$)$	$0.71(0.24$ to 2.01$)$	$-0.75(-2.22$ to 2.55$)$
MET + INS-BA		$0.87(0.07$ to 6.51$)$	$0.88(0.07$ to 5.67$)$	$-0.32(-2.70$ to 12.13$)$
MET + DPP-4		$1.21(0.91$ to 1.66$)$	$1.20(0.91$ to 1.64$)$	$0.54(-0.31$ to 1.39$)$
MET + SGLT-2		$1.03(0.71$ to 1.55$)$	$1.03(0.72$ to 1.53$)$	$0.07(-0.89$ to 1.25$)$
MET + GLP-1		$1.13(0.59$ to 2.27$)$	$1.13(0.59$ to 2.21$)$	$0.35(-1.27$ to 2.99$)$
MET + TZD		$0.69(0.22$ to 2.08$)$	$0.70(0.23$ to 2.03$)$	$-0.80(-2.41$ to 2.56$)$
MET + INS-BA		$0.86(0.07$ to 6.43$)$	$0.86(0.07$ to 5.61$)$	$-0.37(-2.79$ to 12.18$)$
MET + SGLT-2		$0.85(0.57$ to 1.30$)$	$0.86(0.57$ to 1.29$)$	$-0.46(-1.59$ to 0.87$)$
MET + GLP-1		$0.95(0.50$ to 1.79$)$	$0.95(0.51$ to 1.75$)$	$-0.17(-1.70$ to 2.36$)$
MET + TZD		$0.57(0.19$ to 1.61$)$	$0.58(0.20$ to 1.57$)$	$-1.34(-2.80$ to 1.87$)$

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BA		0.71 (0.06 to 5.19)	0.71 (0.06 to 4.55)	-0.93 (-3.29 to 11.51)
MET + GLP-1	MET + SGLT-2	1.11 (0.52 to 2.30)	1.10 (0.53 to 2.23)	0.28 (-1.62 to 2.98)
MET + TZD		0.68 (0.21 to 2.04)	0.68 (0.21 to 1.99)	-0.86 (-2.73 to 2.51)
MET + INS-BA		0.83 (0.07 to 6.24)	0.83 (0.07 to 5.46)	-0.46 (-3.07 to 11.96)
MET + TZD	MET + GLP-1	0.61 (0.21 to 1.68)	0.62 (0.22 to 1.65)	-1.11 (-3.65 to 1.71)
MET + INS-BA		0.75 (0.07 to 4.81)	0.76 (0.07 to 4.25)	-0.70 (-3.81 to 10.86)
MET + INS-BA	MET + TZD	1.22 (0.09 to 11.70)	1.22 (0.09 to 10.28)	0.38 (-3.51 to 12.81)
Random-effects model	Residual deviance	41.08 vs. 46 data points		
	Deviance information criteria	247.955		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea;
TZD = thiazolidinedione; vs. = versus.
Figure 11: Consistency Plot for Urogenital Adverse Events (People) (Reference-Case Analysis)

Renal Adverse Events

Table 15: Renal Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	1.29 (0.45 to 3.60)	1.29 (0.45 to 3.55)	0.26 (-0.77 to 1.57)
MET + DPP-4		1.50 (0.53 to 4.85)	1.49 (0.54 to 4.75)	0.44 (-0.65 to 2.14)
MET + SGLT-2		0.98 (0.41 to 2.36)	0.98 (0.41 to 2.34)	-0.02 (-0.80 to 0.83)
MET + GLP-1		0.87 (0.01 to 18.31)	0.87 (0.01 to 16.10)	-0.11 (-1.31 to 10.97)
MET + TZD		0.75 (0.24 to 2.90)	0.76 (0.24 to 2.87)	-0.21 (-1.09 to 1.19)
MET + DPP-4	MET + SUL	1.16 (0.59 to 2.48)	1.16 (0.60 to 2.45)	0.17 (-0.71 to 1.34)
MET + SGLT-2		0.74 (0.29 to 1.99)	0.74 (0.29 to 1.98)	-0.28 (-1.50 to 0.68)
MET + GLP-1		0.67 (0.01 to 10.85)	0.68 (0.01 to 9.73)	-0.34 (-1.72 to 10.39)
MET + TZD		0.57 (0.29 to 1.57)	0.57 (0.29 to 1.56)	-0.46 (-1.29 to 0.53)
MET + SGLT-2	MET + DPP-4	0.63 (0.21 to 1.82)	0.64 (0.22 to 1.81)	-0.47 (-2.10 to 0.65)
MET + GLP-1		0.58 (0.01 to 8.72)	0.59 (0.01 to 7.77)	-0.49 (-2.05 to 10.06)
MET + TZD		0.49 (0.19 to 1.43)	0.50 (0.20 to 1.42)	-0.64 (-1.94 to 0.44)
MET + GLP-1	MET + SGLT-2	0.93 (0.01 to 17.84)	0.93 (0.01 to 15.73)	-0.06 (-1.32 to 10.80)
MET + TZD		0.77 (0.25 to 2.97)	0.78 (0.25 to 2.94)	-0.18 (-1.07 to 1.16)
MET + TZD	MET + GLP-1	0.86 (0.06 to 54.60)	0.86 (0.06 to 54.05)	-0.10 (-10.70 to 1.21)

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; MET = metformin; OR = odds ratio; RD = risk difference;
RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Unstable Angina

Table 16: Unstable Angina: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + SUL	MET	0.94 (0.24 to 3.56)	0.94 (0.24 to 3.54)	-0.03 (-0.66 to 0.73)
MET + DPP-4		0.98 (0.32 to 3.10)	0.98 (0.32 to 3.08)	$-0.01(-0.58$ to 0.56)
MET + SGLT-2		0.81 (0.15 to 3.58)	0.81 (0.15 to 3.55)	-0.08 (-0.71 to 0.90)
MET + TZD		0.70 (0.14 to 3.13)	0.70 (0.14 to 3.11)	$-0.14(-0.75$ to 0.69)
MET + DPP-4	MET + SUL	1.08 (0.43 to 2.93)	1.08 (0.43 to 2.92)	0.03 (-0.55 to 0.48)
MET + SGLT-2		0.88 (0.22 to 3.20)	0.88 (0.22 to 3.19)	-0.05 (-0.67 to 0.78)
MET + TZD		0.75 (0.29 to 1.86)	0.75 (0.29 to 1.86)	-0.10 (-0.53 to 0.38)
MET + SGLT-2	MET + DPP-4	0.80 (0.18 to 3.64)	0.80 (0.18 to 3.61)	-0.09 (-0.66 to 0.90)
MET + TZD		0.70 (0.18 to 2.32)	0.70 (0.18 to 2.30)	-0.13 (-0.62 to 0.55)
MET + TZD	MET + SGLT-2	0.84 (0.18 to 4.40)	0.84 (0.18 to 4.38)	-0.05 (-0.94 to 0.69)
Random-effects model	Residual deviance	24.26 vs. 29 data points		
	Deviance information criteria	107.69		

[^6]Figure 12: Consistency Plot for Unstable Angina (Reference-Case Analysis)

Transient Ischemic Attack (TIA)
Table 17: Transient Ischemic Attack: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	0.84 (0.07 to 6.94)	0.84 (0.07 to 6.77)	-0.09 (-1.31 to 2.49)
MET + DPP-4		0.57 (0.05 to 5.46)	0.58 (0.05 to 5.39)	-0.25 (-1.42 to 1.49)
MET + SGLT-2		0.66 (0.09 to 4.84)	0.66 (0.09 to 4.80)	-0.21 (-1.35 to 1.19)
MET + TZD		0.71 (0.05 to 7.28)	0.71 (0.06 to 7.05)	-0.16 (-1.35 to 2.86)
MET + DPP-4	MET + SUL	0.69 (0.24 to 2.06)	0.69 (0.24 to 2.05)	-0.12 (-1.75 to 0.53)
MET + SGLT-2		0.84 (0.13 to 5.60)	0.84 (0.14 to 5.57)	-0.06 (-2.38 to 0.89)
MET + TZD		0.86 (0.32 to 2.72)	0.86 (0.32 to 2.67)	-0.05 (-1.09 to 1.41)
MET + SGLT-2	MET + DPP-4	1.19 (0.19 to 8.02)	1.19 (0.19 to 7.97)	0.05 (-1.39 to 1.12)
MET + TZD		1.25 (0.30 to 5.27)	1.25 (0.31 to 5.18)	0.06 (-0.78 to 2.23)
MET + TZD	MET + SGLT-2	1.05 (0.13 to 8.63)	1.05 (0.13 to 8.43)	0.02 (-1.04 to 2.80)
Random-effects model	Residual deviance	20.07 vs. 22 data points		
	Deviance information criteria	87.956		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Figure 13: Consistency Plot for Transient Ischemic Attack (Reference-Case Analysis)

Fractures (People)

Table 18: Fractures Adverse Events (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	1.15 (0.35 to 3.89)	1.15 (0.35 to 3.86)	0.04 (-0.31 to 0.62)
MET + DPP-4		2.02 (0.63 to 6.75)	2.02 (0.63 to 6.69)	0.30 (-0.17 to 1.19)
MET + SGLT-2		1.35 (0.48 to 4.20)	1.35 (0.48 to 4.17)	0.10 (-0.24 to 0.72)
MET + TZD		1.09 (0.30 to 3.95)	1.09 (0.30 to 3.92)	0.02 (-0.30 to 0.74)
MET + DPP-4	MET + SUL	1.73 (0.58 to 5.09)	1.72 (0.58 to 5.04)	0.24 (-0.29 to 1.05)
MET + SGLT-2		1.18 (0.53 to 2.70)	1.18 (0.53 to 2.69)	0.06 (-0.32 to 0.47)
MET + TZD		0.95 (0.18 to 4.48)	0.96 (0.19 to 4.45)	-0.01 (-0.65 to 0.75)
MET + SGLT-2	MET + DPP-4	0.67 (0.21 to 2.31)	0.68 (0.21 to 2.29)	-0.18 (-1.06 to 0.45)
MET + TZD		0.54 (0.11 to 2.44)	0.54 (0.11 to 2.43)	-0.26 (-1.17 to 0.53)
MET + TZD	MET + SGLT-2	0.80 (0.17 to 3.65)	0.80 (0.17 to 3.63)	-0.07 (-0.74 to 0.71)
Random-effects model	Residual deviance	22.74 vs. 32 data points		
	Deviance information criteria	109.921		

[^7]Figure 14: Consistency Plot for Fractures (People) (Reference-Case Analysis)

Appendix 10: Detailed Network Meta-Analysis Results for the Dose-Stratified Analysis

Fracture (People)

Table 19: Fractures (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	0.98 (0.27 to 3.73)	0.98 (0.27 to 3.70)	-0.01 (-0.55 to 0.85)
MET + DPP-L		6.72 (0.27 to 688.30)	6.54 (0.27 to 227.30)	2.62 (-0.44 to 64.94)
MET + DPP-H		1.81 (0.53 to 6.30)	1.80 (0.53 to 6.20)	0.36 (-0.34 to 1.62)
MET + SGL-L		0.90 (0.24 to 3.53)	0.90 (0.24 to 3.50)	-0.04 (-0.57 to 0.88)
MET + SGL-H		1.24 (0.40 to 4.05)	1.24 (0.40 to 4.02)	0.10 (-0.44 to 0.96)
MET + TZD-H		1.04 (0.21 to 5.38)	1.04 (0.21 to 5.28)	0.02 (-0.50 to 1.99)
MET + DPP-L	MET + SUL-T	6.86 (0.24 to 644.90)	6.65 (0.24 to 224.90)	2.59 (-0.57 to 64.90)
MET + DPP-H		1.82 (0.61 to 5.91)	1.81 (0.61 to 5.84)	0.35 (-0.35 to 1.43)
MET + SGL-L		0.92 (0.21 to 4.12)	0.92 (0.21 to 4.09)	-0.03 (-0.84 to 0.86)
MET + SGL-H		1.25 (0.56 to 3.09)	1.25 (0.56 to 3.07)	0.10 (-0.41 to 0.68)
MET + TZD-H		1.06 (0.13 to 8.67)	1.06 (0.13 to 8.49)	0.02 (-0.92 to 2.12)
MET + DPP-H	MET + DPP-L	0.27 (0.00 to 6.87)	0.28 (0.01 to 6.80)	-2.19 (-64.52 to 1.10)
MET + SGL-L		0.13 (0.00 to 4.49)	0.14 (0.00 to 4.46)	-2.63 (-65.01 to 0.65)
MET + SGL-H		0.18 (0.00 to 5.29)	0.19 (0.01 to 5.25)	-2.49 (-64.79 to 0.76)
MET + TZD-H		0.16 (0.00 to 5.88)	0.16 (0.00 to 5.78)	-2.47 (-64.88 to 1.29)
MET + SGL-L	MET + DPP-H	0.50 (0.11 to 2.36)	0.51 (0.11 to 2.34)	-0.38 (-1.66 to 0.64)
MET + SGL-H		0.69 (0.21 to 2.31)	0.69 (0.21 to 2.29)	-0.24 (-1.42 to 0.63)
MET + TZD-H		0.58 (0.07 to 4.39)	0.58 (0.07 to 4.31)	-0.31 (-1.66 to 1.80)
MET + SGL-H	MET + SGL-L	1.37 (0.38 to 5.17)	1.37 (0.38 to 5.13)	0.14 (-0.67 to 0.89)
MET + TZD-H		1.16 (0.13 to 9.47)	1.15 (0.13 to 9.30)	0.05 (-0.97 to 2.14)
MET + TZD-H	MET + SGL-H	0.84 (0.11 to 6.28)	0.84 (0.11 to 6.16)	-0.08 (-1.04 to 2.03)
Random-effects model	Residual deviance	20.36 vs. 25 data points		
	Deviance information criteria	97.939		

[^8]Figure 15: Consistency Plot for Fracture (People) (Dose-Case Analysis)

High-Density Lipoprotein Cholesterol
Table 20: High-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-H		$-0.03(-0.17$ to 0.11$)$
MET + SUL-L		$-0.80(-1.06$ to -0.53$)$
MET + SUL-T		$-0.05(-0.16$ to 0.06$)$
MET + MEG-L		$0.00(-0.30$ to 0.30$)$
MET + MEG-T		$0.05(-0.20$ to 0.29$)$
MET + MEG-H		$0.00(-0.30$ to 0.30$)$
MET + DPP-L		$-0.03(-0.19$ to 0.12$)$
MET + DPP-H		$0.00(-0.08$ to 0.08$)$
MET + SGL-L		$0.04(-0.06$ to 0.15$)$
MET + SGL-H		$0.06(-0.04$ to 0.17$)$
MET + GLP-T		$0.10(-0.12$ to 0.33$)$
MET + GLP-L		$-0.01(-0.26$ to 0.24$)$
MET + GLP-H		$-0.02(-0.14$ to 0.09$)$
MET + AGI-L		$0.01(-0.23$ to 0.25$)$
MET + TZD-L		$0.08(-0.07$ to 0.23$)$
MET + TZD-H		$0.10(0.01$ to 0.19$)$
MET + TZD-T		$0.09(-0.08$ to 0.27$)$
MET + INS-BA-T	$-0.01(-0.24$ to 0.21$)$	

Treatment	Reference	MD (95\% CrI)
MET + INS-BI-T		0.01 (-0.21 to 0.24)
MET + SUL-L	MET + SUL-H	-0.77 (-1.06 to -0.47)
MET + SUL-T		-0.02 (-0.19 to 0.15)
MET + MEG-L		0.03 (-0.30 to 0.37)
MET + MEG-T		0.08 (-0.20 to 0.35)
MET + MEG-H		0.03 (-0.31 to 0.36)
MET + DPP-L		0.00 (-0.21 to 0.20)
MET + DPP-H		0.03 (-0.11 to 0.17)
MET + SGL-L		0.07 (-0.10 to 0.24)
MET + SGL-H		0.09 (-0.07 to 0.26)
MET + GLP-T		0.13 (-0.12 to 0.39)
MET + GLP-L		0.02 (-0.26 to 0.30)
MET + GLP-H		0.01 (-0.15 to 0.16)
MET + AGI-L		0.04 (-0.19 to 0.27)
MET + TZD-L		0.11 (-0.09 to 0.31)
MET + TZD-H		0.13 (-0.01 to 0.27)
MET + TZD-T		0.12 (-0.09 to 0.34)
MET + INS-BA-T		0.02 (-0.24 to 0.27)
MET + INS-BI-T		0.04 (-0.21 to 0.30)
MET + SUL-T	MET + SUL-L	0.74 (0.46 to 1.03)
MET + MEG-L		0.79 (0.39 to 1.20)
MET + MEG-T		0.84 (0.48 to 1.20)
MET + MEG-H		0.80 (0.39 to 1.20)
MET + DPP-L		0.76 (0.46 to 1.06)
MET + DPP-H		0.80 (0.52 to 1.07)
MET + SGL-L		0.84 (0.55 to 1.12)
MET + SGL-H		0.86 (0.58 to 1.14)
MET + GLP-T		0.90 (0.55 to 1.25)
MET + GLP-L		0.78 (0.42 to 1.15)
MET + GLP-H		0.77 (0.48 to 1.05)
MET + AGI-L		0.81 (0.45 to 1.16)
MET + TZD-L		0.87 (0.65 to 1.09)
MET + TZD-H		0.89 (0.63 to 1.16)
MET + TZD-T		0.89 (0.57 to 1.20)
MET + INS-BA-T		0.78 (0.43 to 1.13)
MET + INS-BI-T		0.81 (0.46 to 1.16)
MET + MEG-L	MET + SUL-T	0.05 (-0.27 to 0.38)
MET + MEG-T		0.10 (-0.15 to 0.35)
MET + MEG-H		0.05 (-0.27 to 0.37)
MET + DPP-L		0.02 (-0.17 to 0.21)
MET + DPP-H		0.05 (-0.06 to 0.17)
MET + SGL-L		0.09 (-0.05 to 0.23)

Treatment	Reference	MD (95\% Crl)
MET + SGL-H		0.12 (-0.02 to 0.25)
MET + GLP-T		0.15 (-0.08 to 0.39)
MET + GLP-L		0.04 (-0.23 to 0.31)
MET + GLP-H		0.03 (-0.11 to 0.16)
MET + AGI-L		0.06 (-0.19 to 0.32)
MET + TZD-L		0.13 (-0.06 to 0.32)
MET + TZD-H		0.15 (0.02 to 0.28)
MET + TZD-T		0.14 (0.01 to 0.28)
MET + INS-BA-T		0.04 (-0.20 to 0.28)
MET + INS-BI-T		0.07 (-0.16 to 0.29)
MET + MEG-T	MET + MEG-L	0.05 (-0.34 to 0.44)
MET + MEG-H		0.00 (-0.30 to 0.30)
MET + DPP-L		-0.03 (-0.38 to 0.31)
MET + DPP-H		0.00 (-0.31 to 0.32)
MET + SGL-L		0.04 (-0.28 to 0.36)
MET + SGL-H		0.06 (-0.26 to 0.39)
MET + GLP-T		0.10 (-0.27 to 0.48)
MET + GLP-L		-0.01 (-0.40 to 0.38)
MET + GLP-H		-0.02 (-0.35 to 0.30)
MET + AGI-L		0.01 (-0.38 to 0.40)
MET + TZD-L		0.08 (-0.26 to 0.42)
MET + TZD-H		0.10 (-0.22 to 0.42)
MET + TZD-T		0.09 (-0.26 to 0.44)
MET + INS-BA-T		-0.02 (-0.40 to 0.37)
MET + INS-BI-T		0.01 (-0.37 to 0.39)
MET + MEG-H	MET + MEG-T	-0.05 (-0.44 to 0.34)
MET + DPP-L		-0.08 (-0.37 to 0.21)
MET + DPP-H		-0.05 (-0.30 to 0.21)
MET + SGL-L		0.00 (-0.27 to 0.26)
MET + SGL-H		0.02 (-0.24 to 0.28)
MET + GLP-T		0.06 (-0.27 to 0.38)
MET + GLP-L		-0.06 (-0.41 to 0.29)
MET + GLP-H		-0.07 (-0.33 to 0.19)
MET + AGI-L		-0.03 (-0.38 to 0.31)
MET + TZD-L		0.03 (-0.25 to 0.32)
MET + TZD-H		0.05 (-0.21 to 0.31)
MET + TZD-T		0.05 (-0.24 to 0.33)
MET + INS-BA-T		-0.06 (-0.39 to 0.27)
MET + INS-BI-T		-0.03 (-0.36 to 0.29)
MET + DPP-L	MET + MEG-H	-0.03 (-0.37 to 0.31)
MET + DPP-H		0.00 (-0.31 to 0.31)
MET + SGL-L		0.04 (-0.28 to 0.37)

Treatment	Reference	MD (95\% Crl)
MET + SGL-H		0.06 (-0.25 to 0.39)
MET + GLP-T		0.10 (-0.27 to 0.48)
MET + GLP-L		-0.01 (-0.40 to 0.38)
MET + GLP-H		-0.02 (-0.35 to 0.30)
MET + AGI-L		0.01 (-0.37 to 0.40)
MET + TZD-L		0.08 (-0.26 to 0.42)
MET + TZD-H		0.10 (-0.22 to 0.41)
MET + TZD-T		0.09 (-0.26 to 0.44)
MET + INS-BA-T		-0.02 (-0.39 to 0.36)
MET + INS-BI-T		0.01 (-0.37 to 0.40)
MET + DPP-H	MET + DPP-L	0.03 (-0.13 to 0.20)
MET + SGL-L		0.08 (-0.11 to 0.26)
MET + SGL-H		0.10 (-0.09 to 0.28)
MET + GLP-T		0.13 (-0.13 to 0.41)
MET + GLP-L		0.02 (-0.27 to 0.31)
MET + GLP-H		0.01 (-0.18 to 0.19)
MET + AGI-L		0.04 (-0.24 to 0.32)
MET + TZD-L		0.11 (-0.09 to 0.31)
MET + TZD-H		0.13 (-0.04 to 0.30)
MET + TZD-T		0.13 (-0.11 to 0.36)
MET + INS-BA-T		0.02 (-0.25 to 0.29)
MET + INS-BI-T		0.05 (-0.23 to 0.32)
MET + SGL-L	MET + DPP-H	0.04 (-0.08 to 0.16)
MET + SGL-H		0.06 (-0.05 to 0.18)
MET + GLP-T		0.10 (-0.12 to 0.33)
MET + GLP-L		-0.01 (-0.27 to 0.24)
MET + GLP-H		-0.02 (-0.14 to 0.09)
MET + AGI-L		0.01 (-0.22 to 0.24)
MET + TZD-L		0.08 (-0.08 to 0.24)
MET + TZD-H		0.10 (0.00 to 0.20)
MET + TZD-T		0.09 (-0.09 to 0.27)
MET + INS-BA-T		-0.02 (-0.24 to 0.20)
MET + INS-BI-T		0.01 (-0.22 to 0.24)
MET + SGL-H	MET + SGL-L	0.02 (-0.08 to 0.13)
MET + GLP-T		0.06 (-0.18 to 0.30)
MET + GLP-L		-0.05 (-0.33 to 0.21)
MET + GLP-H		-0.07 (-0.22 to 0.08)
MET + AGI-L		-0.03 (-0.29 to 0.23)
MET + TZD-L		0.03 (-0.15 to 0.22)
MET + TZD-H		0.06 (-0.08 to 0.19)
MET + TZD-T		0.05 (-0.15 to 0.24)
MET + INS-BA-T		-0.06 (-0.30 to 0.19)

Treatment	Reference	MD (95\% Crl)
MET + INS-BI-T		-0.03 (-0.28 to 0.22)
MET + GLP-T	MET + SGL-H	0.04 (-0.20 to 0.28)
MET + GLP-L		-0.07 (-0.35 to 0.19)
MET + GLP-H		-0.09 (-0.23 to 0.05)
MET + AGI-L		-0.05 (-0.31 to 0.20)
MET + TZD-L		0.01 (-0.17 to 0.20)
MET + TZD-H		0.03 (-0.10 to 0.16)
MET + TZD-T		0.03 (-0.16 to 0.22)
MET + INS-BA-T		-0.08 (-0.32 to 0.16)
MET + INS-BI-T		-0.05 (-0.30 to 0.20)
MET + GLP-L	MET + GLP-T	-0.11 (-0.45 to 0.22)
MET + GLP-H		-0.13 (-0.37 to 0.11)
MET + AGI-L		-0.09 (-0.41 to 0.23)
MET + TZD-L		-0.02 (-0.29 to 0.24)
MET + TZD-H		0.00 (-0.24 to 0.23)
MET + TZD-T		-0.01 (-0.28 to 0.26)
MET + INS-BA-T		-0.12 (-0.38 to 0.15)
MET + INS-BI-T		-0.09 (-0.40 to 0.22)
MET + GLP-H	MET + GLP-L	-0.01 (-0.27 to 0.24)
MET + AGI-L		0.02 (-0.32 to 0.36)
MET + TZD-L		0.09 (-0.20 to 0.38)
MET + TZD-H		0.11 (-0.15 to 0.37)
MET + TZD-T		0.10 (-0.20 to 0.40)
MET + INS-BA-T		0.00 (-0.33 to 0.33)
MET + INS-BI-T		0.02 (-0.30 to 0.36)
MET + AGI-L	MET + GLP-H	0.04 (-0.22 to 0.29)
MET + TZD-L		0.10 (-0.08 to 0.29)
MET + TZD-H		0.12 (0.00 to 0.25)
MET + TZD-T		0.12 (-0.07 to 0.31)
MET + INS-BA-T		0.01 (-0.22 to 0.24)
MET + INS-BI-T		0.04 (-0.18 to 0.26)
MET + TZD-L	MET + AGI-L	0.07 (-0.21 to 0.35)
MET + TZD-H		0.09 (-0.16 to 0.33)
MET + TZD-T		0.08 (-0.21 to 0.37)
MET + INS-BA-T		-0.03 (-0.34 to 0.29)
MET + INS-BI-T		0.00 (-0.32 to 0.33)
MET + TZD-H	MET + TZD-L	0.02 (-0.14 to 0.18)
MET + TZD-T		0.01 (-0.21 to 0.24)
MET + INS-BA-T		-0.09 (-0.36 to 0.18)
MET + INS-BI-T		-0.06 (-0.34 to 0.21)
MET + TZD-T	MET + TZD-H	-0.01 (-0.20 to 0.18)
MET + INS-BA-T		-0.11 (-0.35 to 0.12)

Treatment	Reference	MD (95\% CrI)
MET + INS-BI-T	MET + TZD-T	$-0.08(-0.32$ to 0.15$)$
MET + INS-BA-T		
MET + INS-BI-T	MET + INS-BA-T	$-0.11(-0.38$ to 0.17$)$
MET + INS-BI-T	$-0.08(-0.34$ to 0.18$)$	
$0.03(-0.28$ to 0.34$)$		
Random-effects model	Residual deviance	142.7 vs. 139 data points
	Deviance information criteria	-535.729

$\mathrm{AGI}=$ alpha-glucosidase inhibitor; $\mathrm{Crl}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; -L = low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SGL}=$ sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; -T = titrated; TZD = thiazolidinedione; vs. = versus.

Nonfatal Myocardial Infarction (MI)

Table 21: Nonfatal Myocardial Infarction Dose: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	5.37 (0.41 to 205.90)	5.32 (0.41 to 201.30)	0.60 (-0.43 to 3.17)
MET + DPP-H		4.09 (0.35 to 139.00)	4.06 (0.36 to 137.70)	0.42 (-0.53 to 1.72)
MET + DPP-L		0.81 (0.01 to 45.51)	0.81 (0.01 to 45.07)	-0.02 (-0.92 to 1.19)
MET + DPP-H	MET + SUL-T	0.75 (0.32 to 1.79)	0.75 (0.32 to 1.79)	-0.17 (-1.92 to 0.37)
MET + DPP-L		0.15 (0.00 to 1.22)	0.15 (0.00 to 1.22)	-0.61 (-2.86 to 0.12)
MET + DPP-L	MET + DPP-H	0.20 (0.01 to 1.60)	0.20 (0.01 to 1.60)	-0.42 (-1.55 to 0.38)
Random-effects model	Residual deviance	8.507 vs. 13 data points		
	Deviance information criteria	50.986		

$\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SUL = sulfonylurea; vs. $=$ versus.

Figure 16: Consistency Plot for Nonfatal Myocardial Infarction (Dose-Case Analysis)

Nonfatal Stroke

Table 22: Nonfatal Stroke: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	10.00 (1.13 to 113.30)	9.88 (1.13 to 110.70)	1.06 (0.05 to 4.01)
MET + DPP-L		4.46 (0.37 to 55.87)	4.43 (0.37 to 55.52)	0.38 (-0.29 to 1.65)
MET + DPP-H		4.58 (0.64 to 52.28)	4.56 (0.64 to 51.81)	0.40 (-0.17 to 1.29)
MET + TZD-H		10.24 (0.26 to 341.30)	10.10 (0.26 to 280.10)	1.00 (-0.26 to 18.88)
MET + DPP-L	MET + SUL-T	0.43 (0.08 to 1.64)	0.43 (0.08 to 1.64)	-0.63 (-3.35 to 0.42)
MET + DPP-H		0.45 (0.17 to 1.18)	0.45 (0.17 to 1.18)	-0.64 (-3.13 to 0.09)
MET + TZD-H		0.94 (0.05 to 18.27)	0.94 (0.05 to 15.12)	-0.06 (-2.69 to 17.39)
MET + DPP-H	MET + DPP-L	1.06 (0.28 to 5.22)	1.06 (0.28 to 5.18)	0.03 (-1.09 to 0.87)
MET + TZD-H		2.33 (0.11 to 51.04)	2.31 (0.11 to 42.87)	0.57 (-1.04 to 18.36)
MET + TZD-H	MET + DPP-H	2.05 (0.14 to 38.87)	2.04 (0.14 to 32.15)	0.55 (-0.59 to 18.24)
Random-effects model	Residual deviance	12.92 vs. 19 data points		
	Deviance information criteria	68.493		

$\mathrm{CrI}=$ credible interval; $\mathrm{DPP}=$ dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; $-\mathrm{H}=$ high-dose; $-\mathrm{L}=$ low-dose; $\mathrm{MET}=$ metformin; OR = odds ratio; $R D=$ risk difference; RR = relative risk; SUL = sulfonylurea; $-\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. $=$ versus.

Nonsevere Hypoglycemia

Table 23: Nonsevere Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	5.59 (3.74 to 8.59)	5.15 (3.54 to 7.60)	7.79 (4.99 to 11.67)
MET + SUL-L		5.74 (0.85 to 54.40)	5.26 (0.86 to 27.41)	8.02 (-0.27 to 48.86)
MET + SUL-H		11.20 (3.26 to 40.20)	9.38 (3.13 to 23.47)	15.75 (4.01 to 41.31)
MET + MEG-L		3.49 (1.08 to 11.98)	3.33 (1.08 to 10.01)	4.38 (0.15 to 16.27)
MET + MEG-H		5.67 (2.14 to 15.45)	5.21 (2.09 to 12.26)	7.92 (2.11 to 20.34)
MET + DPP-T		2.13 (0.32 to 13.59)	2.09 (0.32 to 11.04)	2.04 (-1.30 to 18.67)
MET + DPP-L		0.99 (0.47 to 2.07)	0.99 (0.48 to 2.03)	-0.02 (-1.06 to 1.82)
MET + DPP-H		0.72 (0.49 to 1.09)	0.72 (0.49 to 1.09)	-0.52 (-1.08 to 0.14)
MET + SGL-L		0.92 (0.54 to 1.59)	0.92 (0.55 to 1.58)	-0.15 (-0.93 to 1.02)
MET + SGL-H		0.88 (0.53 to 1.46)	0.88 (0.53 to 1.45)	-0.23 (-0.95 to 0.79)
MET + GLP-T		1.11 (0.45 to 2.76)	1.11 (0.46 to 2.68)	0.21 (-1.06 to 3.07)
MET + GLP-L		1.03 (0.43 to 2.45)	1.03 (0.44 to 2.39)	0.06 (-1.11 to 2.53)
MET + GLP-H		0.95 (0.57 to 1.59)	0.95 (0.57 to 1.58)	-0.10 (-0.87 to 1.02)
MET + TZD-T		0.59 (0.29 to 1.23)	0.60 (0.29 to 1.22)	-0.75 (-1.45 to 0.39)
MET + TZD-L		1.04 (0.21 to 4.73)	1.04 (0.22 to 4.43)	0.07 (-1.55 to 6.28)
MET + TZD-H		0.74 (0.40 to 1.39)	0.75 (0.41 to 1.38)	-0.47 (-1.20 to 0.67)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + AGI-L		0.24 (0.01 to 2.64)	0.24 (0.01 to 2.56)	-1.39 (-2.10 to 2.90)
MET + AGI-T		0.39 (0.01 to 6.79)	0.39 (0.01 to 6.14)	-1.12 (-2.05 to 9.47)
MET + INS-BA-T		2.72 (1.34 to 5.56)	2.64 (1.34 to 5.15)	3.07 (0.64 to 7.49)
MET + INS-BI-T		4.87 (2.21 to 10.90)	4.53 (2.16 to 9.27)	6.65 (2.22 to 15.13)
MET + SUL-L	MET + SUL-T	1.03 (0.15 to 10.19)	1.03 (0.16 to 5.60)	0.28 (-9.41 to 41.06)
MET + SUL-H		1.99 (0.56 to 7.29)	1.82 (0.59 to 4.65)	7.87 (-4.29 to 33.37)
MET + MEG-L		0.63 (0.18 to 2.17)	0.65 (0.20 to 1.97)	-3.32 (-9.24 to 8.68)
MET + MEG-H		1.01 (0.38 to 2.69)	1.01 (0.41 to 2.34)	0.12 (-6.56 to 12.28)
MET + DPP-T		0.38 (0.06 to 2.30)	0.41 (0.06 to 2.04)	-5.55 (-10.55 to 10.16)
MET + DPP-L		0.18 (0.08 to 0.37)	0.19 (0.09 to 0.39)	-7.74 (-11.56 to -4.75)
MET + DPP-H		0.13 (0.09 to 0.19)	0.14 (0.10 to 0.20)	-8.31 (-11.97 to -5.65)
MET + SGL-L		0.16 (0.09 to 0.29)	0.18 (0.10 to 0.31)	-7.92 (-11.67 to -5.05)
MET + SGL-H		0.16 (0.09 to 0.27)	0.17 (0.10 to 0.28)	-8.00 (-11.73 to -5.23)
MET + GLP-T		0.20 (0.08 to 0.49)	0.22 (0.09 to 0.51)	-7.46 (-11.28 to -4.06)
MET + GLP-L		0.19 (0.07 to 0.44)	0.20 (0.08 to 0.46)	-7.63 (-11.58 to -4.33)
MET + GLP-H		0.17 (0.10 to 0.29)	0.19 (0.11 to 0.30)	-7.85 (-11.56 to -5.12)
MET + TZD-T		0.11 (0.05 to 0.20)	0.12 (0.06 to 0.21)	-8.51 (-12.06 to -5.91)
MET + TZD-L		0.19 (0.04 to 0.88)	0.20 (0.04 to 0.89)	-7.50 (-11.92 to -0.99)
MET + TZD-H		0.13 (0.07 to 0.25)	0.15 (0.08 to 0.27)	-8.23 (-12.02 to -5.37)
MET + AGI-L		0.04 (0.00 to 0.47)	0.05 (0.00 to 0.49)	-8.95 (-12.90 to -4.47)
MET + AGI-T		0.07 (0.00 to 1.25)	0.08 (0.00 to 1.23)	-8.53 (-12.80 to 1.99)
MET + INS-BA-T		0.49 (0.24 to 0.95)	0.51 (0.27 to 0.96)	-4.64 (-8.59 to -0.38)
MET + INS-BI-T		0.87 (0.41 to 1.87)	0.88 (0.43 to 1.73)	-1.13 (-6.16 to 6.82)
MET + SUL-H	MET + SUL-L	1.97 (0.15 to 18.70)	1.77 (0.25 to 13.20)	6.84 (-33.70 to 34.43)
MET + MEG-L		0.60 (0.05 to 6.06)	0.63 (0.08 to 5.40)	-3.38 (-44.18 to 11.38)
MET + MEG-H		0.98 (0.09 to 8.53)	0.98 (0.15 to 7.31)	-0.17 (-41.01 to 15.38)
MET + DPP-T		0.36 (0.02 to 5.41)	0.39 (0.03 to 4.76)	-5.38 (-45.92 to 12.54)
MET + DPP-L		0.17 (0.02 to 1.31)	0.19 (0.03 to 1.30)	-7.96 (-48.69 to 0.53)
MET + DPP-H		0.13 (0.01 to 0.89)	0.14 (0.02 to 0.89)	-8.54 (-49.44 to -0.18)
MET + SGL-L		0.16 (0.02 to 1.14)	0.18 (0.03 to 1.14)	-8.14 (-48.99 to 0.24)
MET + SGL-H		0.15 (0.02 to 1.09)	0.17 (0.03 to 1.09)	-8.24 (-49.06 to 0.15)
MET + GLP-T		0.19 (0.02 to 1.62)	0.21 (0.03 to 1.60)	-7.67 (-48.60 to 1.15)
MET + GLP-L		0.18 (0.02 to 1.44)	0.20 (0.03 to 1.43)	-7.85 (-48.58 to 0.79)
MET + GLP-H		0.17 (0.02 to 1.18)	0.18 (0.03 to 1.17)	-8.08 (-48.89 to 0.30)
MET + TZD-T		0.10 (0.01 to 0.79)	0.11 (0.02 to 0.79)	-8.75 (-49.51 to -0.34)
MET + TZD-L		0.18 (0.01 to 1.99)	0.20 (0.02 to 1.94)	-7.57 (-48.20 to 2.42)
MET + TZD-H		0.13 (0.01 to 0.95)	0.14 (0.02 to 0.95)	-8.47 (-49.34 to -0.08)
MET + AGI-L		0.04 (0.00 to 0.98)	0.05 (0.00 to 0.98)	-9.08 (-49.67 to -0.03)
MET + AGI-T		0.07 (0.00 to 2.33)	0.08 (0.00 to 2.20)	-8.48 (-49.16 to 4.18)
MET + INS-BA-T		0.47 (0.04 to 3.65)	0.50 (0.08 to 3.47)	-4.83 (-45.48 to 4.86)
MET + INS-BI-T		0.84 (0.08 to 6.75)	0.86 (0.14 to 6.05)	-1.33 (-41.99 to 11.09)
MET + MEG-L	MET + SUL-H	0.31 (0.06 to 1.82)	0.36 (0.08 to 1.70)	-10.80 (-36.77 to 5.60)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + MEG-H		0.51 (0.11 to 2.44)	0.56 (0.16 to 2.19)	-7.52 (-33.70 to 9.29)
MET + DPP-T		0.19 (0.02 to 1.76)	0.23 (0.03 to 1.62)	-12.76 (-38.80 to 5.94)
MET + DPP-L		0.09 (0.02 to 0.36)	0.11 (0.03 to 0.38)	-15.69 (-41.28 to -3.83)
MET + DPP-H		0.06 (0.02 to 0.22)	0.08 (0.03 to 0.24)	-16.27 (-41.72 to -4.53)
MET + SGL-L		0.08 (0.02 to 0.31)	0.10 (0.04 to 0.33)	-15.87 (-41.42 to -4.07)
MET + SGL-H		0.08 (0.02 to 0.29)	0.09 (0.03 to 0.30)	-15.93 (-41.45 to -4.18)
MET + GLP-T		0.10 (0.02 to 0.45)	0.12 (0.03 to 0.47)	-15.38 (-40.91 to -3.35)
MET + GLP-L		0.09 (0.03 to 0.31)	0.11 (0.04 to 0.33)	-15.57 (-40.51 to -4.23)
MET + GLP-H		0.08 (0.02 to 0.28)	0.10 (0.04 to 0.29)	-15.84 (-41.10 to -4.29)
MET + TZD-T		0.05 (0.01 to 0.21)	0.06 (0.02 to 0.22)	-16.46 (-42.00 to -4.72)
MET + TZD-L		0.09 (0.01 to 0.65)	0.11 (0.02 to 0.67)	-15.19 (-40.67 to -2.44)
MET + TZD-H		0.07 (0.02 to 0.25)	0.08 (0.03 to 0.27)	-16.18 (-41.63 to -4.40)
MET + AGI-L		0.02 (0.00 to 0.26)	0.03 (0.00 to 0.29)	-16.75 (-42.16 to -5.00)
MET + AGI-T		0.03 (0.00 to 0.79)	0.04 (0.00 to 0.81)	-15.99 (-41.91 to -1.79)
MET + INS-BA-T		0.24 (0.06 to 0.92)	0.28 (0.10 to 0.93)	-12.46 (-37.81 to -0.47)
MET + INS-BI-T		0.44 (0.11 to 1.78)	0.49 (0.16 to 1.68)	-8.85 (-34.13 to 4.85)
MET + MEG-H	MET + MEG-L	1.62 (0.48 to 5.45)	1.56 (0.51 to 4.81)	3.27 (-6.95 to 13.98)
MET + DPP-T		0.60 (0.07 to 5.36)	0.62 (0.07 to 4.59)	-2.09 (-14.36 to 14.23)
MET + DPP-L		0.28 (0.07 to 1.12)	0.30 (0.08 to 1.12)	-4.33 (-16.26 to 0.28)
MET + DPP-H		0.21 (0.06 to 0.71)	0.22 (0.07 to 0.72)	-4.89 (-16.78 to -0.58)
MET + SGL-L		0.26 (0.07 to 0.96)	0.28 (0.08 to 0.96)	-4.50 (-16.37 to -0.09)
MET + SGL-H		0.25 (0.07 to 0.90)	0.26 (0.08 to 0.90)	-4.57 (-16.52 to -0.21)
MET + GLP-T		0.32 (0.07 to 1.41)	0.33 (0.08 to 1.39)	-4.08 (-15.99 to 0.96)
MET + GLP-L		0.30 (0.07 to 1.26)	0.31 (0.08 to 1.25)	-4.22 (-16.25 to 0.61)
MET + GLP-H		0.27 (0.07 to 0.98)	0.28 (0.09 to 0.98)	-4.45 (-16.34 to -0.05)
MET + TZD-T		0.17 (0.04 to 0.67)	0.18 (0.05 to 0.68)	$-5.09(-17.00$ to -0.72$)$
MET + TZD-L		0.30 (0.04 to 2.06)	0.31 (0.05 to 1.98)	-4.04 (-16.23 to 3.11)
MET + TZD-H		0.21 (0.05 to 0.82)	0.22 (0.06 to 0.83)	-4.81 (-16.75 to -0.39)
MET + AGI-L		0.07 (0.00 to 0.99)	0.07 (0.00 to 0.99)	-5.48 (-17.46 to -0.02)
MET + AGI-T		0.11 (0.00 to 2.51)	0.12 (0.00 to 2.36)	-4.98 (-17.04 to 5.44)
MET + INS-BA-T		0.78 (0.19 to 3.03)	0.79 (0.22 to 2.88)	-1.26 (-13.44 to 4.92)
MET + INS-BI-T		1.39 (0.33 to 5.64)	1.35 (0.37 to 5.07)	2.13 (-10.41 to 11.69)
MET + DPP-T	MET + MEG-H	0.37 (0.05 to 2.94)	0.40 (0.05 to 2.59)	-5.38 (-18.26 to 11.12)
MET + DPP-L		0.17 (0.05 to 0.57)	0.19 (0.06 to 0.58)	-7.87 (-20.35 to -1.83)
MET + DPP-H		0.13 (0.05 to 0.35)	0.14 (0.06 to 0.36)	-8.44 (-20.84 to -2.60)
MET + SGL-L		0.16 (0.05 to 0.48)	0.18 (0.07 to 0.49)	-8.02 (-20.50 to -2.15)
MET + SGL-H		0.15 (0.05 to 0.45)	0.17 (0.06 to 0.46)	-8.13 (-20.52 to -2.26)
MET + GLP-T		0.20 (0.05 to 0.72)	0.21 (0.07 to 0.74)	-7.58 (-19.97 to -1.29)
MET + GLP-L		0.18 (0.05 to 0.63)	0.20 (0.06 to 0.65)	-7.74 (-20.22 to -1.62)
MET + GLP-H		0.17 (0.06 to 0.48)	0.18 (0.07 to 0.49)	-7.98 (-20.44 to -2.10)
MET + TZD-T		0.11 (0.03 to 0.33)	0.12 (0.04 to 0.34)	-8.62 (-21.01 to -2.76)
MET + TZD-L		0.18 (0.03 to 1.09)	0.20 (0.03 to 1.09)	-7.47 (-20.04 to 0.48)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD-H		0.13 (0.04 to 0.40)	0.14 (0.05 to 0.42)	-8.36 (-20.76 to -2.45)
MET + AGI-L		0.04 (0.00 to 0.56)	0.05 (0.00 to 0.58)	-8.98 (-21.51 to -2.37)
MET + AGI-T		0.07 (0.00 to 1.41)	0.08 (0.00 to 1.37)	-8.42 (-21.09 to 2.56)
MET + INS-BA-T		0.48 (0.15 to 1.53)	0.51 (0.18 to 1.49)	-4.71 (-17.20 to 2.42)
MET + INS-BI-T		0.86 (0.25 to 2.88)	0.87 (0.29 to 2.62)	-1.20 (-14.14 to 8.81)
MET + DPP-L	MET + DPP-T	0.47 (0.07 to 3.45)	0.48 (0.08 to 3.39)	-2.02 (-18.53 to 1.78)
MET + DPP-H		0.34 (0.05 to 2.27)	0.35 (0.07 to 2.25)	-2.55 (-19.05 to 0.79)
MET + SGL-L		0.43 (0.06 to 3.10)	0.44 (0.08 to 3.06)	-2.16 (-18.65 to 1.38)
MET + SGL-H		0.41 (0.06 to 2.88)	0.42 (0.08 to 2.85)	-2.23 (-18.75 to 1.20)
MET + GLP-T		0.52 (0.07 to 4.26)	0.53 (0.09 to 4.15)	-1.76 (-18.13 to 2.62)
MET + GLP-L		0.49 (0.06 to 3.78)	0.50 (0.08 to 3.70)	-1.90 (-18.36 to 2.20)
MET + GLP-H		0.45 (0.07 to 3.04)	0.46 (0.08 to 3.00)	-2.10 (-18.64 to 1.36)
MET + TZD-T		0.28 (0.04 to 2.00)	0.29 (0.05 to 1.99)	-2.75 (-19.24 to 0.69)
MET + TZD-L		0.49 (0.04 to 5.55)	0.50 (0.05 to 5.28)	-1.77 (-18.37 to 4.97)
MET + TZD-H		0.35 (0.05 to 2.53)	0.36 (0.06 to 2.50)	-2.48 (-19.01 to 1.03)
MET + AGI-L		0.11 (0.00 to 2.37)	0.11 (0.00 to 2.32)	-3.17 (-19.55 to 1.72)
MET + AGI-T		0.18 (0.00 to 5.93)	0.19 (0.00 to 5.45)	-2.67 (-19.02 to 7.37)
MET + INS-BA-T		1.27 (0.19 to 9.34)	1.26 (0.22 to 8.79)	0.97 (-15.26 to 6.53)
MET + INS-BI-T		2.29 (0.33 to 16.84)	2.17 (0.37 to 15.23)	4.24 (-11.67 to 13.30)
MET + DPP-H	MET + DPP-L	0.73 (0.36 to 1.51)	0.73 (0.37 to 1.50)	-0.49 (-2.22 to 0.50)
MET + SGL-L		0.93 (0.39 to 2.22)	0.93 (0.40 to 2.19)	-0.13 (-2.02 to 1.33)
MET + SGL-H		0.89 (0.38 to 2.06)	0.89 (0.39 to 2.04)	-0.20 (-2.08 to 1.14)
MET + GLP-T		1.13 (0.38 to 3.45)	1.12 (0.38 to 3.35)	0.22 (-1.90 to 3.18)
MET + GLP-L		1.05 (0.35 to 3.08)	1.05 (0.35 to 3.00)	0.08 (-2.01 to 2.66)
MET + GLP-H		0.96 (0.41 to 2.21)	0.96 (0.42 to 2.19)	-0.07 (-1.95 to 1.32)
MET + TZD-T		0.60 (0.23 to 1.54)	0.61 (0.24 to 1.53)	-0.71 (-2.54 to 0.64)
MET + TZD-L		1.05 (0.19 to 5.65)	1.05 (0.19 to 5.30)	0.08 (-2.33 to 6.32)
MET + TZD-H		0.75 (0.30 to 1.86)	0.76 (0.31 to 1.85)	-0.44 (-2.32 to 0.96)
MET + AGI-L		0.24 (0.01 to 2.81)	0.25 (0.01 to 2.73)	-1.28 (-3.23 to 2.77)
MET + AGI-T		0.40 (0.01 to 7.51)	0.40 (0.01 to 6.81)	-1.00 (-3.10 to 9.35)
MET + INS-BA-T		2.76 (1.07 to 7.04)	2.67 (1.07 to 6.57)	3.04 (0.18 to 7.52)
MET + INS-BI-T		4.93 (1.80 to 13.43)	4.59 (1.75 to 11.64)	6.61 (1.95 to 15.04)
MET + SGL-L	MET + DPP-H	1.28 (0.71 to 2.27)	1.27 (0.71 to 2.24)	0.37 (-0.47 to 1.51)
MET + SGL-H		1.22 (0.70 to 2.08)	1.21 (0.70 to 2.06)	0.29 (-0.49 to 1.27)
MET + GLP-T		1.54 (0.63 to 3.77)	1.53 (0.63 to 3.65)	0.72 (-0.55 to 3.50)
MET + GLP-L		1.44 (0.59 to 3.38)	1.43 (0.59 to 3.29)	0.58 (-0.62 to 2.97)
MET + GLP-H		1.32 (0.77 to 2.20)	1.31 (0.78 to 2.16)	0.42 (-0.36 to 1.46)
MET + TZD-T		0.83 (0.40 to 1.65)	0.83 (0.40 to 1.64)	-0.23 (-0.95 to 0.81)
MET + TZD-L		1.44 (0.28 to 6.72)	1.43 (0.29 to 6.28)	0.58 (-1.09 to 6.75)
MET + TZD-H		1.04 (0.53 to 1.96)	1.04 (0.53 to 1.94)	0.05 (-0.76 to 1.14)
MET + AGI-L		0.33 (0.01 to 3.56)	0.33 (0.01 to 3.44)	-0.87 (-1.63 to 3.34)
MET + AGI-T		0.54 (0.01 to 9.53)	0.55 (0.01 to 8.60)	-0.60 (-1.64 to 9.97)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BA-T		3.77 (1.89 to 7.38)	3.63 (1.86 to 6.83)	3.58 (1.21 to 7.86)
MET + INS-BI-T		6.76 (3.05 to 14.71)	6.26 (2.97 to 12.55)	7.16 (2.76 to 15.53)
MET + SGL-H	MET + SGL-L	0.95 (0.58 to 1.57)	0.95 (0.58 to 1.56)	-0.08 (-1.02 to 0.76)
MET + GLP-T		1.21 (0.44 to 3.34)	1.20 (0.45 to 3.24)	0.34 (-1.28 to 3.24)
MET + GLP-L		1.12 (0.42 to 2.95)	1.12 (0.42 to 2.87)	0.20 (-1.36 to 2.70)
MET + GLP-H		1.03 (0.51 to 2.04)	1.03 (0.52 to 2.01)	0.06 (-1.24 to 1.29)
MET + TZD-T		0.65 (0.27 to 1.50)	0.65 (0.28 to 1.49)	-0.59 (-1.84 to 0.65)
MET + TZD-L		1.13 (0.21 to 5.42)	1.13 (0.21 to 5.08)	0.21 (-1.77 to 6.42)
MET + TZD-H		0.81 (0.37 to 1.77)	0.81 (0.37 to 1.75)	-0.32 (-1.63 to 0.97)
MET + AGI-L		0.26 (0.01 to 2.98)	0.26 (0.01 to 2.90)	-1.19 (-2.51 to 3.01)
MET + AGI-T		0.43 (0.01 to 7.79)	0.43 (0.01 to 7.04)	-0.93 (-2.42 to 9.65)
MET + INS-BA-T		2.96 (1.29 to 6.71)	2.86 (1.28 to 6.25)	3.19 (0.61 to 7.62)
MET + INS-BI-T		5.30 (2.14 to 13.20)	4.92 (2.08 to 11.30)	6.75 (2.25 to 15.19)
MET + GLP-T	MET + SGL-H	1.27 (0.47 to 3.47)	1.26 (0.48 to 3.37)	0.42 (-1.10 to 3.30)
MET + GLP-L		1.17 (0.45 to 3.07)	1.17 (0.46 to 2.99)	0.28 (-1.18 to 2.77)
MET + GLP-H		1.08 (0.56 to 2.09)	1.08 (0.57 to 2.07)	0.13 (-1.00 to 1.33)
MET + TZD-T		0.68 (0.30 to 1.52)	0.68 (0.30 to 1.51)	-0.52 (-1.61 to 0.67)
MET + TZD-L		1.19 (0.22 to 5.86)	1.18 (0.23 to 5.47)	0.29 (-1.60 to 6.53)
MET + TZD-H		0.85 (0.40 to 1.84)	0.85 (0.40 to 1.82)	-0.24 (-1.40 to 1.02)
MET + AGI-L		0.27 (0.01 to 3.08)	0.28 (0.01 to 2.98)	-1.12 (-2.29 to 3.11)
MET + AGI-T		0.44 (0.01 to 8.09)	0.45 (0.01 to 7.28)	-0.87 (-2.23 to 9.65)
MET + INS-BA-T		3.11 (1.39 to 6.92)	3.00 (1.38 to 6.42)	3.27 (0.75 to 7.68)
MET + INS-BI-T		5.53 (2.30 to 13.47)	5.14 (2.24 to 11.54)	6.83 (2.37 to 15.30)
MET + GLP-L	MET + GLP-T	0.93 (0.27 to 3.05)	0.93 (0.28 to 2.98)	-0.14 (-3.13 to 2.49)
MET + GLP-H		0.86 (0.32 to 2.22)	0.86 (0.33 to 2.20)	-0.29 (-3.12 to 1.25)
MET + TZD-T		0.53 (0.18 to 1.56)	0.54 (0.18 to 1.55)	-0.93 (-3.80 to 0.62)
MET + TZD-L		0.93 (0.16 to 5.27)	0.93 (0.16 to 4.96)	-0.14 (-3.36 to 6.08)
MET + TZD-H		0.67 (0.24 to 1.89)	0.67 (0.24 to 1.87)	-0.67 (-3.52 to 0.93)
MET + AGI-L		0.21 (0.01 to 2.68)	0.22 (0.01 to 2.61)	-1.46 (-4.44 to 2.68)
MET + AGI-T		0.35 (0.01 to 6.85)	0.36 (0.01 to 6.20)	-1.17 (-4.21 to 9.12)
MET + INS-BA-T		2.45 (0.88 to 6.52)	2.37 (0.89 to 6.15)	2.78 (-0.43 to 7.03)
MET + INS-BI-T		4.39 (1.44 to 13.03)	4.08 (1.41 to 11.40)	6.29 (1.45 to 14.69)
MET + GLP-H	MET + GLP-L	0.92 (0.42 to 2.06)	0.92 (0.43 to 2.03)	-0.15 (-2.33 to 1.09)
MET + TZD-T		0.58 (0.20 to 1.68)	0.58 (0.20 to 1.67)	-0.79 (-3.30 to 0.70)
MET + TZD-L		1.00 (0.17 to 5.74)	1.00 (0.17 to 5.40)	0.00 (-2.90 to 6.20)
MET + TZD-H		0.72 (0.26 to 1.98)	0.72 (0.27 to 1.96)	-0.53 (-2.95 to 1.00)
MET + AGI-L		0.23 (0.01 to 2.74)	0.23 (0.01 to 2.67)	-1.33 (-3.84 to 2.74)
MET + AGI-T		0.38 (0.01 to 7.32)	0.38 (0.01 to 6.69)	-1.05 (-3.71 to 9.39)
MET + INS-BA-T		2.64 (0.97 to 7.22)	2.55 (0.97 to 6.75)	2.93 (-0.10 to 7.31)
MET + INS-BI-T		4.72 (1.60 to 14.11)	4.39 (1.56 to 12.31)	6.47 (1.73 to 14.83)
MET + TZD-T	MET + GLP-H	0.63 (0.28 to 1.40)	0.63 (0.28 to 1.39)	-0.64 (-1.83 to 0.55)
MET + TZD-L		1.10 (0.21 to 5.31)	1.10 (0.21 to 4.97)	0.17 (-1.78 to 6.35)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD-H		0.79 (0.39 to 1.58)	0.79 (0.39 to 1.57)	-0.37 (-1.54 to 0.79)
MET + AGI-L		0.25 (0.01 to 2.80)	0.25 (0.01 to 2.70)	-1.23 (-2.50 to 2.93)
MET + AGI-T		0.41 (0.01 to 7.40)	0.42 (0.01 to 6.69)	-0.98 (-2.45 to 9.53)
MET + INS-BA-T		2.87 (1.44 to 5.82)	2.77 (1.43 to 5.42)	3.13 (0.84 to 7.33)
MET + INS-BI-T		5.12 (2.37 to 11.19)	4.76 (2.31 to 9.68)	6.71 (2.44 to 14.93)
MET + TZD-L	MET + TZD-T	1.75 (0.32 to 9.14)	1.74 (0.32 to 8.58)	0.81 (-1.09 to 7.02)
MET + TZD-H		1.25 (0.52 to 3.08)	1.25 (0.52 to 3.04)	0.27 (-0.93 to 1.48)
MET + AGI-L		0.40 (0.01 to 4.82)	0.40 (0.01 to 4.65)	-0.61 (-1.82 to 3.62)
MET + AGI-T		0.66 (0.02 to 12.71)	0.66 (0.02 to 11.45)	-0.35 (-1.77 to 10.24)
MET + INS-BA-T		4.57 (1.85 to 11.52)	4.38 (1.82 to 10.70)	3.77 (1.29 to 8.14)
MET + INS-BI-T		8.19 (3.11 to 22.09)	7.55 (3.00 to 19.18)	7.36 (2.88 to 15.75)
MET + TZD-H	MET + TZD-L	0.72 (0.16 to 3.46)	0.72 (0.17 to 3.42)	-0.53 (-6.60 to 1.26)
MET + AGI-L		0.22 (0.01 to 4.18)	0.22 (0.01 to 4.04)	-1.31 (-7.41 to 2.95)
MET + AGI-T		0.38 (0.01 to 10.16)	0.38 (0.01 to 9.18)	-0.96 (-7.24 to 9.29)
MET + INS-BA-T		2.62 (0.50 to 15.03)	2.54 (0.52 to 14.07)	2.85 (-3.48 to 7.59)
MET + INS-BI-T		4.68 (0.87 to 27.63)	4.36 (0.88 to 24.32)	6.24 (-0.79 to 14.91)
MET + AGI-L	MET + TZD-H	0.32 (0.01 to 3.65)	0.32 (0.01 to 3.53)	-0.88 (-2.16 to 3.34)
MET + AGI-T		0.52 (0.01 to 9.72)	0.53 (0.01 to 8.72)	-0.62 (-2.09 to 9.87)
MET + INS-BA-T		3.65 (1.54 to 8.79)	3.51 (1.53 to 8.16)	3.50 (0.96 to 7.88)
MET + INS-BI-T		6.51 (2.57 to 16.92)	6.03 (2.49 to 14.55)	7.08 (2.61 to 15.53)
MET + AGI-T	MET + AGI-L	1.67 (0.02 to 124.30)	1.66 (0.02 to 115.30)	0.20 (-3.75 to 10.47)
MET + INS-BA-T		11.51 (0.99 to 335.60)	10.97 (0.99 to 316.70)	4.23 (-0.07 to 8.72)
MET + INS-BI-T		20.75 (1.69 to 613.40)	18.91 (1.64 to 551.50)	7.75 (2.19 to 16.29)
MET + INS-BA-T	MET + AGI-T	6.97 (0.37 to 288.00)	6.65 (0.39 to 270.80)	3.84 (-6.43 to 8.58)
MET + INS-BI-T		12.43 (0.66 to 528.70)	11.39 (0.68 to 472.20)	7.20 (-3.21 to 15.92)
MET + INS-BI-T	MET + INS-BA-T	1.78 (0.91 to 3.53)	1.71 (0.92 to 3.20)	3.46 (-0.49 to 10.24)
Random-effects model	Residual deviance	180 vs. 196 data points		
	Deviance information criteria	997.41		

$\mathrm{AGI}=$ alpha-glucosidase inhibitor; $\mathrm{Crl}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; $-\mathrm{L}=$ low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SGL}=\mathrm{sodium}$-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; - $\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. = versus.

Renal Adverse Events (People)

Table 24: Renal Adverse Events (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + DPP-L	MET	$0.91(0.24$ to 3.48$)$	$0.91(0.24$ to 3.45$)$	$-0.06(-1.18$ to 1.02$)$
MET + DPP-H		$0.26(0.04$ to 1.19$)$	$0.26(0.04$ to 1.19$)$	$-0.53(-1.65$ to 0.08$)$
MET + GLP-H		$0.19(0.01$ to 9.45$)$	$0.19(0.01$ to 8.91$)$	$-0.51(-1.66$ to 5.34$)$
MET + TZD-H		$0.32(0.01$ to 13.94$)$	$0.33(0.01$ to 12.82$)$	$-0.41(-1.59$ to 7.92$)$
MET + DPP-H	MET + DPP-L	$0.28(0.04$ to 1.37$)$	$0.28(0.04$ to 1.37$)$	$-0.47(-1.51$ to 0.13$)$

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLP-H		0.22 (0.01 to 10.40)	0.22 (0.01 to 9.86)	-0.44 (-1.53 to 5.37)
MET + TZD-H		0.39 (0.02 to 15.74)	0.39 (0.02 to 14.46)	-0.34 (-1.44 to 8.09)
MET + GLP-H	MET + DPP-H	0.87 (0.04 to 22.29)	0.87 (0.04 to 21.16)	-0.02 (-0.46 to 5.68)
MET + TZD-H		1.42 (0.09 to 38.39)	1.42 (0.09 to 35.11)	0.06 (-0.37 to 8.39)
MET + TZD-H	MET + GLP-H	1.69 (0.20 to 19.22)	1.68 (0.20 to 18.85)	0.06 (-1.41 to 4.90)
Random-effects model	Residual deviance	10.21 vs. 14 data points		
	Deviance information criteria	47.105		

$\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; $-\mathrm{H}=$ high-dose; $-\mathrm{L}=$ low-dose; $\mathrm{MET}=$ metformin; OR = odds ratio; $R D=$ risk difference; $R R=$ relative risk; $-T=$ titrated; $T Z D=$ thiazolidinedione; vs. = versus.

Serious Adverse Events (SAE)

Table 25: Serious Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	1.00 (0.80 to 1.25)	1.00 (0.80 to 1.24)	-0.01 (-0.55 to 0.57)
MET + SUL-L		1.47 (0.25 to 10.26)	1.46 (0.26 to 8.33)	1.17 (-1.96 to 18.32)
MET + SUL-H		1.38 (0.46 to 4.42)	1.37 (0.46 to 4.07)	0.95 (-1.43 to 7.64)
MET + MEG-H		5.26 (1.09 to 36.41)	4.74 (1.08 to 19.20)	9.65 (0.21 to 45.95)
MET + DPP-L		0.92 (0.67 to 1.30)	0.93 (0.68 to 1.29)	-0.19 (-0.89 to 0.71)
MET + DPP-H		0.96 (0.77 to 1.18)	0.96 (0.78 to 1.18)	-0.11 (-0.63 to 0.41)
MET + SGL-L		0.95 (0.69 to 1.30)	0.95 (0.69 to 1.29)	-0.12 (-0.85 to 0.71)
MET + SGL-H		0.97 (0.75 to 1.26)	0.97 (0.75 to 1.25)	-0.07 (-0.69 to 0.61)
MET + GLP-T		5.50 (0.89 to 47.40)	4.93 (0.89 to 22.36)	10.07 (-0.29 to 51.98)
MET + GLP-L		0.73 (0.36 to 1.32)	0.73 (0.36 to 1.31)	-0.68 (-1.71 to 0.77)
MET + GLP-H		0.99 (0.74 to 1.33)	0.99 (0.75 to 1.32)	-0.02 (-0.70 to 0.77)
MET + TZD-T		1.00 (0.73 to 1.41)	1.00 (0.74 to 1.40)	0.00 (-0.72 to 0.96)
MET + TZD-L		0.78 (0.33 to 1.69)	0.78 (0.34 to 1.66)	-0.56 (-1.78 to 1.64)
MET + TZD-H		1.26 (0.95 to 1.70)	1.25 (0.95 to 1.67)	0.65 (-0.13 to 1.65)
MET + AGI-T		2.44 (0.88 to 7.22)	2.35 (0.88 to 6.23)	3.45 (-0.30 to 13.26)
MET + INS-BA-T		1.83 (0.82 to 4.14)	1.79 (0.83 to 3.83)	2.03 (-0.45 to 7.14)
MET + INS-BI-T		2.22 (0.55 to 9.82)	2.15 (0.56 to 8.02)	2.98 (-1.15 to 17.70)
MET + SUL-L	MET + SUL-T	1.48 (0.25 to 10.32)	1.46 (0.25 to 8.41)	1.18 (-2.02 to 18.33)
MET + SUL-H		1.40 (0.45 to 4.34)	1.39 (0.46 to 4.00)	0.97 (-1.46 to 7.55)
MET + MEG-H		5.32 (1.05 to 37.23)	4.78 (1.05 to 19.78)	9.66 (0.13 to 46.05)
MET + DPP-L		0.93 (0.69 to 1.25)	0.93 (0.70 to 1.25)	-0.18 (-0.84 to 0.60)
MET + DPP-H		0.96 (0.83 to 1.10)	0.96 (0.83 to 1.10)	-0.10 (-0.47 to 0.24)
MET + SGL-L		0.95 (0.71 to 1.29)	0.95 (0.71 to 1.28)	-0.12 (-0.80 to 0.67)
MET + SGL-H		0.97 (0.75 to 1.25)	0.98 (0.76 to 1.24)	-0.06 (-0.67 to 0.56)
MET + GLP-T		5.50 (0.91 to 46.91)	4.93 (0.91 to 22.04)	10.09 (-0.23 to 52.00)
MET + GLP-L		0.73 (0.36 to 1.32)	0.74 (0.37 to 1.31)	-0.67 (-1.70 to 0.77)
MET + GLP-H		0.99 (0.75 to 1.32)	0.99 (0.75 to 1.31)	-0.01 (-0.69 to 0.75)
MET + TZD-T		1.00 (0.78 to 1.29)	1.00 (0.79 to 1.29)	0.01 (-0.56 to 0.73)
MET + TZD-L		0.78 (0.34 to 1.71)	0.78 (0.34 to 1.68)	-0.56 (-1.79 to 1.66)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + TZD-H		1.27 (0.94 to 1.74)	1.26 (0.94 to 1.71)	0.65 (-0.16 to 1.71)
MET + AGI-T		2.45 (0.85 to 7.41)	2.37 (0.85 to 6.42)	3.48 (-0.39 to 13.31)
MET + INS-BA-T		1.84 (0.83 to 4.08)	1.80 (0.84 to 3.79)	2.04 (-0.42 to 7.14)
MET + INS-BI-T		2.24 (0.55 to 9.64)	2.17 (0.56 to 7.87)	2.99 (-1.16 to 17.65)
MET + SUL-H	MET + SUL-L	0.90 (0.11 to 8.31)	0.90 (0.13 to 7.79)	-0.35 (-16.69 to 7.43)
MET + MEG-H		3.46 (0.32 to 52.60)	3.10 (0.36 to 33.14)	7.57 (-9.95 to 43.20)
MET + DPP-L		0.62 (0.09 to 3.84)	0.63 (0.11 to 3.77)	-1.37 (-18.45 to 1.98)
MET + DPP-H		0.65 (0.09 to 3.85)	0.66 (0.11 to 3.78)	-1.28 (-18.45 to 1.89)
MET + SGL-L		0.64 (0.09 to 3.87)	0.65 (0.12 to 3.79)	-1.30 (-18.35 to 1.99)
MET + SGL-H		0.66 (0.10 to 3.99)	0.67 (0.12 to 3.90)	-1.25 (-18.41 to 1.98)
MET + GLP-T		3.86 (0.23 to 73.60)	3.39 (0.26 to 41.74)	8.36 (-12.28 to 50.92)
MET + GLP-L		0.49 (0.06 to 3.38)	0.50 (0.08 to 3.32)	-1.85 (-18.98 to 1.76)
MET + GLP-H		0.67 (0.09 to 4.09)	0.68 (0.11 to 4.01)	-1.20 (-18.37 to 2.07)
MET + TZD-T		0.68 (0.10 to 4.09)	0.69 (0.12 to 4.00)	-1.17 (-18.30 to 2.14)
MET + TZD-L		0.52 (0.07 to 3.67)	0.53 (0.08 to 3.60)	-1.68 (-18.70 to 2.26)
MET + TZD-H		0.85 (0.12 to 5.21)	0.86 (0.15 to 5.06)	-0.53 (-17.63 to 2.84)
MET + AGI-T		1.69 (0.17 to 14.06)	1.64 (0.20 to 12.47)	2.14 (-15.54 to 13.07)
MET + INS-BA-T		1.22 (0.15 to 9.38)	1.21 (0.18 to 8.83)	0.74 (-16.29 to 7.10)
MET + INS-BI-T		1.57 (0.12 to 15.44)	1.53 (0.15 to 13.48)	1.68 (-15.83 to 16.31)
MET + MEG-H	MET + SUL-H	3.81 (0.92 to 23.73)	3.42 (0.92 to 14.82)	8.42 (-0.31 to 42.75)
MET + DPP-L		0.67 (0.21 to 2.11)	0.68 (0.23 to 2.08)	-1.13 (-7.79 to 1.41)
MET + DPP-H		0.69 (0.22 to 2.11)	0.69 (0.24 to 2.08)	-1.07 (-7.68 to 1.33)
MET + SGL-L		0.69 (0.22 to 2.18)	0.69 (0.24 to 2.15)	-1.09 (-7.65 to 1.44)
MET + SGL-H		0.70 (0.23 to 2.18)	0.71 (0.24 to 2.15)	-1.03 (-7.60 to 1.45)
MET + GLP-T		4.11 (0.39 to 48.39)	3.66 (0.41 to 26.00)	8.83 (-4.13 to 50.29)
MET + GLP-L		0.53 (0.14 to 1.81)	0.53 (0.15 to 1.79)	-1.58 (-8.36 to 1.15)
MET + GLP-H		0.72 (0.22 to 2.26)	0.73 (0.24 to 2.23)	-0.95 (-7.61 to 1.55)
MET + TZD-T		0.72 (0.23 to 2.24)	0.73 (0.25 to 2.21)	-0.96 (-7.54 to 1.56)
MET + TZD-L		0.56 (0.14 to 2.26)	0.57 (0.15 to 2.22)	-1.42 (-8.18 to 1.80)
MET + TZD-H		0.92 (0.30 to 2.78)	0.92 (0.32 to 2.72)	-0.27 (-6.82 to 2.18)
MET + AGI-T		1.81 (0.37 to 8.68)	1.76 (0.39 to 7.76)	2.37 (-5.19 to 12.79)
MET + INS-BA-T		1.35 (0.33 to 5.41)	1.34 (0.35 to 5.09)	1.07 (-5.95 to 6.89)
MET + INS-BI-T		1.70 (0.26 to 10.24)	1.66 (0.27 to 8.63)	2.05 (-5.78 to 16.94)
MET + DPP-L	MET + MEG-H	0.17 (0.03 to 0.91)	0.19 (0.05 to 0.91)	-9.80 (-46.00 to -0.24)
MET + DPP-H		0.18 (0.03 to 0.90)	0.20 (0.05 to 0.91)	-9.76 (-46.08 to -0.27)
MET + SGL-L		0.18 (0.03 to 0.95)	0.20 (0.05 to 0.95)	-9.75 (-45.96 to -0.15)
MET + SGL-H		0.18 (0.03 to 0.93)	0.20 (0.05 to 0.93)	-9.73 (-45.96 to -0.19)
MET + GLP-T		1.03 (0.05 to 20.28)	1.02 (0.08 to 11.12)	0.23 (-41.43 to 44.18)
MET + GLP-L		0.13 (0.02 to 0.81)	0.15 (0.03 to 0.81)	-10.34 (-46.48 to -0.54)
MET + GLP-H		0.19 (0.03 to 0.94)	0.21 (0.05 to 0.94)	-9.68 (-46.00 to -0.16)
MET + TZD-T		0.19 (0.03 to 0.96)	0.21 (0.05 to 0.97)	-9.62 (-45.98 to -0.10)
MET + TZD-L		0.15 (0.02 to 0.91)	0.16 (0.03 to 0.92)	-10.11 (-46.42 to -0.26)
MET + TZD-H		0.24 (0.03 to 1.19)	0.26 (0.06 to 1.18)	-8.97 (-45.26 to 0.51)
MET + AGI-T		0.45 (0.05 to 3.44)	0.49 (0.08 to 3.13)	-6.15 (-43.10 to 8.41)
MET + INS-BA-T		0.34 (0.04 to 2.33)	0.37 (0.07 to 2.23)	-7.48 (-44.49 to 3.95)
MET + INS-BI-T		0.40 (0.03 to 4.53)	0.44 (0.06 to 4.01)	-6.51 (-43.79 to 11.86)
MET + DPP-H	MET + DPP-L	1.03 (0.77 to 1.39)	1.03 (0.77 to 1.38)	0.08 (-0.71 to 0.71)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + SGL-L		1.02 (0.69 to 1.54)	1.02 (0.70 to 1.53)	0.05 (-0.90 to 1.04)
MET + SGL-H		1.05 (0.72 to 1.50)	1.05 (0.73 to 1.49)	0.12 (-0.83 to 0.95)
MET + GLP-T		5.94 (1.01 to 52.83)	5.30 (1.01 to 24.56)	10.23 (0.03 to 52.15)
MET + GLP-L		0.79 (0.37 to 1.50)	0.79 (0.38 to 1.48)	-0.50 (-1.71 to 1.02)
MET + GLP-H		1.07 (0.73 to 1.57)	1.07 (0.74 to 1.55)	0.17 (-0.79 to 1.09)
MET + TZD-T		1.09 (0.73 to 1.59)	1.08 (0.74 to 1.57)	0.19 (-0.76 to 1.16)
MET + TZD-L		0.84 (0.35 to 1.91)	0.84 (0.35 to 1.87)	-0.38 (-1.76 to 1.86)
MET + TZD-H		1.37 (0.92 to 2.07)	1.36 (0.93 to 2.02)	0.84 (-0.22 to 2.04)
MET + AGI-T		2.64 (0.88 to 8.35)	2.53 (0.88 to 7.23)	3.65 (-0.30 to 13.50)
MET + INS-BA-T		1.98 (0.86 to 4.61)	1.94 (0.87 to 4.27)	2.22 (-0.35 to 7.35)
MET + INS-BI-T		2.40 (0.59 to 11.05)	2.32 (0.59 to 9.00)	3.15 (-1.02 to 17.95)
MET + SGL-L	MET + DPP-H	1.00 (0.73 to 1.35)	1.00 (0.74 to 1.34)	-0.01 (-0.69 to 0.79)
MET + SGL-H		1.02 (0.78 to 1.31)	1.02 (0.79 to 1.30)	0.04 (-0.57 to 0.70)
MET + GLP-T		5.71 (0.96 to 49.22)	5.11 (0.96 to 22.98)	10.17 (-0.09 to 52.12)
MET + GLP-L		0.76 (0.38 to 1.38)	0.77 (0.39 to 1.37)	-0.56 (-1.57 to 0.88)
MET + GLP-H		1.04 (0.78 to 1.37)	1.04 (0.78 to 1.36)	0.09 (-0.57 to 0.85)
MET + TZD-T		1.05 (0.80 to 1.39)	1.05 (0.80 to 1.37)	0.11 (-0.51 to 0.91)
MET + TZD-L		0.81 (0.35 to 1.78)	0.81 (0.36 to 1.74)	-0.46 (-1.65 to 1.75)
MET + TZD-H		1.32 (0.99 to 1.80)	1.31 (0.99 to 1.77)	0.76 (-0.04 to 1.79)
MET + AGI-T		2.56 (0.89 to 7.68)	2.46 (0.89 to 6.66)	3.58 (-0.29 to 13.40)
MET + INS-BA-T		1.92 (0.88 to 4.23)	1.88 (0.88 to 3.92)	2.14 (-0.29 to 7.23)
MET + INS-BI-T		2.35 (0.58 to 9.96)	2.27 (0.59 to 8.17)	3.10 (-1.03 to 17.76)
MET + SGL-H	MET + SGL-L	1.02 (0.76 to 1.35)	1.02 (0.77 to 1.34)	0.05 (-0.68 to 0.72)
MET + GLP-T		5.74 (0.90 to 50.36)	5.16 (0.91 to 23.47)	10.15 (-0.25 to 52.03)
MET + GLP-L		0.76 (0.37 to 1.47)	0.77 (0.37 to 1.46)	-0.57 (-1.80 to 0.98)
MET + GLP-H		1.04 (0.70 to 1.54)	1.04 (0.71 to 1.52)	0.10 (-0.89 to 1.07)
MET + TZD-T		1.05 (0.72 to 1.56)	1.05 (0.72 to 1.54)	0.13 (-0.82 to 1.12)
MET + TZD-L		0.82 (0.34 to 1.85)	0.82 (0.34 to 1.81)	-0.44 (-1.84 to 1.80)
MET + TZD-H		1.33 (0.90 to 2.00)	1.32 (0.90 to 1.96)	0.77 (-0.31 to 1.96)
MET + AGI-T		2.58 (0.88 to 8.18)	2.48 (0.88 to 7.05)	3.59 (-0.33 to 13.47)
MET + INS-BA-T		1.92 (0.85 to 4.38)	1.88 (0.85 to 4.06)	2.14 (-0.40 to 7.26)
MET + INS-BI-T		2.35 (0.58 to 10.13)	2.28 (0.58 to 8.31)	3.10 (-1.07 to 17.72)
MET + GLP-T	MET + SGL-H	5.71 (0.91 to 49.49)	5.11 (0.91 to 23.39)	10.14 (-0.24 to 52.12)
MET + GLP-L		0.75 (0.36 to 1.39)	0.75 (0.36 to 1.38)	-0.61 (-1.77 to 0.87)
MET + GLP-H		1.02 (0.72 to 1.45)	1.02 (0.73 to 1.44)	0.05 (-0.81 to 0.95)
MET + TZD-T		1.03 (0.74 to 1.49)	1.03 (0.75 to 1.47)	0.07 (-0.72 to 1.04)
MET + TZD-L		0.80 (0.33 to 1.79)	0.81 (0.34 to 1.76)	-0.49 (-1.85 to 1.75)
MET + TZD-H		1.30 (0.92 to 1.89)	1.29 (0.92 to 1.85)	0.71 (-0.24 to 1.86)
MET + AGI-T		2.51 (0.88 to 7.74)	2.42 (0.88 to 6.69)	3.53 (-0.32 to 13.40)
MET + INS-BA-T		1.89 (0.82 to 4.29)	1.85 (0.83 to 3.99)	2.11 (-0.45 to 7.23)
MET + INS-BI-T		2.31 (0.56 to 10.22)	2.24 (0.57 to 8.35)	3.06 (-1.12 to 17.82)
MET + GLP-L	MET + GLP-T	0.13 (0.01 to 0.96)	0.14 (0.03 to 0.96)	-10.77 (-52.51 to -0.09)
MET + GLP-H		0.18 (0.02 to 1.14)	0.20 (0.04 to 1.14)	-10.11 (-52.01 to 0.32)
MET + TZD-T		0.18 (0.02 to 1.10)	0.20 (0.04 to 1.10)	-10.03 (-51.90 to 0.24)
MET + TZD-L		0.14 (0.02 to 0.95)	0.15 (0.03 to 0.95)	-10.57 (-52.41 to -0.12)
MET + TZD-H		0.23 (0.03 to 1.47)	0.25 (0.05 to 1.45)	-9.40 (-51.44 to 1.09)
MET + AGI-T		0.44 (0.04 to 3.26)	0.48 (0.08 to 3.03)	-6.20 (-47.43 to 7.26)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + INS-BA-T		0.34 (0.04 to 1.90)	0.38 (0.07 to 1.85)	-7.76 (-48.99 to 2.59)
MET + INS-BI-T		0.41 (0.03 to 3.77)	0.45 (0.06 to 3.36)	-6.61 (-47.87 to 10.07)
MET + GLP-H	MET + GLP-L	1.36 (0.77 to 2.68)	1.35 (0.77 to 2.63)	0.66 (-0.71 to 1.72)
MET + TZD-T		1.38 (0.73 to 2.91)	1.37 (0.73 to 2.85)	0.68 (-0.84 to 1.94)
MET + TZD-L		1.08 (0.40 to 2.91)	1.07 (0.40 to 2.84)	0.13 (-1.67 to 2.44)
MET + TZD-H		1.75 (0.92 to 3.66)	1.72 (0.92 to 3.56)	1.34 (-0.24 to 2.70)
MET + AGI-T		3.39 (1.00 to 12.55)	3.23 (1.00 to 10.87)	4.13 (0.00 to 13.97)
MET + INS-BA-T		2.56 (0.99 to 7.01)	2.48 (0.99 to 6.51)	2.70 (-0.02 to 7.83)
MET + INS-BI-T		3.09 (0.70 to 14.58)	2.97 (0.70 to 12.28)	3.62 (-0.68 to 18.23)
MET + TZD-T	MET + GLP-H	1.01 (0.69 to 1.48)	1.01 (0.70 to 1.46)	0.02 (-0.90 to 1.03)
MET + TZD-L		0.78 (0.34 to 1.76)	0.79 (0.34 to 1.73)	-0.54 (-1.88 to 1.71)
MET + TZD-H		1.27 (0.89 to 1.86)	1.26 (0.89 to 1.83)	0.67 (-0.33 to 1.80)
MET + AGI-T		2.47 (0.85 to 7.50)	2.38 (0.85 to 6.53)	3.49 (-0.42 to 13.28)
MET + INS-BA-T		1.85 (0.80 to 4.28)	1.81 (0.81 to 3.97)	2.05 (-0.53 to 7.20)
MET + INS-BI-T		2.27 (0.54 to 9.82)	2.20 (0.55 to 8.08)	3.01 (-1.23 to 17.67)
MET + TZD-L	MET + TZD-T	0.78 (0.31 to 1.76)	0.78 (0.32 to 1.73)	-0.55 (-2.06 to 1.68)
MET + TZD-H		1.26 (0.86 to 1.86)	1.25 (0.86 to 1.83)	0.64 (-0.43 to 1.80)
MET + AGI-T		2.45 (0.81 to 7.72)	2.36 (0.82 to 6.68)	3.47 (-0.51 to 13.36)
MET + INS-BA-T		1.83 (0.80 to 4.17)	1.79 (0.81 to 3.88)	2.02 (-0.54 to 7.12)
MET + INS-BI-T		2.23 (0.54 to 9.79)	2.16 (0.54 to 8.05)	2.97 (-1.27 to 17.65)
MET + TZD-H	MET + TZD-L	1.63 (0.77 to 3.81)	1.61 (0.77 to 3.72)	1.19 (-0.91 to 2.67)
MET + AGI-T		3.18 (0.82 to 12.57)	3.04 (0.82 to 10.94)	3.95 (-0.57 to 13.86)
MET + INS-BA-T		2.39 (0.72 to 7.23)	2.33 (0.73 to 6.74)	2.56 (-0.92 to 7.58)
MET + INS-BI-T		2.96 (0.54 to 15.10)	2.84 (0.54 to 12.60)	3.55 (-1.45 to 18.04)
MET + AGI-T	MET + TZD-H	1.93 (0.66 to 5.89)	1.87 (0.67 to 5.15)	2.79 (-1.15 to 12.61)
MET + INS-BA-T		1.45 (0.62 to 3.41)	1.43 (0.63 to 3.18)	1.37 (-1.32 to 6.60)
MET + INS-BI-T		1.78 (0.42 to 7.81)	1.74 (0.43 to 6.44)	2.33 (-1.96 to 17.06)
MET + INS-BA-T	MET + AGI-T	0.73 (0.19 to 2.99)	0.75 (0.21 to 2.82)	-1.46 (-11.69 to 5.51)
MET + INS-BI-T		0.87 (0.16 to 6.06)	0.88 (0.18 to 5.20)	-0.67 (-10.62 to 14.41)
MET + INS-BI-T	MET + INS-BA-T	1.21 (0.38 to 4.16)	1.20 (0.39 to 3.61)	0.85 (-3.49 to 13.16)
Random-effects model	Residual deviance	182.8 vs. 201 data points		
	Deviance information criteria	990.564		

$\mathrm{AGI}=$ alpha-glucosidase inhibitors; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; -H = high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; -L = low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SGL}=$ sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; - $=$ = titrated; TZD = thiazolidinedione; vs. = versus.

Total Cholesterol

Table 26: Total Cholesterol: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-H	MET	0.12 (-0.09 to 0.31)
MET + SUL-T		0.03 (-0.14 to 0.20)
MET + SUL-L		0.23 (-0.31 to 0.77)
MET + MEG-T		-0.08 (-0.46 to 0.30)
MET + MEG-L		0.00 (-0.47 to 0.46)
MET + MEG-H		0.00 (-0.47 to 0.46)
MET + DPP-L		-0.01 (-0.23 to 0.22)
MET + DPP-H		0.01 (-0.10 to 0.12)
MET + SGL-L		0.21 (-0.03 to 0.44)
MET + SGL-H		0.21 (-0.01 to 0.43)
MET + GLP-L		-0.02 (-1.29 to 1.19)
MET + GLP-T		-0.07 (-0.40 to 0.24)
MET + GLP-H		-0.06 (-0.23 to 0.10)
MET + AGI-L		0.26 (-0.12 to 0.64)
MET + TZD-L		0.24 (0.02 to 0.46)
MET + TZD-H		0.34 (0.19 to 0.48)
MET + TZD-T		0.31 (0.04 to 0.58)
MET + INS-BA-T		-0.09 (-0.47 to 0.29)
MET + SUL-T	MET + SUL-H	-0.08 (-0.33 to 0.16)
MET + SUL-L		0.11 (-0.45 to 0.68)
MET + MEG-T		-0.19 (-0.62 to 0.23)
MET + MEG-L		-0.12 (-0.62 to 0.39)
MET + MEG-H		-0.12 (-0.62 to 0.38)
MET + DPP-L		-0.12 (-0.41 to 0.17)
MET + DPP-H		-0.10 (-0.30 to 0.09)
MET + SGL-L		0.09 (-0.21 to 0.40)
MET + SGL-H		0.09 (-0.19 to 0.38)
MET + GLP-L		-0.14 (-1.42 to 1.09)
MET + GLP-T		-0.19 (-0.56 to 0.17)
MET + GLP-H		-0.18 (-0.41 to 0.05)
MET + AGI-L		0.15 (-0.22 to 0.51)
MET + TZD-L		0.13 (-0.14 to 0.40)
MET + TZD-H		0.22 (0.03 to 0.42)
MET + TZD-T		0.19 (-0.12 to 0.52)
MET + INS-BA-T		-0.21 (-0.62 to 0.22)
MET + SUL-L	MET + SUL-T	0.20 (-0.36 to 0.76)
MET + MEG-T		-0.11 (-0.49 to 0.28)
MET + MEG-L		-0.03 (-0.53 to 0.46)
MET + MEG-H		-0.03 (-0.53 to 0.46)
MET + DPP-L		-0.04 (-0.31 to 0.23)
MET + DPP-H		-0.02 (-0.18 to 0.15)
MET + SGL-L		0.18 (-0.10 to 0.46)
MET + SGL-H		0.18 (-0.09 to 0.45)

Treatment	Reference	MD (95\% Crl)
MET + GLP-L		-0.06 (-1.33 to 1.17)
MET + GLP-T		-0.10 (-0.43 to 0.22)
MET + GLP-H		-0.09 (-0.30 to 0.11)
MET + AGI-L		0.23 (-0.17 to 0.64)
MET + TZD-L		0.21 (-0.06 to 0.48)
MET + TZD-H		0.31 (0.10 to 0.51)
MET + TZD-T		0.28 (0.08 to 0.49)
MET + INS-BA-T		-0.12 (-0.52 to 0.28)
MET + MEG-T	MET + SUL-L	-0.31 (-0.96 to 0.35)
MET + MEG-L		-0.23 (-0.94 to 0.48)
MET + MEG-H		-0.23 (-0.94 to 0.48)
MET + DPP-L		-0.23 (-0.80 to 0.34)
MET + DPP-H		-0.22 (-0.76 to 0.33)
MET + SGL-L		-0.02 (-0.60 to 0.56)
MET + SGL-H		-0.02 (-0.59 to 0.56)
MET + GLP-L		-0.25 (-1.64 to 1.08)
MET + GLP-T		-0.30 (-0.93 to 0.32)
MET + GLP-H		-0.29 (-0.85 to 0.27)
MET + AGI-L		0.03 (-0.62 to 0.69)
MET + TZD-L		0.01 (-0.48 to 0.50)
MET + TZD-H		0.11 (-0.43 to 0.65)
MET + TZD-T		0.08 (-0.51 to 0.68)
MET + INS-BA-T		$-0.32(-0.97$ to 0.34)
MET + MEG-L	MET + MEG-T	0.08 (-0.52 to 0.68)
MET + MEG-H		0.07 (-0.52 to 0.67)
MET + DPP-L		0.07 (-0.37 to 0.51)
MET + DPP-H		0.09 (-0.30 to 0.48)
MET + SGL-L		0.28 (-0.16 to 0.73)
MET + SGL-H		0.29 (-0.15 to 0.73)
MET + GLP-L		0.05 (-1.27 to 1.32)
MET + GLP-T		0.00 (-0.48 to 0.49)
MET + GLP-H		0.01 (-0.40 to 0.42)
MET + AGI-L		0.34 (-0.19 to 0.87)
MET + TZD-L		0.32 (-0.12 to 0.75)
MET + TZD-H		0.42 (0.01 to 0.82)
MET + TZD-T		0.38 (-0.05 to 0.82)
MET + INS-BA-T		-0.01 (-0.55 to 0.52)
MET + MEG-H	MET + MEG-L	0.00 (-0.46 to 0.46)
MET + DPP-L		0.00 (-0.52 to 0.51)
MET + DPP-H		0.01 (-0.46 to 0.49)
MET + SGL-L		0.21 (-0.31 to 0.73)
MET + SGL-H		0.21 (-0.30 to 0.73)
MET + GLP-L		-0.02 (-1.37 to 1.28)
MET + GLP-T		-0.07 (-0.64 to 0.49)
MET + GLP-H		-0.06 (-0.55 to 0.43)
MET + AGI-L		0.26 (-0.34 to 0.87)
MET + TZD-L		0.24 (-0.27 to 0.75)

Treatment	Reference	MD (95\% Crl)
MET + TZD-H		0.34 (-0.14 to 0.83)
MET + TZD-T		0.31 (-0.22 to 0.85)
MET + INS-BA-T		-0.09 (-0.69 to 0.51)
MET + DPP-L	MET + MEG-H	0.00 (-0.52 to 0.51)
MET + DPP-H		0.01 (-0.46 to 0.49)
MET + SGL-L		0.21 (-0.31 to 0.73)
MET + SGL-H		0.21 (-0.30 to 0.73)
MET + GLP-L		-0.02 (-1.36 to 1.27)
MET + GLP-T		-0.07 (-0.63 to 0.49)
MET + GLP-H		-0.06 (-0.55 to 0.43)
MET + AGI-L		0.26 (-0.34 to 0.86)
MET + TZD-L		0.24 (-0.27 to 0.75)
MET + TZD-H		0.34 (-0.14 to 0.82)
MET + TZD-T		0.31 (-0.22 to 0.85)
MET + INS-BA-T		-0.09 (-0.68 to 0.52)
MET + DPP-H	MET + DPP-L	0.02 (-0.21 to 0.25)
MET + SGL-L		0.21 (-0.10 to 0.53)
MET + SGL-H		0.22 (-0.09 to 0.53)
MET + GLP-L		-0.02 (-1.30 to 1.22)
MET + GLP-T		-0.07 (-0.45 to 0.32)
MET + GLP-H		-0.06 (-0.33 to 0.21)
MET + AGI-L		0.27 (-0.16 to 0.70)
MET + TZD-L		0.25 (-0.04 to 0.53)
MET + TZD-H		0.34 (0.10 to 0.59)
MET + TZD-T		0.31 (-0.02 to 0.66)
MET + INS-BA-T		-0.08 (-0.52 to 0.35)
MET + SGL-L	MET + DPP-H	0.20 (-0.05 to 0.44)
MET + SGL-H		0.20 (-0.03 to 0.42)
MET + GLP-L		-0.04 (-1.31 to 1.18)
MET + GLP-T		-0.09 (-0.40 to 0.23)
MET + GLP-H		-0.08 (-0.24 to 0.09)
MET + AGI-L		0.25 (-0.12 to 0.62)
MET + TZD-L		0.23 (0.00 to 0.46)
MET + TZD-H		0.33 (0.17 to 0.48)
MET + TZD-T		0.29 (0.03 to 0.56)
MET + INS-BA-T		-0.10 (-0.47 to 0.27)
MET + SGL-H	MET + SGL-L	0.00 (-0.22 to 0.23)
MET + GLP-L		-0.23 (-1.52 to 1.00)
MET + GLP-T		-0.28 (-0.68 to 0.11)
MET + GLP-H		-0.27 (-0.55 to 0.01)
MET + AGI-L		0.06 (-0.39 to 0.50)
MET + TZD-L		0.03 (-0.28 to 0.35)
MET + TZD-H		0.13 (-0.14 to 0.40)
MET + TZD-T		0.10 (-0.25 to 0.45)
MET + INS-BA-T		-0.30 (-0.73 to 0.14)
MET + GLP-L	MET + SGL-H	-0.24 (-1.52 to 1.00)
MET + GLP-T		-0.28 (-0.67 to 0.10)

Treatment	Reference	MD (95\% Crl)
MET + GLP-H		-0.27 (-0.54, -0.01)
MET + AGI-L		0.05 (-0.38 to 0.48)
MET + TZD-L		0.03 (-0.28 to 0.34)
MET + TZD-H		0.13 (-0.13 to 0.38)
MET + TZD-T		0.10 (-0.24 to 0.44)
MET + INS-BA-T		-0.30 (-0.73 to 0.13)
MET + GLP-T	MET + GLP-L	-0.05 (-1.30 to 1.25)
MET + GLP-H		-0.04 (-1.26 to 1.23)
MET + AGI-L		0.29 (-0.99 to 1.61)
MET + TZD-L		0.27 (-0.97 to 1.56)
MET + TZD-H		0.36 (-0.86 to 1.64)
MET + TZD-T		0.33 (-0.91 to 1.62)
MET + INS-BA-T		-0.06 (-1.34 to 1.26)
MET + GLP-H	MET + GLP-T	0.01 (-0.33 to 0.36)
MET + AGI-L		0.33 (-0.15 to 0.83)
MET + TZD-L		0.31 (-0.07 to 0.70)
MET + TZD-H		0.41 (0.07 to 0.76)
MET + TZD-T		0.38 (0.00 to 0.77)
MET + INS-BA-T		-0.02 (-0.46 to 0.44)
MET + AGI-L	MET + GLP-H	0.33 (-0.07 to 0.73)
MET + TZD-L		0.31 (0.04 to 0.57)
MET + TZD-H		0.40 (0.21 to 0.59)
MET + TZD-T		0.37 (0.08 to 0.67)
MET + INS-BA-T		-0.03 (-0.42 to 0.38)
MET + TZD-L	MET + AGI-L	-0.02 (-0.44 to 0.40)
MET + TZD-H		0.08 (-0.31 to 0.46)
MET + TZD-T		0.05 (-0.41 to 0.50)
MET + INS-BA-T		-0.35 (-0.87 to 0.17)
MET + TZD-H	MET + TZD-L	0.10 (-0.13 to 0.32)
MET + TZD-T		0.06 (-0.27 to 0.41)
MET + INS-BA-T		-0.33 (-0.76 to 0.11)
MET + TZD-T	MET + TZD-H	-0.03 (-0.32 to 0.27)
MET + INS-BA-T		-0.43 (-0.82,-0.03)
MET + INS-BA-T	MET + TZD-T	-0.40 (-0.84 to 0.05)
Random-effects model Residual deviance 109.7 vs. 113 data points		

AGI = alpha-glucosidase inhibitor; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; $-\mathrm{H}=$ high-dose; INS-BA = basal insulin; -L = low-dose; MD = mean difference; MEG = meglitinide; MET = metformin; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; - $\mathrm{T}=$ titrated; TZD = thiazolidinedione; vs. = versus.

Glycated Hemoglobin (A1C)

Table 27: A1C: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-T	MET	-0.66 (-0.78 to -0.55)
MET + SUL-L		0.01 (-0.33 to 0.34)
MET + SUL-H		-0.61 (-0.78 to -0.44)
MET + MEG-H		-0.50 (-0.78 to -0.21)
MET + MEG-L		-0.67 (-1.01 to -0.32)
MET + MEG-T		-1.13 (-1.67 to -0.58)
MET + DPP-L		-0.56 (-0.70 to -0.42)
MET + DPP-H		-0.58 (-0.66 to -0.50)
MET + DPP-T		-0.13 (-0.75 to 0.48)
MET + SGL-L		-0.55 (-0.70 to -0.40)
MET + SGL-H		-0.67 (-0.81 to -0.54)
MET + GLP-L		-0.56 (-0.75 to -0.37)
MET + GLP-H		-0.76 (-0.88 to -0.64)
MET + GLP-T		-0.86 (-1.15 to -0.57)
MET + AGI-T		-0.79 (-1.11 to -0.46$)$
MET + AGI-H		-0.11 (-0.76 to 0.54)
MET + AGI-L		-0.49 (-0.87 to -0.11)
MET + TZD-L		-0.58 (-0.79 to -0.37)
MET + TZD-H		-0.67 (-0.79 to -0.54)
MET + TZD-T		-0.66 (-0.86 to -0.45)
MET + INS-BA-T		-0.81 (-1.07 to -0.55)
MET + INS-BI-T		-0.86 (-1.14 to -0.57)
MET + SUL-L	MET + SUL-T	0.67 (0.32 to 1.02)
MET + SUL-H		0.05 (-0.14 to 0.24)
MET + MEG-H		0.17 (-0.14 to 0.48)
MET + MEG-L		0.00 (-0.36 to 0.36)
MET + MEG-T		-0.46 (-1.01 to 0.09)
MET + DPP-L		0.10 (-0.06 to 0.27)
MET + DPP-H		0.08 (-0.02 to 0.19)
MET + DPP-T		0.53 (-0.07 to 1.13)
MET + SGL-L		0.12 (-0.06 to 0.29)
MET + SGL-H		-0.01 (-0.17 to 0.16)
MET + GLP-L		0.10 (-0.11 to 0.32)
MET + GLP-H		-0.10 (-0.25 to 0.05)
MET + GLP-T		-0.20 (-0.49 to 0.09)
MET + AGI-T		-0.12 (-0.47 to 0.22)
MET + AGI-H		0.55 (-0.10 to 1.21)
MET + AGI-L		0.17 (-0.22 to 0.56)
MET + TZD-L		0.08 (-0.15 to 0.31)

Treatment	Reference	MD (95\% Crl)
MET + TZD-H		0.00 (-0.16 to 0.15)
MET + TZD-T		0.01 (-0.17 to 0.18)
MET + INS-BA-T		-0.15 (-0.41 to 0.11)
MET + INS-BI-T		-0.19 (-0.48 to 0.10)
MET + SUL-H	MET + SUL-L	-0.62 (-0.98 to -0.25)
MET + MEG-H		-0.50 (-0.94 to -0.06)
MET + MEG-L		-0.67 (-1.15 to -0.19)
MET + MEG-T		-1.13 (-1.77 to -0.49)
MET + DPP-L		-0.57 (-0.93 to -0.21)
MET + DPP-H		-0.58 (-0.92 to -0.25)
MET + DPP-T		-0.14 (-0.83 to 0.56)
MET + SGL-L		-0.55 (-0.91 to -0.19)
MET + SGL-H		-0.68 (-1.03 to -0.32)
MET + GLP-L		-0.57 (-0.95 to -0.18)
MET + GLP-H		-0.77 (-1.12 to -0.42)
MET + GLP-T		-0.87 (-1.31 to -0.43)
MET + AGI-T		-0.79 (-1.26 to -0.33)
MET + AGI-H		-0.12 (-0.84 to 0.61)
MET + AGI-L		-0.50 (-1.00 to 0.01)
MET + TZD-L		-0.59 (-0.91 to -0.26)
MET + TZD-H		-0.67 (-1.02 to -0.32)
MET + TZD-T		-0.66 (-1.05 to -0.27)
MET + INS-BA-T		-0.82 (-1.24 to -0.39)
MET + INS-BI-T		-0.86 (-1.30 to -0.42)
MET + MEG-H	MET + SUL-H	0.12 (-0.19 to 0.42)
MET + MEG-L		-0.05 (-0.43 to 0.32)
MET + MEG-T		-0.51 (-1.08 to 0.06)
MET + DPP-L		0.05 (-0.16 to 0.26)
MET + DPP-H		0.03 (-0.13 to 0.20)
MET + DPP-T		0.48 (-0.15 to 1.11)
MET + SGL-L		0.07 (-0.15 to 0.29)
MET + SGL-H		-0.06 (-0.27 to 0.15)
MET + GLP-L		0.05 (-0.19 to 0.29)
MET + GLP-H		-0.15 (-0.33 to 0.03)
MET + GLP-T		-0.25 (-0.58 to 0.08)
MET + AGI-T		-0.18 (-0.54 to 0.19)
MET + AGI-H		0.50 (-0.12 to 1.13)
MET + AGI-L		0.12 (-0.26 to 0.51)
MET + TZD-L		0.03 (-0.21 to 0.28)
MET + TZD-H		-0.06 (-0.23 to 0.12)
MET + TZD-T		-0.05 (-0.30 to 0.21)
MET + INS-BA-T		-0.20 (-0.49 to 0.10)

Treatment	Reference	MD (95\% Crl)
MET + INS-BI-T		-0.24 (-0.56 to 0.08)
MET + MEG-L	MET + MEG-H	-0.17 (-0.55 to 0.21)
MET + MEG-T		-0.63 (-1.25 to -0.01)
MET + DPP-L		-0.07 (-0.38 to 0.25)
MET + DPP-H		-0.08 (-0.38 to 0.21)
MET + DPP-T		0.37 (-0.31 to 1.04)
MET + SGL-L		-0.05 (-0.37 to 0.27)
MET + SGL-H		-0.18 (-0.49 to 0.14)
MET + GLP-L		-0.07 (-0.41 to 0.28)
MET + GLP-H		-0.27 (-0.57 to 0.04)
MET + GLP-T		-0.37 (-0.77 to 0.04)
MET + AGI-T		-0.29 (-0.72 to 0.14)
MET + AGI-H		0.38 (-0.31 to 1.08)
MET + AGI-L		0.00 (-0.46 to 0.47)
MET + TZD-L		-0.08 (-0.43 to 0.26)
MET + TZD-H		-0.17 (-0.48 to 0.14)
MET + TZD-T		-0.16 (-0.51 to 0.19)
MET + INS-BA-T		-0.32 (-0.70 to 0.07)
MET + INS-BI-T		-0.36 (-0.76 to 0.04)
MET + MEG-T	MET + MEG-L	-0.46 (-1.10 to 0.19)
MET + DPP-L		0.10 (-0.27 to 0.47)
MET + DPP-H		0.09 (-0.26 to 0.44)
MET + DPP-T		0.54 (-0.17 to 1.23)
MET + SGL-L		0.12 (-0.25 to 0.49)
MET + SGL-H		-0.01 (-0.37 to 0.36)
MET + GLP-L		0.10 (-0.29 to 0.50)
MET + GLP-H		-0.10 (-0.46 to 0.26)
MET + GLP-T		-0.20 (-0.64 to 0.25)
MET + AGI-T		-0.12 (-0.59 to 0.35)
MET + AGI-H		0.55 (-0.18 to 1.29)
MET + AGI-L		0.17 (-0.33 to 0.69)
MET + TZD-L		0.09 (-0.31 to 0.48)
MET + TZD-H		0.00 (-0.36 to 0.36)
MET + TZD-T		0.01 (-0.39 to 0.41)
MET + INS-BA-T		-0.15 (-0.57 to 0.28)
MET + INS-BI-T		-0.19 (-0.64 to 0.25)
MET + DPP-L	MET + MEG-T	0.56 (0.00 to 1.13)
MET + DPP-H		0.55 (0.00 to 1.10)
MET + DPP-T		0.99 (0.18 to 1.81)
MET + SGL-L		0.58 (0.02 to 1.15)
MET + SGL-H		0.45 (-0.11 to 1.02)
MET + GLP-L		0.56 (-0.02 to 1.15)

Treatment	Reference	MD (95\% Crl)
MET + GLP-H		0.36 (-0.20 to 0.92)
MET + GLP-T		0.26 (-0.35 to 0.88)
MET + AGI-T		0.34 (-0.30 to 0.98)
MET + AGI-H		1.01 (0.17 to 1.86)
MET + AGI-L		0.63 (-0.03 to 1.30)
MET + TZD-L		0.54 (-0.03 to 1.13)
MET + TZD-H		0.46 (-0.10 to 1.02)
MET + TZD-T		0.47 (-0.11 to 1.04)
MET + INS-BA-T		0.31 (-0.29 to 0.91)
MET + INS-BI-T		0.27 (-0.34 to 0.88)
MET + DPP-H	MET + DPP-L	-0.02 (-0.16 to 0.13)
MET + DPP-T		0.43 (-0.19 to 1.06)
MET + SGL-L		0.02 (-0.19 to 0.22)
MET + SGL-H		-0.11 (-0.30 to 0.08)
MET + GLP-L		0.00 (-0.23 to 0.23)
MET + GLP-H		-0.20 (-0.38 to -0.02)
MET + GLP-T		-0.30 (-0.62 to 0.01)
MET + AGI-T		-0.23 (-0.58 to 0.13)
MET + AGI-H		0.45 (-0.21 to 1.11)
MET + AGI-L		0.07 (-0.33 to 0.47)
MET + TZD-L		-0.02 (-0.26 to 0.22)
MET + TZD-H		-0.11 (-0.28 to 0.07)
MET + TZD-T		-0.10 (-0.34 to 0.14)
MET + INS-BA-T		-0.25 (-0.54 to 0.03)
MET + INS-BI-T		-0.29 (-0.61 to 0.02)
MET + DPP-T	MET + DPP-H	0.45 (-0.16 to 1.06)
MET + SGL-L		0.03 (-0.13 to 0.19)
MET + SGL-H		-0.09 (-0.24 to 0.05)
MET + GLP-L		0.02 (-0.18 to 0.22)
MET + GLP-H		-0.18 (-0.30 to -0.06)
MET + GLP-T		-0.28 (-0.57 to 0.00)
MET + AGI-T		-0.21 (-0.54 to 0.13)
MET + AGI-H		0.47 (-0.18 to 1.11)
MET + AGI-L		0.09 (-0.29 to 0.47)
MET + TZD-L		0.00 (-0.21 to 0.21)
MET + TZD-H		-0.09 (-0.21 to 0.04)
MET + TZD-T		-0.08 (-0.28 to 0.12)
MET + INS-BA-T		-0.23 (-0.49 to 0.02)
MET + INS-BI-T		-0.28 (-0.56 to 0.01)
MET + SGL-L	MET + DPP-T	-0.42 (-1.04 to 0.22)
MET + SGL-H		-0.54 (-1.16 to 0.09)
MET + GLP-L		-0.43 (-1.07 to 0.21)

Treatment	Reference	MD (95\% Crl)
MET + GLP-H		-0.63 (-1.25 to -0.01)
MET + GLP-T		-0.73 (-1.40 to -0.06)
MET + AGI-T		-0.66 (-1.35 to 0.04)
MET + AGI-H		0.02 (-0.87 to 0.90)
MET + AGI-L		-0.36 (-1.08 to 0.36)
MET + TZD-L		-0.45 (-1.10 to 0.19)
MET + TZD-H		-0.54 (-1.16 to 0.09)
MET + TZD-T		-0.53 (-1.16 to 0.10)
MET + INS-BA-T		-0.68 (-1.34 to -0.02)
MET + INS-BI-T		-0.73 (-1.39 to -0.06)
MET + SGL-H	MET + SGL-L	-0.13 (-0.27 to 0.02)
MET + GLP-L		-0.02 (-0.26 to 0.23)
MET + GLP-H		-0.22 (-0.40 to -0.03)
MET + GLP-T		-0.32 (-0.64 to 0.01)
MET + AGI-T		-0.24 (-0.60 to 0.12)
MET + AGI-H		0.43 (-0.23 to 1.10)
MET + AGI-L		0.05 (-0.35 to 0.46)
MET + TZD-L		-0.03 (-0.29 to 0.22)
MET + TZD-H		-0.12 (-0.31 to 0.07)
MET + TZD-T		-0.11 (-0.36 to 0.13)
MET + INS-BA-T		-0.27 (-0.56 to 0.03)
MET + INS-BI-T		-0.31 (-0.63 to 0.01)
MET + GLP-L	MET + SGL-H	0.11 (-0.12 to 0.34)
MET + GLP-H		-0.09 (-0.27 to 0.08)
MET + GLP-T		-0.19 (-0.50 to 0.12)
MET + AGI-T		-0.12 (-0.47 to 0.24)
MET + AGI-H		0.56 (-0.10 to 1.22)
MET + AGI-L		0.18 (-0.22 to 0.58)
MET + TZD-L		0.09 (-0.15 to 0.34)
MET + TZD-H		0.00 (-0.18 to 0.18)
MET + TZD-T		0.01 (-0.22 to 0.25)
MET + INS-BA-T		-0.14 (-0.43 to 0.14)
MET + INS-BI-T		-0.18 (-0.49 to 0.13)
MET + GLP-H	MET + GLP-L	-0.20 (-0.39 to -0.02)
MET + GLP-T		-0.30 (-0.64 to 0.04)
MET + AGI-T		-0.23 (-0.60 to 0.15)
MET + AGI-H		0.45 (-0.22 to 1.12)
MET + AGI-L		0.07 (-0.34 to 0.49)
MET + TZD-L		-0.02 (-0.30 to 0.26)
MET + TZD-H		-0.11 (-0.33 to 0.11)
MET + TZD-T		-0.10 (-0.37 to 0.18)
MET + INS-BA-T		-0.25 (-0.56 to 0.06)

Treatment	Reference	MD (95\% Crl)
MET + INS-BI-T		-0.29 (-0.62 to 0.04)
MET + GLP-T	MET + GLP-H	-0.10 (-0.40 to 0.20)
MET + AGI-T		-0.03 (-0.37 to 0.32)
MET + AGI-H		0.65 (0.00 to 1.30)
MET + AGI-L		0.27 (-0.12 to 0.66)
MET + TZD-L		0.18 (-0.05 to 0.42)
MET + TZD-H		0.10 (-0.06 to 0.25)
MET + TZD-T		0.10 (-0.12 to 0.33)
MET + INS-BA-T		-0.05 (-0.31 to 0.21)
MET + INS-BI-T		-0.09 (-0.38 to 0.19)
MET + AGI-T	MET + GLP-T	0.07 (-0.36 to 0.51)
MET + AGI-H		0.75 (0.05 to 1.46)
MET + AGI-L		0.37 (-0.10 to 0.84)
MET + TZD-L		0.28 (-0.07 to 0.63)
MET + TZD-H		0.19 (-0.11 to 0.50)
MET + TZD-T		0.20 (-0.13 to 0.54)
MET + INS-BA-T		0.05 (-0.28 to 0.38)
MET + INS-BI-T		0.01 (-0.36 to 0.38)
MET + AGI-H	MET + AGI-T	0.68 (-0.05 to 1.40)
MET + AGI-L		0.30 (-0.21 to 0.80)
MET + TZD-L		0.21 (-0.18 to 0.60)
MET + TZD-H		0.12 (-0.23 to 0.47)
MET + TZD-T		0.13 (-0.26 to 0.52)
MET + INS-BA-T		-0.02 (-0.44 to 0.39)
MET + INS-BI-T		-0.07 (-0.50 to 0.37)
MET + AGI-L	MET + AGI-H	-0.38 (-1.12 to 0.36)
MET + TZD-L		-0.47 (-1.14 to 0.20)
MET + TZD-H		-0.55 (-1.21 to 0.10)
MET + TZD-T		-0.55 (-1.22 to 0.13)
MET + INS-BA-T		-0.70 (-1.39 to -0.01)
MET + INS-BI-T		-0.74 (-1.45 to -0.04)
MET + TZD-L	MET + AGI-L	-0.09 (-0.52 to 0.34)
MET + TZD-H		-0.18 (-0.57 to 0.21)
MET + TZD-T		-0.17 (-0.59 to 0.26)
MET + INS-BA-T		-0.32 (-0.77 to 0.13)
MET + INS-BI-T		-0.36 (-0.83 to 0.11)
MET + TZD-H	MET + TZD-L	-0.09 (-0.31 to 0.13)
MET + TZD-T		-0.08 (-0.36 to 0.21)
MET + INS-BA-T		-0.23 (-0.56 to 0.10)
MET + INS-BI-T		-0.28 (-0.62 to 0.08)
MET + TZD-T	MET + TZD-H	0.01 (-0.22 to 0.24)
MET + INS-BA-T		-0.15 (-0.42 to 0.13)

Treatment	Reference	MD (95\% CrI)
MET + INS-BI-T		$-0.19(-0.49$ to 0.11$)$
MET + INS-BA-T	MET + TZD-T	$-0.15(-0.47$ to 0.16$)$
MET + INS-BI-T	MET + INS-BA-T	$-0.20(-0.53$ to 0.14$)$
MET + INS-BI-T	$-0.04(-0.30$ to 0.21$)$	
Random-effects model	Residual deviance	302.6 vs. 310 data points

AGI = alpha-glucosidase inhibitors; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; $-\mathrm{L}=$ low-dose; $\mathrm{MD}=$ mean difference; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; $-\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. $=$ versus.

Diastolic Blood Pressure (DBP)
Table 28: Diastolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-H	MET	-1.98 (-3.52 to -0.38)
MET + SUL-L		1.40 (-4.00 to 6.60)
MET + SUL-T		0.18 (-0.55 to 0.89)
MET + DPP-H		-1.20 (-1.83 to -0.54)
MET + SGL-L		-1.48 (-2.08 to -0.85)
MET + SGL-H		-2.12 (-2.72 to -1.51)
MET + GLP-L		-1.06 (-2.22 to 0.06)
MET + GLP-H		-1.22 (-1.94 to -0.46)
MET + GLP-T		-0.95 (-2.49 to 0.54)
MET + TZD-H		-2.79 (-3.87 to -1.71)
MET + TZD-L		-0.67 (-4.64 to 3.19)
MET + TZD-T		-0.35 (-1.53 to 0.78)
MET + SUL-L	MET + SUL-H	3.38 (-1.74 to 8.36)
MET + SUL-T		2.16 (0.53 to 3.74)
MET + DPP-H		0.78 (-0.82 to 2.32)
MET + SGL-L		0.50 (-1.14 to 2.08)
MET + SGL-H		-0.14 (-1.77 to 1.47)
MET + GLP-L		0.93 (-1.01 to 2.76)
MET + GLP-H		0.76 (-0.83 to 2.33)
MET + GLP-T		1.03 (-1.11 to 3.08)
MET + TZD-H		-0.81 (-2.03 to 0.38)
MET + TZD-L		1.31 (-2.34 to 4.90)
MET + TZD-T		1.63 (-0.25 to 3.46)
MET + SUL-T	MET + SUL-L	-1.22 (-6.44 to 4.18)
MET + DPP-H		-2.60 (-7.82 to 2.80)
MET + SGL-L		-2.88 (-8.09 to 2.50)
MET + SGL-H		-3.52 (-8.73 to 1.89)

Treatment	Reference	MD (95\% Crl)
MET + GLP-L		-2.45 (-7.77 to 2.96)
MET + GLP-H		-2.62 (-7.82 to 2.80)
MET + GLP-T		-2.35 (-7.81 to 3.19)
MET + TZD-H		-4.19 (-9.26 to 1.06)
MET + TZD-L		-2.07 (-5.84 to 1.73)
MET + TZD-T		-1.75 (-7.03 to 3.74)
MET + DPP-H	MET + SUL-T	-1.38 (-2.29 to -0.55)
MET + SGL-L		-1.66 (-2.40 to -0.89)
MET + SGL-H		-2.30 (-2.96 to -1.60)
MET + GLP-L		-1.24 (-2.51 to -0.01)
MET + GLP-H		-1.40 (-2.39 to -0.50)
MET + GLP-T		-1.13 (-2.68 to 0.36)
MET + TZD-H		-2.97 (-4.07 to -1.84)
MET + TZD-L		-0.85 (-4.94 to 3.05)
MET + TZD-T		-0.53 (-1.43 to 0.36)
MET + SGL-L	MET + DPP-H	-0.28 (-1.06 to 0.56)
MET + SGL-H		-0.92 (-1.66 to -0.10)
MET + GLP-L		0.14 (-1.04 to 1.21)
MET + GLP-H		-0.02 (-0.73 to 0.69)
MET + GLP-T		0.25 (-1.31 to 1.72)
MET + TZD-H		-1.59 (-2.67 to -0.50)
MET + TZD-L		0.53 (-3.45 to 4.41)
MET + TZD-T		0.85 (-0.40 to 2.00)
MET + SGL-H	MET + SGL-L	-0.64 (-1.20 to -0.05)
MET + GLP-L		0.43 (-0.87 to 1.64)
MET + GLP-H		0.26 (-0.68 to 1.14)
MET + GLP-T		0.53 (-1.07 to 2.08)
MET + TZD-H		-1.31 (-2.47 to -0.13)
MET + TZD-L		0.81 (-3.21 to 4.68)
MET + TZD-T		1.13 (-0.08 to 2.27)
MET + GLP-L	MET + SGL-H	1.06 (-0.21 to 2.25)
MET + GLP-H		0.90 (-0.03 to 1.75)
MET + GLP-T		1.17 (-0.42 to 2.69)
MET + TZD-H		-0.67 (-1.80 to 0.49)
MET + TZD-L		1.45 (-2.61 to 5.36)
MET + TZD-T		1.77 (0.60 to 2.87)
MET + GLP-H	MET + GLP-L	-0.17 (-1.21 to 0.99)
MET + GLP-T		0.10 (-1.71 to 1.99)
MET + TZD-H		-1.73 (-3.17 to -0.22)
MET + TZD-L		0.38 (-3.68 to 4.35)
MET + TZD-T		0.71 (-0.82 to 2.24)
MET + GLP-T	MET + GLP-H	0.27 (-1.33 to 1.82)

Treatment	Reference	MD (95\% Crl)
MET + TZD-H		-1.57 (-2.70 to -0.46)
MET + TZD-L		0.55 (-3.44 to 4.36)
MET + TZD-T		0.87 (-0.44 to 2.06)
MET + TZD-H	MET + GLP-T	-1.84 (-3.60 to -0.02)
MET + TZD-L		0.28 (-3.94 to 4.41)
MET + TZD-T		0.60 (-1.14 to 2.40)
MET + TZD-L	MET + TZD-H	2.12 (-1.70 to 5.88)
MET + TZD-T		2.44 (0.98 to 3.83)
MET + TZD-T	MET + TZD-L	0.32 (-3.69 to 4.38)

[^9]Figure 17: Consistency Plot for Diastolic Blood Pressure (Dose-Case Analysis)

Body Mass Index (BMI)
Table 29: Body Mass Index: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-L	MET	0.55 (-0.81 to 1.94)
MET + SUL-H		0.64 (0.21 to 1.19)
MET + SUL-T		0.25 (-2.48 to 2.83)
MET + MEG-T		0.49 (-4.45 to 5.53)
MET + DPP-L		0.20 (-0.60 to 1.01)
MET + DPP-H		-0.18 (-0.58 to 0.16)
MET + DPP-T		0.03 (-3.18 to 3.22)
MET + SGL-L		-1.35 (-4.19 to 1.35)
MET + SGL-H		-1.35 (-4.19 to 1.33)
MET + GLP-H		-1.19 (-1.83 to -0.49)
MET + AGI-L		-0.16 (-2.33 to 2.09)
MET + AGI-H		0.05 (-2.02 to 2.13)
MET + TZD-L		1.05 (0.05 to 2.03)
MET + TZD-H		1.52 (0.91 to 2.16)
MET + TZD-T		0.27 (-2.56 to 2.91)
MET + INS-BA-T		2.61 (-0.53 to 5.66)
MET + INS-BI-T		0.52 (-0.46 to 1.57)
MET + SUL-H	MET + SUL-L	0.09 (-1.34 to 1.50)
MET + SUL-T		-0.29 (-3.58 to 2.76)
MET + MEG-T		-0.05 (-5.24 to 5.12)
MET + DPP-L		-0.34 (-1.95 to 1.22)
MET + DPP-H		-0.73 (-2.17 to 0.66)
MET + DPP-T		-0.51 (-4.17 to 2.97)
MET + SGL-L		-1.89 (-5.27 to 1.24)
MET + SGL-H		-1.89 (-5.28 to 1.24)
MET + GLP-H		-1.74 (-3.27 to -0.22)
MET + AGI-L		-0.71 (-3.33 to 1.88)
MET + AGI-H		-0.50 (-3.04 to 1.94)
MET + TZD-L		0.51 (-0.90 to 1.81)
MET + TZD-H		0.98 (-0.48 to 2.41)
MET + TZD-T		-0.28 (-3.65 to 2.80)
MET + INS-BA-T		2.06 (-1.35 to 5.37)
MET + INS-BI-T		-0.03 (-1.73 to 1.65)
MET + SUL-T	MET + SUL-H	-0.38 (-3.16 to 2.21)
MET + MEG-T		-0.14 (-5.12 to 4.91)
MET + DPP-L		-0.43 (-1.44 to 0.44)
MET + DPP-H		-0.82 (-1.46 to -0.35)
MET + DPP-T		-0.60 (-3.82 to 2.57)

Treatment	Reference	MD (95\% Crl)
MET + SGL-L		-1.98 (-4.87 to 0.71)
MET + SGL-H		-1.98 (-4.85 to 0.71)
MET + GLP-H		-1.83 (-2.53 to -1.18)
MET + AGI-L		-0.80 (-2.94 to 1.37)
MET + AGI-H		-0.59 (-2.61 to 1.43)
MET + TZD-L		0.42 (-0.66 to 1.42)
MET + TZD-H		0.89 (0.17 to 1.55)
MET + TZD-T		-0.37 (-3.22 to 2.30)
MET + INS-BA-T		1.97 (-1.18 to 5.05)
MET + INS-BI-T		-0.12 (-1.17 to 0.86)
MET + MEG-T	MET + SUL-T	0.24 (-4.18 to 4.74)
MET + DPP-L		-0.05 (-2.74 to 2.82)
MET + DPP-H		-0.44 (-3.00 to 2.27)
MET + DPP-T		-0.22 (-2.00 to 1.49)
MET + SGL-L		-1.60 (-2.38 to -0.82)
MET + SGL-H		-1.60 (-2.39 to -0.81)
MET + GLP-H		-1.45 (-4.11 to 1.34)
MET + AGI-L		-0.42 (-3.83 to 2.98)
MET + AGI-H		-0.20 (-3.56 to 3.19)
MET + TZD-L		0.80 (-1.95 to 3.67)
MET + TZD-H		1.27 (-1.37 to 4.06)
MET + TZD-T		0.02 (-0.64 to 0.62)
MET + INS-BA-T		2.35 (-1.65 to 6.42)
MET + INS-BI-T		0.27 (-2.49 to 3.15)
MET + DPP-L	MET + MEG-T	-0.29 (-5.41 to 4.71)
MET + DPP-H		-0.68 (-5.73 to 4.26)
MET + DPP-T		-0.46 (-5.28 to 4.38)
MET + SGL-L		-1.84 (-6.40 to 2.58)
MET + SGL-H		-1.84 (-6.43 to 2.59)
MET + GLP-H		-1.69 (-6.76 to 3.30)
MET + AGI-L		-0.66 (-6.13 to 4.81)
MET + AGI-H		-0.44 (-5.90 to 5.02)
MET + TZD-L		0.56 (-4.56 to 5.60)
MET + TZD-H		1.03 (-4.04 to 6.01)
MET + TZD-T		-0.22 (-4.77 to 4.21)
MET + INS-BA-T		2.12 (-3.84 to 7.82)
MET + INS-BI-T		0.03 (-5.09 to 5.08)
MET + DPP-H	MET + DPP-L	-0.39 (-1.30 to 0.48)
MET + DPP-T		-0.17 (-3.49 to 3.11)
MET + SGL-L		-1.55 (-4.51 to 1.24)
MET + SGL-H		-1.55 (-4.51 to 1.23)
MET + GLP-H		-1.40 (-2.41 to -0.32)

Treatment	Reference	MD (95\% Crl)
MET + AGI-L		-0.37 (-2.67 to 2.02)
MET + AGI-H		-0.15 (-2.35 to 2.07)
MET + TZD-L		0.85 (-0.41 to 2.12)
MET + TZD-H		1.32 (0.32 to 2.35)
MET + TZD-T		0.07 (-2.88 to 2.82)
MET + INS-BA-T		2.40 (-0.83 to 5.56)
MET + INS-BI-T		0.32 (-0.95 to 1.65)
MET + DPP-T	MET + DPP-H	0.22 (-2.99 to 3.38)
MET + SGL-L		-1.16 (-3.97 to 1.51)
MET + SGL-H		-1.16 (-3.98 to 1.50)
MET + GLP-H		-1.01 (-1.69 to -0.21)
MET + AGI-L		0.02 (-2.15 to 2.29)
MET + AGI-H		0.23 (-1.85 to 2.32)
MET + TZD-L		1.24 (0.19 to 2.30)
MET + TZD-H		1.71 (1.02 to 2.44)
MET + TZD-T		0.45 (-2.35 to 3.08)
MET + INS-BA-T		2.79 (-0.35 to 5.84)
MET + INS-BI-T		0.70 (-0.29 to 1.83)
MET + SGL-L	MET + DPP-T	-1.38 (-3.26 to 0.55)
MET + SGL-H		-1.38 (-3.26 to 0.54)
MET + GLP-H		-1.23 (-4.44 to 2.04)
MET + AGI-L		-0.20 (-4.03 to 3.64)
MET + AGI-H		0.02 (-3.70 to 3.88)
MET + TZD-L		1.02 (-2.26 to 4.36)
MET + TZD-H		1.49 (-1.74 to 4.74)
MET + TZD-T		0.24 (-1.61 to 2.10)
MET + INS-BA-T		2.57 (-1.79 to 7.09)
MET + INS-BI-T		0.49 (-2.80 to 3.82)
MET + SGL-H	MET + SGL-L	0.00 (-0.78 to 0.79)
MET + GLP-H		0.15 (-2.59 to 3.05)
MET + AGI-L		1.18 (-2.31 to 4.70)
MET + AGI-H		1.40 (-2.03 to 4.88)
MET + TZD-L		2.40 (-0.45 to 5.38)
MET + TZD-H		2.87 (0.13 to 5.76)
MET + TZD-T		1.62 (0.58 to 2.59)
MET + INS-BA-T		3.95 (-0.09 to 8.08)
MET + INS-BI-T		1.87 (-0.96 to 4.86)
MET + GLP-H	MET + SGL-H	0.16 (-2.59 to 3.04)
MET + AGI-L		1.18 (-2.31 to 4.69)
MET + AGI-H		1.40 (-2.02 to 4.88)
MET + TZD-L		2.40 (-0.45 to 5.37)
MET + TZD-H		2.87 (0.13 to 5.75)

Treatment	Reference	MD (95\% Crl)
MET + TZD-T		1.62 (0.58 to 2.59)
MET + INS-BA-T		3.95 (-0.09 to 8.10)
MET + INS-BI-T		1.87 (-0.97 to 4.85)
MET + AGI-L	MET + GLP-H	1.03 (-1.19 to 3.32)
MET + AGI-H		1.24 (-0.90 to 3.38)
MET + TZD-L		2.25 (1.06 to 3.39)
MET + TZD-H		2.72 (1.83 to 3.58)
MET + TZD-T		1.46 (-1.41 to 4.17)
MET + INS-BA-T		3.80 (0.75 to 6.82)
MET + INS-BI-T		1.71 (0.95 to 2.48)
MET + AGI-H	MET + AGI-L	0.21 (-2.74 to 3.10)
MET + TZD-L		1.22 (-1.21 to 3.58)
MET + TZD-H		1.69 (-0.62 to 3.94)
MET + TZD-T		0.43 (-3.04 to 3.89)
MET + INS-BA-T		2.77 (-1.07 to 6.47)
MET + INS-BI-T		0.69 (-1.72 to 3.02)
MET + TZD-L	MET + AGI-H	1.00 (-1.25 to 3.27)
MET + TZD-H		1.48 (-0.66 to 3.61)
MET + TZD-T		0.22 (-3.24 to 3.62)
MET + INS-BA-T		2.56 (-1.24 to 6.13)
MET + INS-BI-T		0.47 (-1.79 to 2.74)
MET + TZD-H		0.47 (-0.54 to 1.51)
MET + TZD-T	MET + TZD-L	-0.78 (-3.74 to 2.03)
MET + INS-BA-T		1.55 (-1.76 to 4.78)
MET + INS-BI-T		-0.53 (-1.90 to 0.85)
MET + TZD-T	MET + TZD-H	-1.25 (-4.13 to 1.44)
MET + INS-BA-T		1.08 (-2.10 to 4.21)
MET + INS-BI-T		-1.00 (-2.14 to 0.16)
MET + INS-BA-T	MET + TZD-T	2.34 (-1.68 to 6.41)
MET + INS-BI-T		0.25 (-2.55 to 3.22)
MET + INS-BI-T	MET + INS-BA-T	-2.09 (-5.17 to 1.06)
Random-effects model Residual deviance 63.9 vs. 62 data points Deviance information criteria 96.739		

AGI = alpha-glucosidase inhibitors; Crl = credible interval; DPP = dipeptidyl peptidase-4 inhibitor;
GLP = glucagon-like peptide-1 agonist; -H = high-dose; INS-BA = basal insulin; INS-BI = biphasic insulin; $\mathrm{L}=$ low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MD}=$ mean difference; MET = metformin; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; -T = titrated; TZD = thiazolidinedione; vs. = versus.

Figure 18: Consistency Plot for Body Mass Index (Dose-Case Analysis)

LDL Cholesterol

Table 30: Low-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-H	MET	0.19 (0.02 to 0.35)
MET + SUL-T		0.04 (-0.09 to 0.18)
MET + SUL-L		0.19 (-0.11 to 0.49)
MET + DPP-H		0.00 (-0.09 to 0.08)
MET + MEG-T		0.02 (-0.30 to 0.34)
MET + MEG-L		0.00 (-0.39 to 0.39)
MET + MEG-H		0.10 (-0.29 to 0.49)
MET + SGL-L		0.12 (0.01 to 0.24)
MET + DPP-L		-0.03 (-0.20 to 0.15)
MET + SGL-H		0.15 (0.04 to 0.26)
MET + GLP-H		-0.01 (-0.13 to 0.12)
MET + GLP-T		0.03 (-0.21 to 0.28)
MET + GLP-L		-0.03 (-0.31 to 0.24)
MET + AGI-L		0.29 (-0.01 to 0.60)
MET + TZD-L		0.14 (-0.02 to 0.30)
MET + TZD-H		0.20 (0.11 to 0.30)
MET + TZD-T		0.16 (-0.03 to 0.36)
MET + INS-BA-T		$-0.10(-0.36$ to 0.17)
MET + INS-BI-T		0.19 (-0.14 to 0.51)
MET + SUL-T	MET + SUL-H	-0.14 (-0.35 to 0.06)

Treatment	Reference	MD (95\% Crl)
MET + SUL-L		0.00 (-0.33 to 0.34)
MET + DPP-H		-0.19 (-0.35 to -0.03)
MET + MEG-T		-0.16 (-0.52 to 0.19)
MET + MEG-L		-0.19 (-0.61 to 0.24)
MET + MEG-H		-0.09 (-0.52 to 0.34)
MET + SGL-L		-0.06 (-0.26 to 0.13)
MET + DPP-L		-0.21 (-0.44 to 0.02)
MET + SGL-H		-0.04 (-0.23 to 0.16)
MET + GLP-H		-0.19 (-0.38 to -0.01)
MET + GLP-T		-0.16 (-0.44 to 0.13)
MET + GLP-L		-0.22 (-0.53 to 0.09)
MET + AGI-L		0.11 (-0.18 to 0.40)
MET + TZD-L		-0.05 (-0.26 to 0.17)
MET + TZD-H		0.02 (-0.15 to 0.19)
MET + TZD-T		-0.02 (-0.27 to 0.23)
MET + INS-BA-T		-0.28 (-0.58 to 0.01)
MET + INS-BI-T		0.00 (-0.36 to 0.35)
MET + SUL-L	MET + SUL-T	0.15 (-0.18 to 0.47)
MET + DPP-H		-0.04 (-0.18 to 0.09)
MET + MEG-T		-0.02 (-0.34 to 0.30)
MET + MEG-L		-0.04 (-0.45 to 0.38)
MET + MEG-H		0.06 (-0.36 to 0.48)
MET + SGL-L		0.08 (-0.08 to 0.24)
MET + DPP-L		-0.07 (-0.28 to 0.14)
MET + SGL-H		0.11 (-0.05 to 0.27)
MET + GLP-H		-0.05 (-0.21 to 0.11)
MET + GLP-T		-0.01 (-0.26 to 0.24)
MET + GLP-L		-0.07 (-0.37 to 0.23)
MET + AGI-L		0.25 (-0.07 to 0.57)
MET + TZD-L		0.10 (-0.10 to 0.30)
MET + TZD-H		0.16 (0.00 to 0.32)
MET + TZD-T		0.12 (-0.02 to 0.26)
MET + INS-BA-T		-0.14 (-0.42 to 0.14)
MET + INS-BI-T		0.14 (-0.20 to 0.49)
MET + DPP-H	MET + SUL-L	-0.19 (-0.49 to 0.12)
MET + MEG-T		-0.17 (-0.60 to 0.27)
MET + MEG-L		-0.19 (-0.68 to 0.31)
MET + MEG-H		-0.09 (-0.58 to 0.41)
MET + SGL-L		-0.07 (-0.39 to 0.26)
MET + DPP-L		-0.22 (-0.55 to 0.12)
MET + SGL-H		-0.04 (-0.36 to 0.28)
MET + GLP-H		-0.20 (-0.52 to 0.13)

Treatment	Reference	MD (95\% Crl)
MET + GLP-T		-0.16 (-0.54 to 0.23)
MET + GLP-L		-0.22 (-0.63 to 0.18)
MET + AGI-L		0.10 (-0.32 to 0.53)
MET + TZD-L		-0.05 (-0.31 to 0.21)
MET + TZD-H		0.01 (-0.29 to 0.32)
MET + TZD-T		-0.03 (-0.38 to 0.33)
MET + INS-BA-T		-0.29 (-0.68 to 0.11)
MET + INS-BI-T		0.00 (-0.44 to 0.43)
MET + MEG-T	MET + DPP-H	0.02 (-0.30 to 0.35)
MET + MEG-L		0.00 (-0.40 to 0.41)
MET + MEG-H		0.10 (-0.30 to 0.50)
MET + SGL-L		0.12 (0.00 to 0.25)
MET + DPP-L		-0.03 (-0.20 to 0.15)
MET + SGL-H		0.15 (0.03 to 0.28)
MET + GLP-H		0.00 (-0.13 to 0.12)
MET + GLP-T		0.03 (-0.21 to 0.27)
MET + GLP-L		-0.03 (-0.31 to 0.24)
MET + AGI-L		0.30 (0.00 to 0.59)
MET + TZD-L		0.14 (-0.02 to 0.31)
MET + TZD-H		0.21 (0.10 to 0.31)
MET + TZD-T		0.16 (-0.03 to 0.36)
MET + INS-BA-T		-0.10 (-0.35 to 0.16)
MET + INS-BI-T		0.19 (-0.14 to 0.51)
MET + MEG-L	MET + MEG-T	-0.02 (-0.53 to 0.48)
MET + MEG-H		0.08 (-0.43 to 0.59)
MET + SGL-L		0.10 (-0.24 to 0.43)
MET + DPP-L		-0.05 (-0.41 to 0.31)
MET + SGL-H		0.13 (-0.20 to 0.46)
MET + GLP-H		-0.03 (-0.37 to 0.31)
MET + GLP-T		0.01 (-0.38 to 0.40)
MET + GLP-L		-0.06 (-0.47 to 0.36)
MET + AGI-L		0.27 (-0.17 to 0.71)
MET + TZD-L		0.12 (-0.24 to 0.47)
MET + TZD-H		0.18 (-0.15 to 0.51)
MET + TZD-T		0.14 (-0.21 to 0.49)
MET + INS-BA-T		-0.12 (-0.53 to 0.29)
MET + INS-BI-T		0.16 (-0.29 to 0.61)
MET + MEG-H	MET + MEG-L	0.10 (-0.29 to 0.49)
MET + SGL-L		0.12 (-0.29 to 0.53)
MET + DPP-L		-0.03 (-0.46 to 0.40)
MET + SGL-H		0.15 (-0.26 to 0.56)
MET + GLP-H		-0.01 (-0.42 to 0.41)

Treatment	Reference	MD (95\% Crl)
MET + GLP-T		0.03 (-0.43 to 0.49)
MET + GLP-L		-0.03 (-0.51 to 0.45)
MET + AGI-L		0.29 (-0.21 to 0.79)
MET + TZD-L		0.14 (-0.29 to 0.56)
MET + TZD-H		0.20 (-0.20 to 0.61)
MET + TZD-T		0.16 (-0.28 to 0.60)
MET + INS-BA-T		-0.10 (-0.57 to 0.38)
MET + INS-BI-T		0.19 (-0.33 to 0.70)
MET + SGL-L	MET + MEG-H	0.02 (-0.39 to 0.43)
MET + DPP-L		-0.13 (-0.56 to 0.30)
MET + SGL-H		0.05 (-0.36 to 0.46)
MET + GLP-H		-0.11 (-0.52 to 0.31)
MET + GLP-T		-0.07 (-0.53 to 0.39)
MET + GLP-L		-0.13 (-0.61 to 0.35)
MET + AGI-L		0.19 (-0.30 to 0.69)
MET + TZD-L		0.04 (-0.38 to 0.47)
MET + TZD-H		0.10 (-0.30 to 0.51)
MET + TZD-T		0.06 (-0.38 to 0.51)
MET + INS-BA-T		-0.20 (-0.67 to 0.27)
MET + INS-BI-T		0.09 (-0.43 to 0.60)
MET + DPP-L	MET + SGL-L	-0.15 (-0.36 to 0.05)
MET + SGL-H		0.03 (-0.08 to 0.14)
MET + GLP-H		-0.13 (-0.29 to 0.03)
MET + GLP-T		-0.09 (-0.35 to 0.17)
MET + GLP-L		-0.16 (-0.45 to 0.14)
MET + AGI-L		0.17 (-0.15 to 0.49)
MET + TZD-L		0.02 (-0.18 to 0.21)
MET + TZD-H		0.08 (-0.07 to 0.23)
MET + TZD-T		0.04 (-0.17 to 0.25)
MET + INS-BA-T		-0.22 (-0.50 to 0.06)
MET + INS-BI-T		0.06 (-0.28 to 0.41)
MET + SGL-H	MET + DPP-L	0.18 (-0.03 to 0.38)
MET + GLP-H		0.02 (-0.19 to 0.23)
MET + GLP-T		0.06 (-0.23 to 0.35)
MET + GLP-L		-0.01 (-0.33 to 0.32)
MET + AGI-L		0.32 (-0.02 to 0.66)
MET + TZD-L		0.17 (-0.05 to 0.39)
MET + TZD-H		0.23 (0.04 to 0.42)
MET + TZD-T		0.19 (-0.06 to 0.45)
MET + INS-BA-T		-0.07 (-0.38 to 0.24)
MET + INS-BI-T		0.21 (-0.15 to 0.58)
MET + GLP-H	MET + SGL-H	-0.16 (-0.32 to 0.00)

Treatment	Reference	MD (95\% Crl)
MET + GLP-T		-0.12 (-0.38 to 0.14)
MET + GLP-L		-0.18 (-0.48 to 0.11)
MET + AGI-L		0.14 (-0.18 to 0.46)
MET + TZD-L		-0.01 (-0.20 to 0.18)
MET + TZD-H		0.05 (-0.09 to 0.20)
MET + TZD-T		0.01 (-0.20 to 0.23)
MET + INS-BA-T		-0.25 (-0.53 to 0.03)
MET + INS-BI-T		0.04 (-0.31 to 0.38)
MET + GLP-T	MET + GLP-H	0.04 (-0.22 to 0.30)
MET + GLP-L		-0.03 (-0.31 to 0.26)
MET + AGI-L		0.30 (-0.02 to 0.62)
MET + TZD-L		0.15 (-0.05 to 0.34)
MET + TZD-H		0.21 (0.07 to 0.35)
MET + TZD-T		0.17 (-0.04 to 0.39)
MET + INS-BA-T		-0.09 (-0.36 to 0.19)
MET + INS-BI-T		0.19 (-0.11 to 0.50)
MET + GLP-L	MET + GLP-T	-0.06 (-0.43 to 0.30)
MET + AGI-L		0.26 (-0.12 to 0.64)
MET + TZD-L		0.11 (-0.18 to 0.39)
MET + TZD-H		0.17 (-0.08 to 0.43)
MET + TZD-T		0.13 (-0.15 to 0.42)
MET + INS-BA-T		-0.13 (-0.44 to 0.18)
MET + INS-BI-T		0.16 (-0.25 to 0.55)
MET + AGI-L	MET + GLP-L	0.33 (-0.08 to 0.73)
MET + TZD-L		0.17 (-0.14 to 0.49)
MET + TZD-H		0.24 (-0.05 to 0.52)
MET + TZD-T		0.20 (-0.14 to 0.53)
MET + INS-BA-T		-0.07 (-0.44 to 0.30)
MET + INS-BI-T		0.22 (-0.19 to 0.63)
MET + TZD-L	MET + AGI-L	-0.15 (-0.49 to 0.18)
MET + TZD-H		-0.09 (-0.40 to 0.22)
MET + TZD-T		-0.13 (-0.48 to 0.22)
MET + INS-BA-T		-0.39 (-0.78 to 0.00)
MET + INS-BI-T		-0.11 (-0.55 to 0.33)
MET + TZD-H	MET + TZD-L	0.06 (-0.10 to 0.23)
MET + TZD-T		0.02 (-0.22 to 0.27)
MET + INS-BA-T		-0.24 (-0.54 to 0.06)
MET + INS-BI-T		0.04 (-0.31 to 0.40)
MET + TZD-T	MET + TZD-H	-0.04 (-0.25 to 0.17)
MET + INS-BA-T		-0.30 (-0.57 to -0.03)
MET + INS-BI-T		-0.02 (-0.35 to 0.32)
MET + INS-BA-T	MET + TZD-T	-0.26 (-0.58 to 0.05)

Treatment	Reference	MD (95\% CrI)
MET + INS-BI-T		$0.02(-0.35$ to 0.39$)$
MET + INS-BI-T	MET + INS-BA-T	$0.28(-0.13$ to 0.69$)$
Random-effects model	Residual deviance	136.5 vs. 137 data points
	Deviance information criteria	-239.204

AGI = alpha-glucosidase inhibitors; Crl = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - H = high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; -L = low-dose; $\mathrm{MD}=$ mean difference; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{SGL}=$ sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; $-\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. = versus.

Figure 19: Consistency Plot for Low-Density Lipoprotein Cholesterol (Dose-Case Analysis)

Systolic Blood Pressure (SBP)

Table 31: Systolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-H		1.01 (-2.40 to 4.40$)$
MET + SUL-T		$0.80(-0.81$ to 2.38$)$
MET + SUL-L		$0.95(-8.24$ to 9.92$)$
MET + DPP-L		$-1.14(-4.93$ to 2.64$)$
MET + DPP-H		$-1.32(-2.58$ to -0.07$)$
MET + SGL-L		$-2.96(-4.21$ to -1.75$)$
MET + SGL-H		$-3.97(-5.13$ to -2.83$)$
MET + GLP-H		$-3.31(-4.97$ to -1.69$)$
MET + GLP-L		$-2.20(-4.87$ to 0.47$)$
MET + GLP-T		$-2.35(-5.52$ to 0.82$)$
MET + AGI-L		$3.28(-4.93$ to 11.47$)$
MET + TZD-H	$-2.81(-4.90$ to -0.76$)$	

Treatment	Reference	MD (95\% Crl)
MET + TZD-L		0.33 (-6.18 to 6.82)
MET + TZD-T		0.28 (-2.71 to 3.19)
MET + INS-BA-T		0.68 (-3.50 to 4.84)
MET + INS-BI-T		-0.23 (-6.01 to 5.56)
MET + SUL-T	MET + SUL-H	-0.20 (-3.73 to 3.31)
MET + SUL-L		-0.06 (-8.64 to 8.39)
MET + DPP-L		-2.15 (-7.15 to 2.92)
MET + DPP-H		-2.33 (-5.76 to 1.14)
MET + SGL-L		-3.96 (-7.50 to -0.44)
MET + SGL-H		-4.98 (-8.46 to -1.48)
MET + GLP-H		-4.32 (-7.87 to -0.75)
MET + GLP-L		-3.20 (-7.36 to 0.98)
MET + GLP-T		-3.35 (-7.88 to 1.19)
MET + AGI-L		2.27 (-5.20 to 9.78)
MET + TZD-H		-3.82 (-6.53 to -1.14)
MET + TZD-L		-0.68 (-6.25 to 4.94)
MET + TZD-T		-0.73 (-5.05 to 3.57)
MET + INS-BA-T		-0.33 (-5.59 to 4.90)
MET + INS-BI-T		-1.24 (-7.89 to 5.35)
MET + SUL-L	MET + SUL-T	0.14 (-9.09 to 9.17)
MET + DPP-L		-1.94 (-5.93 to 2.10)
MET + DPP-H		-2.12 (-3.82 to -0.40)
MET + SGL-L		-3.76 (-5.48 to -2.07)
MET + SGL-H		-4.77 (-6.35 to -3.17)
MET + GLP-H		-4.12 (-6.05 to -2.18)
MET + GLP-L		-3.00 (-5.92 to -0.07)
MET + GLP-T		-3.15 (-6.34 to 0.03)
MET + AGI-L		2.47 (-5.81 to 10.73)
MET + TZD-H		-3.62 (-5.86 to -1.36)
MET + TZD-L		-0.47 (-7.01 to 6.08)
MET + TZD-T		-0.53 (-3.03 to 1.93)
MET + INS-BA-T		-0.12 (-4.46 to 4.20)
MET + INS-BI-T		-1.04 (-6.94 to 4.90)
MET + DPP-L	MET + SUL-L	-2.08 (-11.84 to 7.85)
MET + DPP-H		-2.26 (-11.30 to 6.94)
MET + SGL-L		-3.90 (-12.94 to 5.30)
MET + SGL-H		-4.92 (-13.96 to 4.29)
MET + GLP-H		-4.26 (-13.33 to 5.01)
MET + GLP-L		-3.14 (-12.51 to 6.36)
MET + GLP-T		-3.29 (-12.79 to 6.40)
MET + AGI-L		2.33 (-9.00 to 13.69)
MET + TZD-H		-3.76 (-12.59 to 5.21)
MET + TZD-L		-0.61 (-7.02 to 5.84)
MET + TZD-T		-0.67 (-10.07 to 8.90)
MET + INS-BA-T		-0.27 (-10.19 to 9.73)
MET + INS-BI-T		-1.18 (-11.92 to 9.55)

Treatment	Reference	MD (95\% Crl)
MET + DPP-H	MET + DPP-L	-0.18 (-3.92 to 3.53)
MET + SGL-L		-1.82 (-5.72 to 2.08)
MET + SGL-H		-2.83 (-6.70 to 1.03)
MET + GLP-H		-2.18 (-6.18 to 1.82)
MET + GLP-L		-1.06 (-5.59 to 3.43)
MET + GLP-T		-1.21 (-6.06 to 3.64)
MET + AGI-L		4.42 (-4.58 to 13.42)
MET + TZD-H		-1.68 (-5.95 to 2.53)
MET + TZD-L		1.47 (-6.02 to 8.96)
MET + TZD-T		1.42 (-3.36 to 6.10)
MET + INS-BA-T		1.82 (-3.62 to 7.27)
MET + INS-BI-T		0.91 (-5.83 to 7.67)
MET + SGL-L	MET + DPP-H	-1.64 (-3.09 to -0.23)
MET + SGL-H		-2.65 (-3.99 to -1.30)
MET + GLP-H		-2.00 (-3.64 to -0.35)
MET + GLP-L		-0.88 (-3.52 to 1.78)
MET + GLP-T		-1.03 (-4.20 to 2.12)
MET + AGI-L		4.60 (-3.66 to 12.85)
MET + TZD-H		-1.50 (-3.68 to 0.67)
MET + TZD-L		1.65 (-4.89 to 8.21)
MET + TZD-T		1.60 (-1.45 to 4.57)
MET + INS-BA-T		2.00 (-1.99 to 5.97)
MET + INS-BI-T		1.09 (-4.57 to 6.75)
MET + SGL-H	MET + SGL-L	-1.02 (-2.11 to 0.12)
MET + GLP-H		-0.36 (-2.22 to 1.53)
MET + GLP-L		0.76 (-2.06 to 3.60)
MET + GLP-T		0.61 (-2.66 to 3.91)
MET + AGI-L		6.23 (-2.01 to 14.51)
MET + TZD-H		0.14 (-2.12 to 2.44)
MET + TZD-L		3.29 (-3.30 to 9.89)
MET + TZD-T		3.23 (0.22 to 6.22)
MET + INS-BA-T		3.64 (-0.58 to 7.88)
MET + INS-BI-T		2.72 (-3.08 to 8.58)
MET + GLP-H	MET + SGL-H	0.66 (-1.16 to 2.47)
MET + GLP-L		1.78 (-1.01 to 4.57)
MET + GLP-T		1.62 (-1.62 to 4.87)
MET + AGI-L		7.25 (-1.00 to 15.50)
MET + TZD-H		1.16 (-1.07 to 3.38)
MET + TZD-L		4.30 (-2.24 to 10.87)
MET + TZD-T		4.25 (1.28 to 7.15)
MET + INS-BA-T		4.65 (0.44 to 8.83)
MET + INS-BI-T		3.74 (-2.07 to 9.56)
MET + GLP-L	MET + GLP-H	1.12 (-1.45 to 3.70)
MET + GLP-T		0.97 (-2.44 to 4.36)
MET + AGI-L		6.59 (-1.66 to 14.87)
MET + TZD-H		0.50 (-1.82 to 2.82)
MET + TZD-L		3.65 (-2.93 to 10.24)

Treatment	Reference	MD (95\% Crl)
MET + TZD-T		3.59 (0.42 to 6.71)
MET + INS-BA-T		4.00 (-0.31 to 8.30)
MET + INS-BI-T		3.08 (-2.81 to 8.97)
MET + GLP-T	MET + GLP-L	-0.15 (-4.16 to 3.86)
MET + AGI-L		5.47 (-3.07 to 14.10)
MET + TZD-H		-0.62 (-3.82 to 2.58)
MET + TZD-L		2.53 (-4.42 to 9.48)
MET + TZD-T		2.47 (-1.39 to 6.28)
MET + INS-BA-T		2.88 (-1.91 to 7.64)
MET + INS-BI-T		1.96 (-4.29 to 8.23)
MET + AGI-L	MET + GLP-T	5.62 (-3.12 to 14.36)
MET + TZD-H		-0.47 (-4.12 to 3.16)
MET + TZD-L		2.68 (-4.52 to 9.88)
MET + TZD-T		2.62 (-1.44 to 6.65)
MET + INS-BA-T		3.03 (-2.04 to 8.13)
MET + INS-BI-T		2.11 (-4.34 to 8.62)
MET + TZD-H	MET + AGI-L	-6.09 (-14.05 to 1.85)
MET + TZD-L		-2.95 (-12.31 to 6.42)
MET + TZD-T		-3.00 (-11.61 to 5.63)
MET + INS-BA-T		-2.60 (-11.75 to 6.52)
MET + INS-BI-T		-3.51 (-13.50 to 6.51)
MET + TZD-L	MET + TZD-H	3.15 (-3.06 to 9.40)
MET + TZD-T		3.09 (-0.29 to 6.41)
MET + INS-BA-T		3.49 (-1.06 to 7.99)
MET + INS-BI-T		2.58 (-3.48 to 8.63)
MET + TZD-T	MET + TZD-L	-0.06 (-7.12 to 6.96)
MET + INS-BA-T		0.35 (-7.33 to 7.96)
MET + INS-BI-T		-0.56 (-9.22 to 8.08)
MET + INS-BA-T	MET + TZD-T	0.40 (-4.58 to 5.42)
MET + INS-BI-T		-0.51 (-6.89 to 5.92)
MET + INS-BI-T	MET + INS-BA-T	-0.91 (-4.98 to 3.17)
 Random-effects model Residual deviance 85.05 vs .93 data points		
	Deviance information criteria	326.648

AGI = alpha-glucosidase inhibitors; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; -H = high-dose; INS-BA = basal insulin; INS-BI = biphasic insulin; -L = low-dose; MD = mean difference; MET = metformin; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; $\mathrm{T}=$ titrated; TZD = thiazolidinedione; vs. = versus.

Figure 20: Consistency Plot for Systolic Blood Pressure (Dose-Case Analysis)

Total Adverse Events

Table 32: Total Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	1.15 (1.02 to 1.31)	1.07 (1.01 to 1.14)	3.53 (0.42 to 6.68)
MET + SUL-L		1.74 (0.74 to 4.50)	1.27 (0.85 to 1.65)	13.47 (-7.35 to 32.02)
MET + SUL-H		1.59 (0.70 to 3.69)	1.23 (0.82 to 1.59)	11.32 (-8.93 to 28.86)
MET + MEG-L		1.27 (0.86 to 1.94)	1.12 (0.92 to 1.33)	5.87 (-3.78 to 16.04)
MET + MEG-H		1.12 (0.74 to 1.68)	1.06 (0.85 to 1.26)	2.76 (-7.46 to 12.75)
MET + DPP-L		1.04 (0.89 to 1.22)	1.02 (0.94 to 1.10)	1.06 (-2.90 to 4.88)
MET + DPP-H		0.96 (0.87 to 1.06)	0.98 (0.93 to 1.03)	-0.97 (-3.47 to 1.45)
MET + SGL-L		1.05 (0.89 to 1.23)	1.02 (0.94 to 1.11)	1.09 (-3.00 to 5.25)
MET + SGL-H		1.04 (0.89 to 1.20)	1.02 (0.94 to 1.09)	0.94 (-2.86 to 4.60)
MET + GLP-T		1.55 (0.63 to 4.03)	1.22 (0.78 to 1.61)	10.79 (-11.17 to 30.30)
MET + GLP-L		1.05 (0.80 to 1.36)	1.02 (0.89 to 1.15)	1.21 (-5.50 to 7.58)
MET + GLP-H		1.43 (1.18 to 1.72)	1.18 (1.08 to 1.27)	8.90 (4.21 to 13.20)
MET + TZD-T		0.99 (0.76 to 1.30)	1.00 (0.86 to 1.13)	-0.15 (-6.93 to 6.53)
MET + TZD-L		1.18 (0.73 to 1.96)	1.08 (0.84 to 1.33)	4.14 (-7.75 to 16.29)
MET + TZD-H		1.13 (0.92 to 1.39)	1.06 (0.96 to 1.17)	3.06 (-2.07 to 8.24)
MET + AGI-T		1.65 (1.05 to 2.61)	1.25 (1.02 to 1.46)	12.25 (1.13 to 22.49)
MET + INS-BA-T		1.93 (1.33 to 2.81)	1.32 (1.14 to 1.48)	15.94 (6.98 to 23.85)
MET + INS-BI-T		2.18 (1.36 to 3.53)	1.37 (1.15 to 1.57)	18.53 (7.56 to 28.14)
MET + SUL-L	MET + SUL-T	1.51 (0.64 to 3.92)	1.19 (0.79 to 1.54)	9.93 (-11.16 to 28.59)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-H		1.37 (0.60 to 3.19)	1.15 (0.77 to 1.48)	7.76 (-12.50 to 25.28)
MET + MEG-L		1.10 (0.73 to 1.71)	1.05 (0.85 to 1.25)	2.43 (-7.92 to 12.91)
MET + MEG-H		0.97 (0.63 to 1.50)	0.99 (0.79 to 1.19)	-0.77 (-11.46 to 9.84)
MET + DPP-L		0.90 (0.76 to 1.07)	0.95 (0.88 to 1.03)	-2.52 (-6.79 to 1.67)
MET + DPP-H		0.83 (0.75 to 0.92)	0.92 (0.87 to 0.96)	-4.52 (-7.19 to -1.95)
MET + SGL-L		0.91 (0.76 to 1.09)	0.95 (0.87 to 1.04)	-2.47 (-6.98 to 2.15)
MET + SGL-H		0.90 (0.76 to 1.06)	0.95 (0.88 to 1.03)	-2.65 (-6.73 to 1.42)
MET + GLP-T		1.35 (0.55 to 3.51)	1.14 (0.72 to 1.51)	7.27 (-14.93 to 26.86)
MET + GLP-L		0.91 (0.68 to 1.20)	0.96 (0.83 to 1.09)	-2.34 (-9.47 to 4.44)
MET + GLP-H		1.24 (1.01 to 1.52)	1.10 (1.00 to 1.20)	5.33 (0.16 to 10.26)
MET + TZD-T		0.86 (0.67 to 1.11)	0.93 (0.81 to 1.05)	-3.71 (-10.04 to 2.54)
MET + TZD-L		1.02 (0.63 to 1.72)	1.01 (0.79 to 1.25)	0.57 (-11.58 to 12.95)
MET + TZD-H		0.98 (0.80 to 1.22)	0.99 (0.89 to 1.09)	-0.48 (-5.71 to 4.86)
MET + AGI-T		1.43 (0.89 to 2.30)	1.16 (0.95 to 1.37)	8.71 (-2.86 to 19.33)
MET + INS-BA-T		1.68 (1.16 to 2.43)	1.23 (1.07 to 1.39)	12.34 (3.61 to 20.33)
MET + INS-BI-T		1.89 (1.19 to 3.01)	1.28 (1.08 to 1.46)	15.08 (4.26 to 24.22)
MET + SUL-H	MET + SUL-L	0.90 (0.27 to 3.30)	0.96 (0.60 to 1.58)	-2.41 (-28.98 to 26.98)
MET + MEG-L		0.74 (0.26 to 1.78)	0.88 (0.64 to 1.32)	-7.33 (-28.45 to 14.25)
MET + MEG-H		0.65 (0.22 to 1.60)	0.84 (0.59 to 1.26)	-10.28 (-32.61 to 11.57)
MET + DPP-L		0.60 (0.23 to 1.43)	0.80 (0.61 to 1.21)	-12.48 (-31.48 to 8.81)
MET + DPP-H		0.55 (0.21 to 1.30)	0.77 (0.59 to 1.15)	-14.48 (-33.13 to 6.47)
MET + SGL-L		0.60 (0.23 to 1.43)	0.80 (0.61 to 1.21)	-12.43 (-31.34 to 8.94)
MET + SGL-H		0.60 (0.23 to 1.42)	0.80 (0.61 to 1.21)	-12.64 (-31.35 to 8.66)
MET + GLP-T		0.89 (0.25 to 3.14)	0.96 (0.58 to 1.55)	-2.61 (-30.77 to 25.26)
MET + GLP-L		0.60 (0.22 to 1.46)	0.81 (0.60 to 1.22)	-12.26 (-32.22 to 9.31)
MET + GLP-H		0.82 (0.31 to 1.95)	0.93 (0.71 to 1.39)	-4.67 (-23.71 to 16.52)
MET + TZD-T		0.57 (0.21 to 1.40)	0.78 (0.58 to 1.19)	-13.66 (-33.26 to 8.31)
MET + TZD-L		0.68 (0.24 to 1.83)	0.85 (0.60 to 1.34)	-9.16 (-31.44 to 14.81)
MET + TZD-H		0.65 (0.25 to 1.54)	0.84 (0.63 to 1.25)	-10.30 (-29.44 to 10.77)
MET + AGI-T		0.94 (0.33 to 2.61)	0.98 (0.71 to 1.52)	-1.51 (-22.94 to 22.98)
MET + INS-BA-T		1.10 (0.40 to 2.84)	1.04 (0.77 to 1.58)	2.24 (-18.17 to 24.95)
MET + INS-BI-T		1.24 (0.43 to 3.38)	1.08 (0.78 to 1.64)	4.88 (-16.97 to 28.13)
MET + MEG-L	MET + SUL-H	0.80 (0.32 to 2.07)	0.91 (0.67 to 1.43)	-5.51 (-25.02 to 17.81)
MET + MEG-H		0.70 (0.28 to 1.80)	0.86 (0.62 to 1.34)	-8.72 (-28.64 to 14.42)
MET + DPP-L		0.66 (0.28 to 1.48)	0.83 (0.64 to 1.24)	-10.27 (-27.98 to 9.67)
MET + DPP-H		0.61 (0.26 to 1.36)	0.80 (0.62 to 1.19)	-12.26 (-29.54 to 7.62)
MET + SGL-L		0.66 (0.28 to 1.52)	0.83 (0.64 to 1.26)	-10.27 (-28.35 to 10.40)
MET + SGL-H		0.65 (0.28 to 1.50)	0.83 (0.63 to 1.25)	-10.52 (-28.39 to 10.10)
MET + GLP-T		0.98 (0.30 to 3.26)	0.99 (0.60 to 1.61)	-0.49 (-28.13 to 27.10)
MET + GLP-L		0.67 (0.28 to 1.54)	0.84 (0.63 to 1.26)	-9.96 (-28.36 to 10.62)
MET + GLP-H		0.90 (0.38 to 2.07)	0.96 (0.74 to 1.44)	-2.41 (-20.34 to 17.96)
MET + TZD-T		0.62 (0.26 to 1.48)	0.81 (0.60 to 1.23)	-11.59 (-30.26 to 9.64)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD-L		0.74 (0.29 to 2.00)	0.88 (0.62 to 1.40)	-7.11 (-28.25 to 16.95)
MET + TZD-H		0.72 (0.30 to 1.67)	0.87 (0.66 to 1.31)	-8.19 (-26.37 to 12.68)
MET + AGI-T		1.04 (0.40 to 2.67)	1.02 (0.74 to 1.56)	1.00 (-19.71 to 23.61)
MET + INS-BA-T		1.22 (0.48 to 2.90)	1.08 (0.80 to 1.61)	4.67 (-14.95 to 25.47)
MET + INS-BI-T		1.38 (0.53 to 3.45)	1.12 (0.82 to 1.69)	7.33 (-13.18 to 28.93)
MET + MEG-H	MET + MEG-L	0.88 (0.55 to 1.37)	0.94 (0.76 to 1.15)	-3.22 (-14.41 to 7.65)
MET + DPP-L		0.82 (0.52 to 1.25)	0.91 (0.76 to 1.12)	-4.88 (-15.77 to 5.62)
MET + DPP-H		0.76 (0.49 to 1.13)	0.88 (0.73 to 1.07)	-6.89 (-17.37 to 3.09)
MET + SGL-L		0.82 (0.52 to 1.26)	0.91 (0.76 to 1.12)	-4.86 (-15.70 to 5.73)
MET + SGL-H		0.82 (0.52 to 1.24)	0.91 (0.75 to 1.12)	-5.06 (-15.96 to 5.43)
MET + GLP-T		1.23 (0.47 to 3.48)	1.09 (0.68 to 1.54)	4.95 (-18.61 to 27.03)
MET + GLP-L		0.83 (0.50 to 1.31)	0.91 (0.73 to 1.14)	-4.75 (-16.94 to 6.75)
MET + GLP-H		1.13 (0.71 to 1.73)	1.05 (0.87 to 1.29)	2.93 (-8.16 to 13.53)
MET + TZD-T		0.78 (0.47 to 1.27)	0.89 (0.71 to 1.12)	-6.14 (-18.40 to 5.86)
MET + TZD-L		0.93 (0.50 to 1.80)	0.97 (0.72 to 1.29)	-1.89 (-17.16 to 14.27)
MET + TZD-H		0.89 (0.56 to 1.39)	0.95 (0.78 to 1.17)	-2.89 (-14.01 to 8.14)
MET + AGI-T		1.30 (0.70 to 2.41)	1.11 (0.86 to 1.43)	6.22 (-8.59 to 20.73)
MET + INS-BA-T		1.52 (0.86 to 2.62)	1.18 (0.94 to 1.47)	9.92 (-3.62 to 22.57)
MET + INS-BI-T		1.72 (0.90 to 3.21)	1.23 (0.96 to 1.55)	12.61 (-2.54 to 26.50)
MET + DPP-L	MET + MEG-H	0.93 (0.60 to 1.45)	0.97 (0.80 to 1.21)	-1.73 (-12.54 to 9.13)
MET + DPP-H		0.86 (0.57 to 1.31)	0.93 (0.77 to 1.16)	-3.76 (-14.00 to 6.73)
MET + SGL-L		0.93 (0.60 to 1.46)	0.97 (0.80 to 1.22)	-1.72 (-12.36 to 9.40)
MET + SGL-H		0.93 (0.60 to 1.44)	0.96 (0.80 to 1.21)	-1.92 (-12.61 to 9.12)
MET + GLP-T		1.39 (0.52 to 3.89)	1.15 (0.71 to 1.64)	7.99 (-16.23 to 29.86)
MET + GLP-L		0.94 (0.57 to 1.52)	0.97 (0.77 to 1.24)	-1.58 (-13.75 to 10.37)
MET + GLP-H		1.28 (0.81 to 2.01)	1.11 (0.92 to 1.40)	5.99 (-4.99 to 17.29)
MET + TZD-T		0.89 (0.54 to 1.45)	0.94 (0.75 to 1.21)	-2.98 (-15.16 to 9.22)
MET + TZD-L		1.05 (0.57 to 2.05)	1.02 (0.76 to 1.38)	1.28 (-13.99 to 17.49)
MET + TZD-H		1.01 (0.64 to 1.61)	1.01 (0.82 to 1.27)	0.27 (-10.97 to 11.85)
MET + AGI-T		1.47 (0.81 to 2.71)	1.18 (0.91 to 1.54)	9.35 (-5.14 to 23.77)
MET + INS-BA-T		1.72 (0.99 to 3.01)	1.25 (1.00 to 1.60)	12.93 (-0.27 to 26.07)
MET + INS-BI-T		1.94 (1.05 to 3.73)	1.30 (1.02 to 1.69)	15.56 (1.21 to 30.15)
MET + DPP-H	MET + DPP-L	0.92 (0.80 to 1.07)	0.96 (0.89 to 1.04)	-2.02 (-5.70 to 1.74)
MET + SGL-L		1.00 (0.81 to 1.25)	1.00 (0.90 to 1.12)	0.06 (-5.35 to 5.57)
MET + SGL-H		1.00 (0.81 to 1.22)	1.00 (0.90 to 1.10)	-0.09 (-5.27 to 4.96)
MET + GLP-T		1.49 (0.61 to 3.96)	1.19 (0.76 to 1.60)	9.73 (-12.27 to 29.92)
MET + GLP-L		1.01 (0.74 to 1.35)	1.00 (0.86 to 1.16)	0.21 (-7.43 to 7.52)
MET + GLP-H		1.37 (1.09 to 1.73)	1.15 (1.04 to 1.28)	7.83 (2.12 to 13.40)
MET + TZD-T		0.95 (0.71 to 1.29)	0.98 (0.83 to 1.13)	-1.21 (-8.65 to 6.29)
MET + TZD-L		1.13 (0.69 to 1.93)	1.06 (0.82 to 1.32)	3.06 (-9.20 to 15.94)
MET + TZD-H		1.09 (0.85 to 1.40)	1.04 (0.92 to 1.17)	2.02 (-3.98 to 8.39)
MET + AGI-T		1.58 (0.98 to 2.57)	1.22 (0.99 to 1.46)	11.19 (-0.41 to 22.20)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BA-T		1.85 (1.24 to 2.76)	1.29 (1.10 to 1.48)	14.88 (5.40 to 23.50)
MET + INS-BI-T		2.09 (1.28 to 3.40)	1.35 (1.12 to 1.56)	17.57 (6.03 to 27.43)
MET + SGL-L	MET + DPP-H	1.09 (0.91 to 1.30)	1.04 (0.95 to 1.14)	2.07 (-2.34 to 6.62)
MET + SGL-H		1.08 (0.92 to 1.27)	1.04 (0.96 to 1.12)	1.90 (-2.09 to 5.89)
MET + GLP-T		1.61 (0.66 to 4.20)	1.24 (0.79 to 1.65)	11.75 (-10.24 to 31.30)
MET + GLP-L		1.09 (0.83 to 1.41)	1.05 (0.91 to 1.18)	2.19 (-4.63 to 8.60)
MET + GLP-H		1.49 (1.23 to 1.79)	1.20 (1.11 to 1.30)	9.85 (5.25 to 14.25)
MET + TZD-T		1.03 (0.79 to 1.35)	1.02 (0.88 to 1.15)	0.84 (-5.86 to 7.41)
MET + TZD-L		1.23 (0.75 to 2.05)	1.11 (0.86 to 1.36)	5.09 (-7.09 to 17.36)
MET + TZD-H		1.18 (0.96 to 1.45)	1.08 (0.98 to 1.19)	4.06 (-1.03 to 9.20)
MET + AGI-T		1.72 (1.08 to 2.73)	1.27 (1.04 to 1.49)	13.28 (1.82 to 23.56)
MET + INS-BA-T		2.01 (1.40 to 2.91)	1.35 (1.17 to 1.51)	16.91 (8.33 to 24.76)
MET + INS-BI-T		2.26 (1.43 to 3.62)	1.40 (1.18 to 1.60)	19.53 (8.83 to 28.77)
MET + SGL-H	MET + SGL-L	0.99 (0.86 to 1.15)	1.00 (0.93 to 1.07)	-0.20 (-3.86 to 3.41)
MET + GLP-T		1.48 (0.59 to 3.87)	1.19 (0.75 to 1.59)	9.66 (-12.85 to 29.41)
MET + GLP-L		1.00 (0.73 to 1.37)	1.00 (0.85 to 1.16)	0.05 (-7.68 to 7.72)
MET + GLP-H		1.37 (1.07 to 1.74)	1.15 (1.03 to 1.29)	7.78 (1.65 to 13.62)
MET + TZD-T		0.95 (0.70 to 1.29)	0.97 (0.83 to 1.13)	-1.27 (-8.91 to 6.24)
MET + TZD-L		1.12 (0.68 to 1.94)	1.06 (0.82 to 1.32)	2.90 (-9.39 to 16.00)
MET + TZD-H		1.08 (0.84 to 1.40)	1.04 (0.92 to 1.17)	2.00 (-4.49 to 8.31)
MET + AGI-T		1.58 (0.98 to 2.57)	1.22 (0.99 to 1.45)	11.14 (-0.40 to 22.13)
MET + INS-BA-T		1.85 (1.24 to 2.76)	1.29 (1.10 to 1.48)	14.77 (5.27 to 23.57)
MET + INS-BI-T		2.09 (1.27 to 3.40)	1.35 (1.11 to 1.56)	17.49 (5.90 to 27.39)
MET + GLP-T	MET + SGL-H	1.50 (0.60 to 3.89)	1.20 (0.76 to 1.59)	9.95 (-12.45 to 29.51)
MET + GLP-L		1.01 (0.75 to 1.37)	1.01 (0.86 to 1.16)	0.28 (-7.34 to 7.78)
MET + GLP-H		1.38 (1.09 to 1.74)	1.16 (1.04 to 1.28)	7.95 (2.10 to 13.62)
MET + TZD-T		0.96 (0.71 to 1.28)	0.98 (0.84 to 1.13)	-1.03 (-8.42 to 6.16)
MET + TZD-L		1.13 (0.69 to 1.94)	1.06 (0.82 to 1.33)	3.12 (-9.16 to 16.07)
MET + TZD-H		1.09 (0.85 to 1.40)	1.04 (0.92 to 1.17)	2.18 (-4.05 to 8.36)
MET + AGI-T		1.59 (0.99 to 2.57)	1.22 (0.99 to 1.45)	11.33 (-0.27 to 22.11)
MET + INS-BA-T		1.86 (1.26 to 2.78)	1.30 (1.11 to 1.49)	14.96 (5.65 to 23.69)
MET + INS-BI-T		2.10 (1.29 to 3.42)	1.35 (1.12 to 1.56)	17.66 (6.23 to 27.45)
MET + GLP-L	MET + GLP-T	0.68 (0.25 to 1.72)	0.84 (0.61 to 1.34)	-9.65 (-30.52 to 13.39)
MET + GLP-H		0.92 (0.35 to 2.29)	0.97 (0.72 to 1.52)	-1.96 (-21.89 to 20.37)
MET + TZD-T		0.64 (0.23 to 1.63)	0.82 (0.59 to 1.31)	-11.00 (-31.87 to 11.99)
MET + TZD-L		0.75 (0.27 to 2.17)	0.89 (0.61 to 1.47)	-6.86 (-29.31 to 18.96)
MET + TZD-H		0.73 (0.27 to 1.82)	0.87 (0.64 to 1.38)	-7.71 (-28.04 to 14.77)
MET + AGI-T		1.06 (0.37 to 2.91)	1.02 (0.73 to 1.64)	1.38 (-20.96 to 25.72)
MET + INS-BA-T		1.24 (0.44 to 3.24)	1.08 (0.79 to 1.72)	5.04 (-16.58 to 28.13)
MET + INS-BI-T		1.40 (0.46 to 3.90)	1.13 (0.80 to 1.81)	7.54 (-15.67 to 31.80)
MET + GLP-H	MET + GLP-L	1.36 (1.06 to 1.77)	1.15 (1.03 to 1.31)	7.67 (1.41 to 14.10)
MET + TZD-T		0.95 (0.65 to 1.38)	0.97 (0.81 to 1.18)	-1.36 (-10.59 to 8.02)

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD-L		1.13 (0.64 to 2.01)	1.06 (0.80 to 1.36)	3.02 (-10.87 to 16.87)
MET + TZD-H		1.08 (0.78 to 1.51)	1.04 (0.89 to 1.22)	1.83 (-6.04 to 10.17)
MET + AGI-T		1.57 (0.93 to 2.68)	1.22 (0.97 to 1.50)	11.06 (-1.71 to 23.24)
MET + INS-BA-T		1.84 (1.19 to 2.90)	1.29 (1.08 to 1.55)	14.68 (4.17 to 25.04)
MET + INS-BI-T		2.07 (1.23 to 3.58)	1.34 (1.09 to 1.62)	17.22 (5.01 to 28.86)
MET + TZD-T	MET + GLP-H	0.69 (0.50 to 0.96)	0.85 (0.72 to 0.98)	-9.02 (-16.90 to -1.01)
MET + TZD-L		0.82 (0.50 to 1.44)	0.92 (0.71 to 1.15)	-4.75 (-17.21 to 8.57)
MET + TZD-H		0.79 (0.60 to 1.04)	0.90 (0.80 to 1.02)	-5.78 (-12.33 to 0.90)
MET + AGI-T		1.15 (0.71 to 1.89)	1.06 (0.86 to 1.26)	3.41 (-8.51 to 14.47)
MET + INS-BA-T		1.35 (0.90 to 2.03)	1.12 (0.96 to 1.29)	6.99 (-2.63 to 15.99)
MET + INS-BI-T		1.52 (0.92 to 2.51)	1.17 (0.97 to 1.35)	9.64 (-1.98 to 19.92)
MET + TZD-L	MET + TZD-T	1.19 (0.69 to 2.09)	1.09 (0.82 to 1.39)	4.34 (-9.21 to 17.93)
MET + TZD-H		1.14 (0.82 to 1.59)	1.07 (0.91 to 1.26)	3.24 (-4.83 to 11.46)
MET + AGI-T		1.66 (0.98 to 2.85)	1.25 (0.99 to 1.55)	12.41 (-0.44 to 24.76)
MET + INS-BA-T		1.94 (1.25 to 3.05)	1.32 (1.10 to 1.59)	16.00 (5.49 to 26.18)
MET + INS-BI-T		2.21 (1.30 to 3.72)	1.38 (1.12 to 1.66)	18.84 (6.41 to 29.82)
MET + TZD-H	MET + TZD-L	0.96 (0.58 to 1.58)	0.98 (0.80 to 1.26)	-1.14 (-13.08 to 11.26)
MET + AGI-T		1.40 (0.70 to 2.70)	1.15 (0.87 to 1.54)	8.10 (-8.41 to 23.72)
MET + INS-BA-T		1.64 (0.84 to 3.07)	1.22 (0.94 to 1.61)	11.80 (-4.09 to 26.62)
MET + INS-BI-T		1.85 (0.89 to 3.63)	1.27 (0.96 to 1.68)	14.40 (-2.79 to 29.68)
MET + AGI-T	MET + TZD-H	1.46 (0.88 to 2.42)	1.17 (0.94 to 1.42)	9.16 (-3.19 to 20.72)
MET + INS-BA-T		1.71 (1.12 to 2.61)	1.24 (1.05 to 1.44)	12.81 (2.78 to 22.13)
MET + INS-BI-T		1.93 (1.16 to 3.24)	1.29 (1.07 to 1.53)	15.50 (3.69 to 26.25)
MET + INS-BA-T	MET + AGI-T	1.17 (0.64 to 2.11)	1.06 (0.86 to 1.33)	3.59 (-9.97 to 17.28)
MET + INS-BI-T		1.32 (0.68 to 2.56)	1.10 (0.88 to 1.40)	6.27 (-8.51 to 20.91)
MET + INS-BI-T	MET + INS-BA-T	1.13 (0.74 to 1.76)	1.04 (0.89 to 1.20)	2.63 (-7.03 to 12.02)
Random-effects model	Residual deviance	176.5 vs. 180 data points		
	Deviance information criteria	1,212.8		

$\mathrm{AGI}=$ alpha-glucosidase inhibitors; $\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA = basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; -L = low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SGL}=$ sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; -T = titrated; TZD = thiazolidinedione; vs. = versus.

Urogenital Adverse Events (People)

Table 33: Urogenital Adverse Events (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	1.07 (0.73 to 1.60)	1.07 (0.73 to 1.58)	0.19 (-0.81 to 1.38)
MET + DPP-L		1.35 (0.66 to 2.74)	1.34 (0.66 to 2.63)	0.90 (-0.99 to 3.99)
MET + DPP-H		1.19 (0.86 to 1.67)	1.19 (0.87 to 1.64)	0.50 (-0.42 to 1.48)
MET + SGL-L		1.07 (0.68 to 1.72)	1.07 (0.69 to 1.69)	0.19 (-0.90 to 1.73)
MET + SGL-H		1.05 (0.70 to 1.62)	1.05 (0.71 to 1.60)	0.13 (-0.86 to 1.47)
MET + GLP-L		1.54 (0.69 to 3.33)	1.52 (0.70 to 3.15)	1.38 (-0.85 to 5.48)
MET + GLP-H		1.12 (0.56 to 2.20)	1.11 (0.57 to 2.14)	0.30 (-1.26 to 2.84)
MET + GLP-T		0.82 (0.43 to 1.53)	0.82 (0.44 to 1.51)	-0.47 (-1.67 to 1.28)
MET + TZD-H		0.65 (0.22 to 1.83)	0.66 (0.23 to 1.79)	-0.90 (-2.27 to 2.01)
MET + INS-BA-T		0.54 (0.05 to 4.22)	0.55 (0.06 to 3.89)	-1.19 (-2.81 to 7.58)
MET + DPP-L	MET + SUL-T	1.25 (0.58 to 2.63)	1.24 (0.59 to 2.53)	0.69 (-1.39 to 3.83)
MET + DPP-H		1.11 (0.82 to 1.50)	1.11 (0.82 to 1.49)	0.30 (-0.65 to 1.14)
MET + SGL-L		1.00 (0.59 to 1.68)	1.00 (0.60 to 1.65)	0.00 (-1.38 to 1.62)
MET + SGL-H		0.98 (0.66 to 1.49)	0.98 (0.66 to 1.47)	-0.06 (-1.16 to 1.19)
MET + GLP-L		1.43 (0.63 to 3.17)	1.42 (0.63 to 3.00)	1.18 (-1.18 to 5.28)
MET + GLP-H		1.04 (0.51 to 2.06)	1.04 (0.52 to 2.01)	0.10 (-1.61 to 2.63)
MET + GLP-T		0.76 (0.41 to 1.37)	0.77 (0.42 to 1.36)	-0.65 (-1.94 to 0.94)
MET + TZD-H		0.61 (0.20 to 1.68)	0.62 (0.21 to 1.65)	-1.08 (-2.67 to 1.76)
MET + INS-BA-T		0.50 (0.05 to 3.85)	0.51 (0.05 to 3.55)	-1.36 (-3.17 to 7.30)
MET + DPP-H	MET + DPP-L	0.89 (0.44 to 1.83)	0.89 (0.46 to 1.80)	-0.39 (-3.47 to 1.53)
MET + SGL-L		0.80 (0.35 to 1.85)	0.80 (0.36 to 1.82)	-0.70 (-3.96 to 1.72)
MET + SGL-H		0.78 (0.36 to 1.76)	0.79 (0.37 to 1.73)	-0.74 (-3.95 to 1.48)
MET + GLP-L		1.14 (0.41 to 3.17)	1.14 (0.42 to 3.01)	0.48 (-3.27 to 4.93)
MET + GLP-H		0.83 (0.32 to 2.11)	0.83 (0.34 to 2.06)	-0.58 (-3.91 to 2.46)
MET + GLP-T		0.61 (0.25 to 1.50)	0.62 (0.26 to 1.48)	-1.34 (-4.52 to 1.06)
MET + TZD-H		0.49 (0.14 to 1.57)	0.49 (0.14 to 1.55)	-1.74 (-4.99 to 1.42)
MET + INS-BA-T		0.40 (0.04 to 3.38)	0.41 (0.04 to 3.14)	-1.93 (-5.44 to 6.74)
MET + SGL-L	MET + DPP-H	0.90 (0.54 to 1.51)	0.90 (0.55 to 1.49)	-0.31 (-1.64 to 1.39)
MET + SGL-H		0.88 (0.57 to 1.39)	0.88 (0.58 to 1.37)	-0.36 (-1.50 to 1.06)
MET + GLP-L		1.29 (0.59 to 2.72)	1.28 (0.60 to 2.58)	0.89 (-1.32 to 4.90)
MET + GLP-H		0.94 (0.49 to 1.75)	0.94 (0.50 to 1.71)	-0.19 (-1.69 to 2.22)
MET + GLP-T		0.69 (0.38 to 1.22)	0.70 (0.39 to 1.21)	-0.96 (-2.11 to 0.64)
MET + TZD-H		0.55 (0.19 to 1.45)	0.56 (0.19 to 1.43)	-1.39 (-2.77 to 1.36)
MET + INS-BA-T		0.45 (0.05 to 3.46)	0.46 (0.05 to 3.21)	-1.68 (-3.33 to 7.02)
MET + SGL-H	MET + SGL-L	0.98 (0.65 to 1.50)	0.98 (0.66 to 1.48)	-0.05 (-1.32 to 1.09)
MET + GLP-L		1.44 (0.58 to 3.43)	1.42 (0.59 to 3.24)	1.18 (-1.48 to 5.39)
MET + GLP-H		1.04 (0.46 to 2.27)	1.04 (0.47 to 2.21)	0.10 (-2.02 to 2.80)
MET + GLP-T		0.76 (0.36 to 1.59)	0.77 (0.37 to 1.57)	-0.66 (-2.47 to 1.26)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + TZD-H		0.61 (0.19 to 1.84)	0.62 (0.20 to 1.80)	-1.08 (-3.04 to 1.93)
MET + INS-BA-T		0.50 (0.05 to 4.07)	0.51 (0.05 to 3.76)	-1.35 (-3.55 to 7.37)
MET + GLP-L	MET + SGL-H	1.46 (0.61 to 3.37)	1.44 (0.62 to 3.19)	1.23 (-1.29 to 5.39)
MET + GLP-H		1.06 (0.49 to 2.23)	1.06 (0.50 to 2.16)	0.16 (-1.78 to 2.80)
MET + GLP-T		0.78 (0.39 to 1.53)	0.78 (0.39 to 1.51)	-0.60 (-2.20 to 1.19)
MET + TZD-H		0.62 (0.20 to 1.78)	0.63 (0.21 to 1.74)	-1.02 (-2.79 to 1.87)
MET + INS-BA-T		0.51 (0.05 to 4.04)	0.52 (0.05 to 3.74)	-1.31 (-3.29 to 7.39)
MET + GLP-H	MET + GLP-L	0.72 (0.32 to 1.65)	0.73 (0.34 to 1.63)	-1.06 (-4.75 to 1.57)
MET + GLP-T		0.53 (0.20 to 1.38)	0.54 (0.22 to 1.36)	-1.82 (-6.01 to 0.82)
MET + TZD-H		0.42 (0.12 to 1.38)	0.44 (0.13 to 1.37)	-2.19 (-6.29 to 0.99)
MET + INS-BA-T		0.35 (0.03 to 3.16)	0.36 (0.04 to 2.96)	-2.38 (-6.83 to 6.22)
MET + GLP-T	MET + GLP-H	0.73 (0.31 to 1.73)	0.74 (0.32 to 1.71)	-0.75 (-3.42 to 1.36)
MET + TZD-H		0.58 (0.20 to 1.62)	0.59 (0.20 to 1.60)	-1.16 (-3.53 to 1.44)
MET + INS-BA-T		0.49 (0.05 to 4.02)	0.49 (0.05 to 3.73)	-1.38 (-4.41 to 7.17)
MET + TZD-H	MET + GLP-T	0.80 (0.24 to 2.50)	0.80 (0.24 to 2.43)	-0.41 (-2.48 to 2.51)
MET + INS-BA-T		0.66 (0.07 to 4.68)	0.67 (0.08 to 4.32)	-0.68 (-2.66 to 7.65)
MET + INS-BA-T	MET + TZD-H	0.84 (0.07 to 8.12)	0.84 (0.07 to 7.42)	-0.25 (-3.43 to 8.41)
Random-effects model	Residual deviance	57.39 vs. 59 data points		
	Deviance information criteria	314.836		

[^10]Figure 21: Consistency Plot for Urogenital Adverse Events (People) (Dose-Case Analysis)

Withdrawal Due to Adverse Events

Table 34: Withdrawal Due to Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL-T	MET	0.90 (0.66 to 1.24)	0.91 (0.67 to 1.23)	-0.26 (-0.96 to 0.59)
MET + SUL-L		0.48 (0.02 to 8.30)	0.49 (0.02 to 6.93)	-1.38 (-2.85 to 15.52)
MET + SUL-H		0.91 (0.49 to 1.77)	0.91 (0.49 to 1.73)	-0.23 (-1.43 to 1.94)
MET + MEG-L		1.09 (0.33 to 3.69)	1.09 (0.33 to 3.45)	0.25 (-1.85 to 6.54)
MET + MEG-H		0.73 (0.23 to 2.16)	0.74 (0.24 to 2.10)	-0.70 (-2.15 to 2.93)
MET + DPP-L		1.01 (0.64 to 1.63)	1.01 (0.65 to 1.61)	0.03 (-1.01 to 1.56)
MET + DPP-H		0.89 (0.69 to 1.17)	0.90 (0.69 to 1.16)	-0.28 (-0.91 to 0.41)
MET + SGL-L		1.05 (0.68 to 1.62)	1.04 (0.68 to 1.59)	0.12 (-0.90 to 1.55)
MET + SGL-H		1.02 (0.69 to 1.53)	1.02 (0.69 to 1.51)	0.04 (-0.89 to 1.32)
MET + GLP-T		1.54 (0.72 to 3.40)	1.52 (0.72 to 3.19)	1.41 (-0.76 to 5.81)
MET + GLP-L		1.22 (0.52 to 2.86)	1.21 (0.53 to 2.73)	0.58 (-1.30 to 4.57)
MET + GLP-H		2.26 (1.53 to 3.39)	2.18 (1.51 to 3.19)	3.21 (1.41 to 5.76)
MET + TZD-T		0.81 (0.47 to 1.42)	0.81 (0.48 to 1.40)	-0.50 (-1.49 to 1.05)
MET + TZD-L		1.36 (0.62 to 2.97)	1.35 (0.63 to 2.83)	0.94 (-1.04 to 4.81)
MET + TZD-H		1.13 (0.76 to 1.72)	1.12 (0.76 to 1.69)	0.33 (-0.68 to 1.77)
MET + AGI-T		2.81 (1.34 to 6.02)	2.68 (1.33 to 5.32)	4.54 (0.90 to 11.54)
MET + AGI-L		1.35 (0.19 to 13.37)	1.34 (0.19 to 10.10)	0.91 (-2.25 to 24.20)
MET + AGI-H		0.19 (0.00 to 6.19)	0.19 (0.00 to 5.41)	-2.14 (-3.02 to 12.13)
MET + INS-BA-T		0.24 (0.07 to 0.78)	0.25 (0.07 to 0.79)	-2.02 (-2.74 to -0.56)
MET + INS-BI-T		0.67 (0.20 to 2.24)	0.67 (0.20 to 2.17)	-0.88 (-2.26 to 3.10)
MET + SUL-L	MET + SUL-T	0.53 (0.02 to 9.05)	0.54 (0.02 to 7.60)	-1.11 (-2.78 to 15.73)
MET + SUL-H		1.01 (0.53 to 2.03)	1.01 (0.54 to 1.98)	0.02 (-1.30 to 2.20)
MET + MEG-L		1.22 (0.35 to 4.35)	1.21 (0.36 to 4.04)	0.51 (-1.78 to 6.88)
MET + MEG-H		0.81 (0.25 to 2.50)	0.81 (0.25 to 2.41)	-0.46 (-2.08 to 3.24)
MET + DPP-L		1.12 (0.70 to 1.84)	1.11 (0.71 to 1.81)	0.28 (-0.83 to 1.79)
MET + DPP-H		0.99 (0.76 to 1.30)	0.99 (0.76 to 1.29)	-0.03 (-0.71 to 0.61)
MET + SGL-L		1.16 (0.73 to 1.86)	1.15 (0.73 to 1.82)	0.37 (-0.77 to 1.79)
MET + SGL-H		1.13 (0.74 to 1.74)	1.12 (0.74 to 1.72)	0.30 (-0.73 to 1.57)
MET + GLP-T		1.71 (0.78 to 3.74)	1.68 (0.79 to 3.52)	1.66 (-0.55 to 5.93)
MET + GLP-L		1.35 (0.56 to 3.26)	1.34 (0.57 to 3.10)	0.83 (-1.16 to 4.84)
MET + GLP-H		2.50 (1.64 to 3.89)	2.41 (1.61 to 3.66)	3.46 (1.65 to 5.97)
MET + TZD-T		0.90 (0.56 to 1.46)	0.90 (0.57 to 1.44)	-0.25 (-1.12 to 1.06)
MET + TZD-L		1.51 (0.67 to 3.36)	1.49 (0.67 to 3.19)	1.20 (-0.89 to 5.04)
MET + TZD-H		1.25 (0.80 to 1.97)	1.24 (0.81 to 1.93)	0.58 (-0.55 to 2.02)
MET + AGI-T		3.10 (1.39 to 7.13)	2.95 (1.37 to 6.27)	4.78 (1.02 to 11.89)
MET + AGI-L		1.50 (0.20 to 15.00)	1.48 (0.21 to 11.32)	1.17 (-2.06 to 24.42)
$\mathrm{MET}+\mathrm{AGI}-\mathrm{H}$		0.21 (0.00 to 6.80)	0.21 (0.00 to 5.96)	-1.85 (-2.99 to 12.31)
MET + INS-BA-T		0.27 (0.07 to 0.87)	0.28 (0.07 to 0.87)	-1.75 (-2.70 to -0.30)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BI-T		0.73 (0.22 to 2.48)	0.74 (0.22 to 2.39)	-0.64 (-2.11 to 3.33)
MET + SUL-H	MET + SUL-L	1.88 (0.11 to 54.19)	1.85 (0.13 to 52.77)	1.05 (-15.56 to 3.76)
MET + MEG-L		2.26 (0.10 to 77.80)	2.22 (0.12 to 73.44)	1.37 (-15.09 to 7.82)
MET + MEG-H		1.49 (0.07 to 50.37)	1.48 (0.08 to 48.45)	0.56 (-16.16 to 4.60)
MET + DPP-L		2.10 (0.12 to 56.76)	2.07 (0.15 to 55.05)	1.36 (-15.46 to 3.51)
MET + DPP-H		1.87 (0.11 to 49.50)	1.84 (0.13 to 48.42)	1.10 (-15.83 to 2.63)
MET + SGL-L		2.18 (0.12 to 58.67)	2.14 (0.15 to 56.87)	1.46 (-15.43 to 3.54)
MET + SGL-H		2.13 (0.12 to 57.05)	2.09 (0.14 to 55.47)	1.39 (-15.54 to 3.37)
MET + GLP-T		3.20 (0.18 to 91.32)	3.10 (0.21 to 86.55)	2.52 (-13.78 to 7.29)
MET + GLP-L		2.53 (0.14 to 73.76)	2.48 (0.16 to 70.37)	1.74 (-14.64 to 6.14)
MET + GLP-H		4.68 (0.27 to 125.00)	4.46 (0.31 to 117.20)	4.39 (-12.29 to 7.54)
MET + TZD-T		1.69 (0.10 to 46.20)	1.67 (0.11 to 45.01)	0.85 (-15.80 to 2.98)
MET + TZD-L		2.80 (0.16 to 74.43)	2.74 (0.19 to 71.08)	2.04 (-14.29 to 6.25)
MET + TZD-H		2.33 (0.14 to 63.82)	2.28 (0.16 to 61.86)	1.65 (-15.10 to 3.79)
MET + AGI-T		5.77 (0.32 to 170.40)	5.41 (0.36 to 153.90)	5.40 (-10.96 to 12.88)
MET + AGI-L		2.84 (0.08 to 171.80)	2.75 (0.10 to 137.00)	1.85 (-14.46 to 25.01)
MET + AGI-H		0.35 (0.00 to 48.62)	0.36 (0.00 to 42.12)	-0.56 (-16.82 to 12.66)
MET + INS-BA-T		0.49 (0.02 to 16.12)	0.49 (0.03 to 15.89)	-0.63 (-17.39 to 1.40)
MET + INS-BI-T		1.33 (0.07 to 46.19)	1.32 (0.08 to 44.52)	0.37 (-16.13 to 4.53)
MET + MEG-L	MET + SUL-H	1.20 (0.30 to 4.61)	1.20 (0.31 to 4.32)	0.48 (-2.54 to 6.78)
MET + MEG-H		0.80 (0.22 to 2.64)	0.81 (0.23 to 2.56)	-0.46 (-2.98 to 3.14)
MET + DPP-L		1.11 (0.52 to 2.33)	1.11 (0.53 to 2.28)	0.26 (-2.00 to 2.07)
MET + DPP-H		0.98 (0.51 to 1.82)	0.98 (0.52 to 1.80)	-0.05 (-2.18 to 1.16)
MET + SGL-L		1.15 (0.53 to 2.39)	1.14 (0.54 to 2.34)	0.35 (-1.96 to 2.13)
MET + SGL-H		1.12 (0.52 to 2.29)	1.12 (0.54 to 2.25)	0.28 (-2.02 to 1.95)
MET + GLP-T		1.70 (0.62 to 4.47)	1.67 (0.63 to 4.22)	1.63 (-1.40 to 6.07)
MET + GLP-L		1.34 (0.51 to 3.45)	1.33 (0.52 to 3.30)	0.79 (-1.72 to 4.62)
MET + GLP-H		2.47 (1.30 to 4.71)	2.38 (1.28 to 4.47)	3.38 (1.11 to 5.86)
MET + TZD-T		0.89 (0.39 to 1.97)	0.89 (0.40 to 1.93)	-0.27 (-2.54 to 1.56)
MET + TZD-L		1.50 (0.57 to 3.70)	1.48 (0.58 to 3.52)	1.15 (-1.56 to 4.98)
MET + TZD-H		1.24 (0.64 to 2.34)	1.23 (0.65 to 2.29)	0.56 (-1.49 to 2.11)
MET + AGI-T		3.08 (1.14 to 8.29)	2.93 (1.13 to 7.38)	4.69 (0.47 to 11.86)
MET + AGI-L		1.49 (0.20 to 15.06)	1.47 (0.20 to 11.22)	1.13 (-2.54 to 24.15)
MET + AGI-H		0.21 (0.00 to 6.25)	0.21 (0.00 to 5.47)	-1.72 (-3.96 to 11.86)
MET + INS-BA-T		0.27 (0.06 to 0.97)	0.27 (0.06 to 0.97)	-1.75 (-3.97 to -0.06)
MET + INS-BI-T		0.73 (0.19 to 2.68)	0.73 (0.20 to 2.60)	-0.63 (-3.07 to 3.27)
MET + MEG-H	MET + MEG-L	0.66 (0.18 to 2.38)	0.67 (0.18 to 2.33)	-0.89 (-6.37 to 2.19)
MET + DPP-L		0.92 (0.25 to 3.44)	0.93 (0.27 to 3.36)	-0.22 (-6.57 to 2.41)
MET + DPP-H		0.81 (0.23 to 2.79)	0.82 (0.25 to 2.75)	-0.54 (-6.88 to 1.66)
MET + SGL-L		0.96 (0.26 to 3.46)	0.96 (0.28 to 3.37)	-0.13 (-6.48 to 2.46)
MET + SGL-H		0.93 (0.26 to 3.30)	0.93 (0.28 to 3.23)	-0.21 (-6.60 to 2.31)
MET + GLP-T		1.41 (0.34 to 5.95)	1.39 (0.36 to 5.63)	1.09 (-5.39 to 6.06)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLP-L		1.13 (0.25 to 4.82)	1.12 (0.27 to 4.61)	0.34 (-6.22 to 4.84)
MET + GLP-H		2.06 (0.57 to 7.33)	2.00 (0.59 to 6.89)	2.89 (-3.62 to 6.36)
MET + TZD-T		0.74 (0.19 to 2.85)	0.75 (0.20 to 2.79)	-0.74 (-7.09 to 1.92)
MET + TZD-L		1.24 (0.29 to 5.20)	1.23 (0.31 to 4.97)	0.65 (-5.92 to 5.20)
MET + TZD-H		1.03 (0.29 to 3.72)	1.03 (0.31 to 3.62)	0.07 (-6.27 to 2.70)
MET + AGI-T		2.56 (0.62 to 10.73)	2.44 (0.64 to 9.66)	4.07 (-2.88 to 11.60)
MET + AGI-L		1.26 (0.12 to 15.06)	1.25 (0.13 to 11.53)	0.63 (-6.09 to 23.57)
MET + AGI-H		0.17 (0.00 to 6.80)	0.18 (0.00 to 5.88)	-2.05 (-8.33 to 11.58)
MET + INS-BA-T		0.22 (0.04 to 1.20)	0.22 (0.04 to 1.20)	-2.22 (-8.51 to 0.24)
MET + INS-BI-T		0.60 (0.11 to 3.43)	0.61 (0.12 to 3.33)	-1.08 (-7.45 to 3.42)
MET + DPP-L	MET + MEG-H	1.38 (0.43 to 4.78)	1.37 (0.44 to 4.65)	0.73 (-2.98 to 2.82)
MET + DPP-H		1.22 (0.40 to 3.93)	1.22 (0.42 to 3.86)	0.43 (-3.25 to 1.97)
MET + SGL-L		1.42 (0.45 to 4.84)	1.41 (0.46 to 4.71)	0.81 (-2.93 to 2.83)
MET + SGL-H		1.39 (0.44 to 4.70)	1.38 (0.45 to 4.59)	0.75 (-2.97 to 2.68)
MET + GLP-T		2.10 (0.56 to 8.52)	2.06 (0.58 to 7.99)	2.03 (-2.02 to 6.73)
MET + GLP-L		1.68 (0.43 to 6.98)	1.65 (0.44 to 6.66)	1.23 (-2.69 to 5.45)
MET + GLP-H		3.08 (0.99 to 10.42)	2.95 (0.99 to 9.81)	3.83 (-0.07 to 6.92)
MET + TZD-T		1.11 (0.33 to 4.01)	1.11 (0.34 to 3.92)	0.21 (-3.53 to 2.30)
MET + TZD-L		1.88 (0.48 to 7.48)	1.84 (0.49 to 7.11)	1.60 (-2.47 to 5.72)
MET + TZD-H		1.54 (0.50 to 5.20)	1.52 (0.51 to 5.04)	1.02 (-2.63 to 3.07)
MET + AGI-T		3.88 (1.04 to 15.12)	3.66 (1.03 to 13.62)	5.10 (0.16 to 12.27)
MET + AGI-L		1.89 (0.18 to 22.87)	1.85 (0.19 to 17.34)	1.53 (-3.25 to 24.69)
MET + AGI-H		0.26 (0.00 to 9.92)	0.26 (0.00 to 8.71)	-1.20 (-4.96 to 12.53)
MET + INS-BA-T		0.33 (0.06 to 1.63)	0.33 (0.06 to 1.62)	-1.27 (-4.93 to 0.58)
MET + INS-BI-T		0.90 (0.18 to 4.69)	0.90 (0.19 to 4.52)	-0.18 (-3.92 to 3.95)
MET + DPP-H	MET + DPP-L	0.89 (0.56 to 1.38)	0.89 (0.57 to 1.37)	-0.30 (-1.75 to 0.70)
MET + SGL-L		1.04 (0.56 to 1.89)	1.04 (0.56 to 1.86)	0.10 (-1.69 to 1.79)
MET + SGL-H		1.00 (0.56 to 1.81)	1.00 (0.57 to 1.78)	0.01 (-1.68 to 1.59)
MET + GLP-T		1.54 (0.63 to 3.61)	1.52 (0.64 to 3.40)	1.38 (-1.25 to 5.75)
MET + GLP-L		1.21 (0.47 to 3.08)	1.20 (0.48 to 2.94)	0.55 (-1.80 to 4.56)
MET + GLP-H		2.24 (1.26 to 3.90)	2.17 (1.25 to 3.68)	3.17 (0.93 to 5.80)
MET + TZD-T		0.80 (0.41 to 1.54)	0.81 (0.42 to 1.52)	-0.52 (-2.21 to 1.15)
MET + TZD-L		1.35 (0.55 to 3.21)	1.34 (0.56 to 3.05)	0.90 (-1.54 to 4.82)
MET + TZD-H		1.12 (0.63 to 1.97)	1.11 (0.64 to 1.93)	0.30 (-1.40 to 1.93)
MET + AGI-T		2.78 (1.16 to 6.79)	2.64 (1.15 to 6.02)	4.48 (0.49 to 11.68)
MET + AGI-L		1.34 (0.18 to 13.65)	1.33 (0.18 to 10.27)	0.88 (-2.68 to 24.10)
MET + AGI-H		0.19 (0.00 to 6.27)	0.19 (0.00 to 5.50)	-2.05 (-3.85 to 12.03)
MET + INS-BA-T		0.24 (0.06 to 0.83)	0.24 (0.06 to 0.84)	-2.02 (-3.61 to -0.37)
MET + INS-BI-T		0.66 (0.18 to 2.34)	0.66 (0.19 to 2.27)	-0.91 (-2.89 to 3.14)
MET + SGL-L	MET + DPP-H	1.17 (0.74 to 1.85)	1.16 (0.74 to 1.82)	0.40 (-0.70 to 1.83)
MET + SGL-H		1.14 (0.75 to 1.75)	1.14 (0.75 to 1.72)	0.33 (-0.67 to 1.61)
MET + GLP-T		1.73 (0.80 to 3.74)	1.70 (0.80 to 3.51)	1.69 (-0.51 to 6.04)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLP-L		1.37 (0.58 to 3.22)	1.36 (0.59 to 3.07)	0.86 (-1.07 to 4.83)
MET + GLP-H		2.53 (1.71 to 3.77)	2.44 (1.68 to 3.55)	3.49 (1.72 to 5.95)
MET + TZD-T		0.91 (0.53 to 1.55)	0.91 (0.54 to 1.53)	-0.22 (-1.22 to 1.25)
MET + TZD-L		1.53 (0.69 to 3.33)	1.51 (0.69 to 3.16)	1.23 (-0.80 to 5.08)
MET + TZD-H		1.26 (0.83 to 1.93)	1.25 (0.84 to 1.89)	0.61 (-0.43 to 2.01)
MET + AGI-T		3.15 (1.42 to 7.08)	2.99 (1.41 to 6.24)	4.82 (1.07 to 11.93)
MET + AGI-L		1.52 (0.21 to 14.86)	1.50 (0.21 to 11.21)	1.20 (-1.97 to 24.54)
MET + AGI-H		0.21 (0.00 to 6.95)	0.22 (0.00 to 6.05)	-1.85 (-2.84 to 12.32)
MET + INS-BA-T		0.27 (0.07 to 0.87)	0.28 (0.07 to 0.88)	-1.73 (-2.54 to -0.29)
MET + INS-BI-T		0.75 (0.22 to 2.48)	0.75 (0.23 to 2.39)	-0.60 (-2.02 to 3.35)
MET + SGL-H	MET + SGL-L	0.98 (0.64 to 1.46)	0.98 (0.65 to 1.45)	-0.07 (-1.28 to 1.03)
MET + GLP-T		1.48 (0.61 to 3.52)	1.46 (0.62 to 3.32)	1.29 (-1.33 to 5.72)
MET + GLP-L		1.17 (0.46 to 2.97)	1.17 (0.47 to 2.84)	0.47 (-1.87 to 4.48)
MET + GLP-H		2.16 (1.24 to 3.80)	2.09 (1.23 to 3.59)	3.08 (0.85 to 5.76)
MET + TZD-T		0.77 (0.41 to 1.51)	0.78 (0.42 to 1.50)	-0.62 (-2.21 to 1.11)
MET + TZD-L		1.31 (0.54 to 3.15)	1.29 (0.55 to 2.99)	0.82 (-1.58 to 4.82)
MET + TZD-H		1.08 (0.62 to 1.91)	1.07 (0.63 to 1.87)	0.21 (-1.44 to 1.91)
MET + AGI-T		2.69 (1.13 to 6.46)	2.56 (1.13 to 5.73)	4.40 (0.44 to 11.49)
MET + AGI-L		1.30 (0.17 to 12.73)	1.29 (0.18 to 9.59)	0.81 (-2.74 to 23.97)
MET + AGI-H		0.18 (0.00 to 5.96)	0.18 (0.00 to 5.23)	-2.14 (-3.87 to 11.90)
MET + INS-BA-T		0.23 (0.06 to 0.80)	0.24 (0.06 to 0.81)	-2.11 (-3.66 to -0.45)
MET + INS-BI-T		0.63 (0.18 to 2.28)	0.64 (0.18 to 2.21)	-1.00 (-2.93 to 3.04)
MET + GLP-T	MET + SGL-H	1.52 (0.64 to 3.56)	1.50 (0.65 to 3.36)	1.36 (-1.15 to 5.81)
MET + GLP-L		1.20 (0.48 to 3.02)	1.19 (0.49 to 2.88)	0.52 (-1.67 to 4.58)
MET + GLP-H		2.23 (1.30 to 3.78)	2.15 (1.29 to 3.58)	3.16 (1.01 to 5.81)
MET + TZD-T		0.80 (0.43 to 1.48)	0.80 (0.44 to 1.46)	-0.54 (-2.01 to 1.08)
MET + TZD-L		1.34 (0.57 to 3.17)	1.32 (0.57 to 3.01)	0.89 (-1.42 to 4.86)
MET + TZD-H		1.11 (0.66 to 1.91)	1.11 (0.66 to 1.87)	0.29 (-1.23 to 1.91)
MET + AGI-T		2.76 (1.19 to 6.50)	2.63 (1.18 to 5.76)	4.46 (0.60 to 11.62)
MET + AGI-L		1.35 (0.17 to 13.15)	1.34 (0.18 to 9.91)	0.90 (-2.62 to 24.08)
MET + AGI-H		0.19 (0.00 to 6.18)	0.19 (0.00 to 5.42)	-2.08 (-3.66 to 12.02)
MET + INS-BA-T		0.24 (0.06 to 0.80)	0.24 (0.06 to 0.80)	-2.03 (-3.42 to -0.47)
MET + INS-BI-T		0.65 (0.18 to 2.29)	0.66 (0.19 to 2.22)	-0.93 (-2.74 to 3.11)
MET + GLP-L	MET + GLP-T	0.79 (0.25 to 2.44)	0.80 (0.27 to 2.35)	-0.80 (-5.53 to 3.57)
MET + GLP-H		1.46 (0.63 to 3.39)	1.43 (0.65 to 3.23)	1.76 (-2.82 to 5.10)
MET + TZD-T		0.52 (0.21 to 1.31)	0.53 (0.22 to 1.30)	-1.89 (-6.29 to 0.68)
MET + TZD-L		0.88 (0.30 to 2.63)	0.88 (0.31 to 2.52)	-0.46 (-5.25 to 3.93)
MET + TZD-H		0.73 (0.31 to 1.73)	0.74 (0.33 to 1.70)	-1.08 (-5.55 to 1.51)
MET + AGI-T		1.82 (0.62 to 5.45)	1.76 (0.64 to 4.92)	3.05 (-2.60 to 10.38)
MET + AGI-L		0.89 (0.10 to 9.68)	0.89 (0.11 to 7.46)	-0.42 (-5.93 to 22.66)
MET + AGI-H		0.12 (0.00 to 4.41)	0.13 (0.00 to 3.91)	-3.23 (-7.71 to 10.63)
MET + INS-BA-T		0.16 (0.04 to 0.54)	0.16 (0.04 to 0.55)	-3.38 (-7.63 to -1.10)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + INS-BI-T		0.43 (0.11 to 1.70)	0.44 (0.11 to 1.67)	-2.21 (-6.63 to 1.98)
MET + GLP-H	MET + GLP-L	1.85 (0.84 to 4.11)	1.80 (0.85 to 3.92)	2.57 (-1.00 to 5.17)
MET + TZD-T		0.67 (0.25 to 1.75)	0.67 (0.26 to 1.73)	-1.07 (-5.10 to 1.26)
MET + TZD-L		1.10 (0.37 to 3.43)	1.10 (0.38 to 3.28)	0.32 (-3.88 to 4.57)
MET + TZD-H		0.92 (0.38 to 2.25)	0.92 (0.40 to 2.20)	-0.25 (-4.21 to 1.98)
MET + AGI-T		2.30 (0.74 to 7.17)	2.20 (0.76 to 6.42)	3.87 (-1.50 to 11.10)
MET + AGI-L		1.11 (0.13 to 11.98)	1.11 (0.13 to 9.20)	0.32 (-4.77 to 23.36)
MET + AGI-H		0.15 (0.00 to 5.18)	0.16 (0.00 to 4.58)	-2.40 (-6.45 to 11.05)
MET + INS-BA-T		0.20 (0.04 to 0.81)	0.20 (0.04 to 0.82)	-2.54 (-6.54 to -0.35)
MET + INS-BI-T		0.54 (0.13 to 2.18)	0.55 (0.14 to 2.12)	-1.39 (-5.45 to 2.61)
MET + TZD-T	MET + GLP-H	0.36 (0.19 to 0.67)	0.37 (0.20 to 0.68)	-3.68 (-6.30 to -1.49)
MET + TZD-L		0.60 (0.26 to 1.38)	0.62 (0.27 to 1.36)	-2.23 (-5.41 to 1.86)
MET + TZD-H		0.50 (0.31 to 0.81)	0.51 (0.33 to 0.82)	-2.86 (-5.36 to -0.84)
MET + AGI-T		1.24 (0.54 to 2.93)	1.22 (0.56 to 2.67)	1.31 (-3.17 to 8.62)
MET + AGI-L		0.60 (0.08 to 6.08)	0.62 (0.08 to 4.74)	-2.22 (-6.57 to 20.98)
MET + AGI-H		0.08 (0.00 to 2.71)	0.09 (0.00 to 2.46)	-5.07 (-7.92 to 8.66)
MET + INS-BA-T		0.11 (0.03 to 0.35)	0.11 (0.03 to 0.37)	-5.17 (-7.77 to -3.08)
MET + INS-BI-T		0.29 (0.09 to 0.95)	0.31 (0.09 to 0.96)	-3.99 (-6.71 to -0.24)
MET + TZD-L	MET + TZD-T	1.68 (0.66 to 4.25)	1.65 (0.67 to 4.03)	1.42 (-0.99 to 5.40)
MET + TZD-H		1.39 (0.74 to 2.64)	1.38 (0.75 to 2.58)	0.82 (-0.85 to 2.43)
MET + AGI-T		3.48 (1.36 to 8.84)	3.30 (1.35 to 7.85)	5.01 (1.00 to 12.15)
MET + AGI-L		1.68 (0.21 to 17.72)	1.65 (0.22 to 13.31)	1.40 (-2.14 to 24.71)
MET + AGI-H		0.23 (0.00 to 7.87)	0.24 (0.00 to 6.85)	-1.53 (-3.31 to 12.38)
MET + INS-BA-T		0.30 (0.07 to 1.06)	0.30 (0.08 to 1.06)	-1.48 (-3.11 to 0.11)
MET + INS-BI-T		0.82 (0.22 to 2.97)	0.82 (0.23 to 2.87)	-0.38 (-2.35 to 3.58)
MET + TZD-H	MET + TZD-L	0.83 (0.38 to 1.83)	0.83 (0.40 to 1.80)	-0.61 (-4.28 to 1.57)
MET + AGI-T		2.07 (0.69 to 6.27)	1.99 (0.71 to 5.65)	3.52 (-1.80 to 10.89)
MET + AGI-L		1.00 (0.12 to 10.75)	1.00 (0.13 to 8.25)	-0.01 (-5.13 to 23.23)
MET + AGI-H		0.14 (0.00 to 4.94)	0.14 (0.00 to 4.35)	-2.76 (-6.84 to 10.97)
MET + INS-BA-T		0.18 (0.04 to 0.72)	0.18 (0.04 to 0.72)	-2.91 (-6.86 to -0.61)
MET + INS-BI-T		0.48 (0.12 to 2.10)	0.49 (0.13 to 2.04)	-1.76 (-5.87 to 2.57)
MET + AGI-T	MET + TZD-H	2.49 (1.06 to 5.92)	2.38 (1.06 to 5.26)	4.17 (0.21 to 11.33)
MET + AGI-L		1.20 (0.17 to 12.44)	1.19 (0.17 to 9.32)	0.58 (-2.87 to 23.92)
MET + AGI-H		0.17 (0.00 to 5.49)	0.17 (0.00 to 4.82)	-2.35 (-4.06 to 11.71)
MET + INS-BA-T		0.22 (0.05 to 0.73)	0.22 (0.06 to 0.73)	-2.31 (-3.86 to -0.71)
MET + INS-BI-T		0.59 (0.17 to 2.05)	0.60 (0.17 to 1.99)	-1.21 (-3.13 to 2.75)
MET + AGI-L	MET + AGI-T	0.49 (0.06 to 5.33)	0.51 (0.06 to 4.18)	-3.28 (-11.39 to 19.61)
MET + AGI-H		0.07 (0.00 to 2.52)	0.07 (0.00 to 2.29)	-6.16 (-13.45 to 7.88)
MET + INS-BA-T		0.09 (0.02 to 0.34)	0.09 (0.02 to 0.35)	-6.49 (-13.48 to -2.62)
MET + INS-BI-T		0.24 (0.06 to 0.99)	0.25 (0.06 to 0.99)	-5.25 (-12.45 to -0.03)
MET + AGI-H	MET + AGI-L	0.13 (0.00 to 6.76)	0.14 (0.00 to 6.05)	-2.58 (-25.15 to 9.40)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + INS-BA-T		0.18 (0.01 to 1.84)	0.18 (0.02 to 1.83)	-2.88 (-26.20 to 0.54)
MET + INS-BI-T		0.48 (0.04 to 5.22)	0.49 (0.05 to 5.05)	-1.72 (-24.83 to 3.37)
MET + INS-BA-T	MET + AGI-H	1.29 (0.03 to 291.80)	1.29 (0.03 to 289.30)	0.13 (-13.97 to 1.72)
MET + INS-BI-T		3.53 (0.09 to 865.20)	3.47 (0.10 to 837.40)	1.04 (-12.60 to 5.13)
MET + INS-BI-T	MET + INS-BA-T	2.71 (0.79 to 11.84)	2.67 (0.79 to 11.38)	1.06 (-0.26 to 4.79)
Random-effects model	Residual deviance	249.1 vs. 259 data points		
	Deviance information criteria	1,232.17		

$\mathrm{AGI}=$ alpha-glucosidase inhibitors; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA $=$ basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; $-\mathrm{L}=$ low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SGL}=\mathrm{sodium}-\mathrm{glucose}$ cotransporter-2 inhibitor; SUL = sulfonylurea; - T = titrated; TZD = thiazolidinedione; vs. = versus.

Weight

Table 35: Weight: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL-T	MET	2.14 (1.70 to 2.56)
MET + SUL-L		0.12 (-1.88 to 2.12)
MET + SUL-H		1.75 (0.86 to 2.63)
MET + DPP-L		0.27 (-0.25 to 0.79)
MET + DPP-H		0.17 (-0.16 to 0.49)
MET + MEG-T		3.28 (1.34 to 5.22)
MET + MEG-L		0.18 (-1.19 to 1.54)
MET + MEG-H		0.65 (-0.38 to 1.69)
MET + SGL-L		-1.84 (-2.35 to -1.34)
MET + SGL-H		-2.25 (-2.72 to -1.79)
MET + GLP-T		-0.51 (-1.73 to 0.70)
MET + GLP-L		-0.69 (-1.41 to 0.03)
MET + GLP-H		-1.61 (-2.07 to -1.16)
MET + AGI-T		0.10 (-1.01 to 1.20)
MET + AGI-L		0.67 (-1.76 to 3.11)
MET + TZD-T		2.83 (1.98 to 3.68)
MET + TZD-L		1.60 (0.44 to 2.76)
MET + TZD-H		2.83 (2.28 to 3.38)
MET + INS-BA-T		2.98 (2.10 to 3.87)
MET + INS-BI-T		3.43 (2.33 to 4.55)
MET + SUL-L	MET + SUL-T	-2.01 (-4.03 to 0.01)
MET + SUL-H		-0.39 (-1.32 to 0.53)
MET + DPP-L		-1.87 (-2.47 to -1.26)
MET + DPP-H		-1.97 (-2.34 to -1.59)
MET + MEG-T		1.14 (-0.84 to 3.14)
MET + MEG-L		-1.96 (-3.38 to -0.52)
MET + MEG-H		-1.49 (-2.60 to -0.37)

Treatment	Reference	MD (95\% CrI)
MET + SGL-L		-3.98 (-4.58 to -3.38)
MET + SGL-H		-4.38 (-4.93 to -3.83)
MET + GLP-T		-2.65 (-3.88 to -1.43)
MET + GLP-L		-2.83 (-3.63 to -2.03)
MET + GLP-H		-3.75 (-4.30 to -3.20)
MET + AGI-T		-2.03 (-3.23 to -0.85)
MET + AGI-L		-1.47 (-3.91 to 0.98)
MET + TZD-T		0.70 (-0.08 to 1.47)
MET + TZD-L		-0.53 (-1.74 to 0.67)
MET + TZD-H		0.69 (0.07 to 1.31)
MET + INS-BA-T		0.84 (-0.04 to 1.74)
MET + INS-BI-T		1.29 (0.17 to 2.43)
MET + SUL-H	MET + SUL-L	1.62 (-0.54 to 3.78)
MET + DPP-L		0.15 (-1.89 to 2.18)
MET + DPP-H		0.05 (-1.96 to 2.05)
MET + MEG-T		3.15 (0.38 to 5.93)
MET + MEG-L		0.05 (-2.38 to 2.45)
MET + MEG-H		0.53 (-1.72 to 2.78)
MET + SGL-L		-1.97 (-4.02 to 0.09)
MET + SGL-H		-2.37 (-4.42 to -0.33)
MET + GLP-T		-0.63 (-2.97 to 1.68)
MET + GLP-L		-0.81 (-2.93 to 1.31)
MET + GLP-H		-1.73 (-3.77 to 0.31)
MET + AGI-T		-0.02 (-2.31 to 2.26)
MET + AGI-L		0.55 (-2.58 to 3.67)
MET + TZD-T		2.71 (0.56 to 4.86)
MET + TZD-L		1.48 (-0.19 to 3.15)
MET + TZD-H		2.70 (0.68 to 4.71)
MET + INS-BA-T		2.86 (0.68 to 5.03)
MET + INS-BI-T		3.31 (1.03 to 5.57)
MET + DPP-L	MET + SUL-H	-1.47 (-2.47 to -0.48)
MET + DPP-H		-1.58 (-2.45 to -0.71)
MET + MEG-T		1.53 (-0.60 to 3.67)
MET + MEG-L		-1.57 (-3.20 to 0.06)
MET + MEG-H		-1.09 (-2.45 to 0.27)
MET + SGL-L		-3.59 (-4.58 to -2.60)
MET + SGL-H		-3.99 (-4.97 to -3.02)
MET + GLP-T		-2.26 (-3.74 to -0.77)
MET + GLP-L		-2.44 (-3.51 to -1.36)
MET + GLP-H		-3.36 (-4.24 to -2.48)
MET + AGI-T		-1.64 (-3.05 to -0.24)
MET + AGI-L		-1.08 (-3.58 to 1.42)

Treatment	Reference	MD (95\% Crl)
MET + TZD-T		1.09 (-0.10 to 2.26)
MET + TZD-L		-0.14 (-1.57 to 1.28)
MET + TZD-H		1.08 (0.12 to 2.05)
MET + INS-BA-T		1.23 (0.06 to 2.41)
MET + INS-BI-T		1.68 (0.35 to 3.03)
MET + DPP-H	MET + DPP-L	-0.10 (-0.63 to 0.43)
MET + MEG-T		3.01 (1.00 to 5.02)
MET + MEG-L		-0.10 (-1.55 to 1.37)
MET + MEG-H		0.38 (-0.77 to 1.54)
MET + SGL-L		-2.12 (-2.82 to -1.41)
MET + SGL-H		-2.52 (-3.19 to -1.85)
MET + GLP-T		-0.78 (-2.09 to 0.51)
MET + GLP-L		-0.96 (-1.83 to -0.09)
MET + GLP-H		-1.88 (-2.54 to -1.23)
MET + AGI-T		-0.17 (-1.39 to 1.05)
MET + AGI-L		0.40 (-2.07 to 2.86)
MET + TZD-T		2.56 (1.62 to 3.51)
MET + TZD-L		1.33 (0.12 to 2.54)
MET + TZD-H		2.55 (1.86 to 3.26)
MET + INS-BA-T		2.71 (1.73 to 3.70)
MET + INS-BI-T		3.16 (1.97 to 4.36)
MET + MEG-T	MET + DPP-H	3.11 (1.15 to 5.09)
MET + MEG-L		0.01 (-1.39 to 1.41)
MET + MEG-H		0.48 (-0.60 to 1.57)
MET + SGL-L		-2.02 (-2.56 to -1.47)
MET + SGL-H		-2.42 (-2.92 to -1.92)
MET + GLP-T		-0.68 (-1.90 to 0.52)
MET + GLP-L		-0.86 (-1.60 to -0.12)
MET + GLP-H		-1.78 (-2.25 to -1.32)
MET + AGI-T		-0.07 (-1.22 to 1.08)
MET + AGI-L		0.50 (-1.91 to 2.92)
MET + TZD-T		2.66 (1.85 to 3.47)
MET + TZD-L		1.43 (0.27 to 2.60)
MET + TZD-H		2.66 (2.11 to 3.21)
MET + INS-BA-T		2.81 (1.96 to 3.68)
MET + INS-BI-T		3.26 (2.17 to 4.37)
MET + MEG-L	MET + MEG-T	-3.10 (-5.47 to -0.72)
MET + MEG-H		-2.63 (-4.82 to -0.43)
MET + SGL-L		-5.12 (-7.13 to -3.12)
MET + SGL-H		-5.53 (-7.53 to -3.53)
MET + GLP-T		-3.79 (-6.11 to -1.51)
MET + GLP-L		-3.97 (-6.06 to -1.89)

Treatment	Reference	MD (95\% Crl)
MET + GLP-H		-4.89 (-6.89 to -2.90)
MET + AGI-T		-3.17 (-5.42 to -0.95)
MET + AGI-L		-2.61 (-5.71 to 0.49)
MET + TZD-T		-0.44 (-2.57 to 1.67)
MET + TZD-L		-1.67 (-3.94 to 0.58)
MET + TZD-H		-0.45 (-2.47 to 1.56)
MET + INS-BA-T		-0.30 (-2.43 to 1.84)
MET + INS-BI-T		0.15 (-2.09 to 2.39)
MET + MEG-H	MET + MEG-L	0.48 (-0.88 to 1.83)
MET + SGL-L		-2.02 (-3.48 to -0.57)
MET + SGL-H		-2.42 (-3.87 to -0.99)
MET + GLP-T		-0.69 (-2.53 to 1.14)
MET + GLP-L		-0.87 (-2.40 to 0.68)
MET + GLP-H		-1.79 (-3.23 to -0.35)
MET + AGI-T		-0.07 (-1.83 to 1.67)
MET + AGI-L		0.49 (-2.28 to 3.29)
MET + TZD-T		2.66 (1.05 to 4.26)
MET + TZD-L		1.43 (-0.36 to 3.22)
MET + TZD-H		2.65 (1.18 to 4.12)
MET + INS-BA-T		2.80 (1.19 to 4.43)
MET + INS-BI-T		3.25 (1.50 to 5.01)
MET + SGL-L	MET + MEG-H	-2.50 (-3.64 to -1.35)
MET + SGL-H		-2.90 (-4.03 to -1.77)
MET + GLP-T		-1.16 (-2.77 to 0.43)
MET + GLP-L		-1.34 (-2.60 to -0.08)
MET + GLP-H		-2.26 (-3.39 to -1.13)
MET + AGI-T		-0.55 (-2.06 to 0.95)
MET + AGI-L		0.02 (-2.61 to 2.66)
MET + TZD-T		2.18 (0.85 to 3.52)
MET + TZD-L		0.95 (-0.59 to 2.51)
MET + TZD-H		2.17 (1.00 to 3.35)
MET + INS-BA-T		2.33 (0.97 to 3.69)
MET + INS-BI-T		2.78 (1.27 to 4.29)
MET + SGL-H	MET + SGL-L	-0.40 (-0.90 to 0.09)
MET + GLP-T		1.33 (0.03 to 2.63)
MET + GLP-L		1.15 (0.28 to 2.02)
MET + GLP-H		0.23 (-0.42 to 0.89)
MET + AGI-T		1.95 (0.74 to 3.16)
MET + AGI-L		2.52 (0.05 to 4.99)
MET + TZD-T		4.68 (3.72 to 5.63)
MET + TZD-L		3.45 (2.19 to 4.70)
MET + TZD-H		4.67 (3.95 to 5.39)

Treatment	Reference	MD (95\% Crl)
MET + INS-BA-T		4.82 (3.84 to 5.82)
MET + INS-BI-T		5.27 (4.08 to 6.48)
MET + GLP-T	MET + SGL-H	1.74 (0.45 to 3.02)
MET + GLP-L		1.56 (0.71 to 2.40)
MET + GLP-H		0.64 (0.01 to 1.25)
MET + AGI-T		2.35 (1.15 to 3.54)
MET + AGI-L		2.92 (0.46 to 5.38)
MET + TZD-T		5.08 (4.16 to 6.00)
MET + TZD-L		3.85 (2.62 to 5.09)
MET + TZD-H		5.07 (4.39 to 5.76)
MET + INS-BA-T		5.23 (4.27 to 6.20)
MET + INS-BI-T		5.68 (4.51 to 6.86)
MET + GLP-L	MET + GLP-T	-0.18 (-1.57 to 1.23)
MET + GLP-H		-1.10 (-2.37 to 0.17)
MET + AGI-T		0.61 (-1.02 to 2.25)
MET + AGI-L		1.18 (-1.50 to 3.91)
MET + TZD-T		3.35 (1.92 to 4.77)
MET + TZD-L		2.12 (0.47 to 3.78)
MET + TZD-H		3.34 (2.03 to 4.65)
MET + INS-BA-T		3.49 (2.09 to 4.93)
MET + INS-BI-T		3.94 (2.36 to 5.54)
MET + GLP-H	MET + GLP-L	-0.92 (-1.63 to -0.21)
MET + AGI-T		0.80 (-0.53 to 2.11)
MET + AGI-L		1.36 (-1.15 to 3.90)
MET + TZD-T		3.53 (2.44 to 4.61)
MET + TZD-L		2.30 (0.94 to 3.64)
MET + TZD-H		3.52 (2.65 to 4.39)
MET + INS-BA-T		3.67 (2.60 to 4.76)
MET + INS-BI-T		4.12 (2.87 to 5.39)
MET + AGI-T	MET + GLP-H	1.71 (0.52 to 2.91)
MET + AGI-L		2.28 (-0.17 to 4.73)
MET + TZD-T		4.45 (3.54 to 5.36)
MET + TZD-L		3.22 (1.99 to 4.44)
MET + TZD-H		4.44 (3.81 to 5.07)
MET + INS-BA-T		4.59 (3.74 to 5.46)
MET + INS-BI-T		5.04 (3.99 to 6.11)
MET + AGI-L	MET + AGI-T	0.57 (-2.10 to 3.23)
MET + TZD-T		2.73 (1.34 to 4.13)
MET + TZD-L		1.50 (-0.11 to 3.11)
MET + TZD-H		2.72 (1.49 to 3.97)
MET + INS-BA-T		2.88 (1.47 to 4.30)

$\mathrm{AGI}=$ alpha-glucosidase inhibitors; CrI = credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; - $\mathrm{H}=$ high-dose; INS-BA $=$ basal insulin; $\operatorname{INS}-\mathrm{BI}=$ biphasic insulin; -L = low-dose; $\mathrm{MEG}=$ meglitinide; $\mathrm{MD}=$ mean difference; $\mathrm{MET}=$ metformin; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; $-\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. = versus.

Appendix 11: Detailed Network Meta-Analysis Results for the Individual Drug-Level Analysis

Legend

Table 36: Treatment Legend for Individual-Drug Network Meta-Analyses

Treatment	Abbreviation	Drug Class
Acarbose	ACA	Alpha-glucosidase inhibitor
Acetoheximide	ACE	Sulfonylurea
Albiglutide	ALB	GLP-1 receptor agonist
Alogliptin	ALO	DPP-4 inhibitor
Alogliptin/metformin fixed dose combination	AMC	DPP-4 inhibitor
Canagliflozin	CAN	SGLT-2 inhibitor
Chlorpropamide	CHL	Sulfonylurea
Chlorpropamide	CHO	Sulfonylurea
Dapagliflozin fixed dose combination	DAC	SGLT-2 inhibitor
Dapagliflozin	DAP	SGLT-2 inhibitor
Insulin degludec/insulin aspart mix	DSP	Insulin
Dulaglutide	DUL	GLP-1 receptor agonist
Empagliflozin fixed dose combination	EMC	SGLT-2 inhibitor
Empagliflozin	EMP	SGLT-2 inhibitor
Exenatide	EXE	GLP-1 receptor agonist
Gemigliptin	GEM	DPP-4 inhibitor
Glicazide/glicazide MR	GLC	Sulfonylurea
Glipizide	GLI	Sulfonylurea
Gliclazide	GLL	Sulfonylurea
Glimepiride	GLM	Sulfonylurea
Gliquidone	GLQ	Sulfonylurea
Glyburide (also known as or same as glibenclamide)	GLY	Sulfonylurea
Insulin aspart/aspart protamine]mixture	IAM	Insulin
Insulin aspart	IAS	Insulin
Insulin detemir	IDE	Insulin
Insulin glargine	IGA	Insulin
Insulin glargine biosimilars	IGB	Insulin
Insulin glulisine	IGL	Insulin
Insulin lispro	ILI	Insulin
Insulin lispro/lispro protamine mixture	ILM	Insulin
Insulin degludec	IND	Insulin
Insulin pork (nph/hypurin nph)	INM	Insulin
Insulin pork	INP	Insulin
Long-acting glicazide (aka modified release)	LGL	Sulfonylurea

Treatment	Abbreviation	Drug Class
Linagliptin	LIN	DPP-4 inhibitor
Liraglutide	LIR	GLP-1 receptor agonist
Lixisenatide	LIX	GLP-1 receptor agonist
Linagliptin/metformin fixed dose combination	MET	DPP-4 inhibitor
Metformin	MIG	Biguanide
Miglitol	MIT	Alpha-glucosidase inhibitor
Mitiglinide	NAT	Meglitintide
Nateglinide	NIN	Meglitintide
NPH (neutral protamine Hagedorn) insulin	NIR	Insulin
NPH insulin regular/insulin mixture	NIRH	Insulin
NPH insulin regular/insulin mixture	NIRN	Insulin
NPH insulin regular/insulin mixture	NIRO	Insulin
NPH insulin regular/insulin mixture	OMA	Insulin
Omarigliptin	PIO	DPP-4 inhibibitor
Pioglitazone	PLA	Thiazolidinedione
Placebo	PMC	Not applicable
Pioglitazone/metformin fixed dose combination	REP	Thiazolidinedione
Repaglinide	RIN	Meglitintide
Regular insulin	ROS	Insulin
Rosiglitazone	SAC	Thiazolidinedione
Saxagliptin/metformin fixed dose combination	SAX	DPP-4 inhibitor
Saxagliptin	SEP	DPP-4 inhibitor
Septagliptin	SIT	DPP-4 inhibitor
Sitagliptin	SMC	DPP-4 inhibitor
Sitagliptin/metformin fixed dose combination	TEN	DPP-4 inhibitor
Tenegliptan	TMC	DPP-4 inhibitor
Trelagliptin/metformin fixed dose combination	TOL	DPP-4 inhibitor
Tolbutamide	TOZ	Sulfonylurea
Tolzamide	TRE	Sulfonylurea
Trelagliptin	VIL	DPP-4 inhibibitor
Vildagliptin	VMC	DPP-4 inhibitor
Vildagliptin/metformin fixed dose combination	VOG	DPP-4 inhibitor
Voglibose	XSM	Alpha-glucosidase inhibitor
Sitagliptin XR/metformin fixed dose combination	DPP-4 inhibitor	

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; MR = modified release; SGLT-2 = sodium-glucose cotransporter-2; XR = extended release.

Fractures (People)

Table 37: Fractures (People): Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	1.40 (0.17 to 14.02)	1.40 (0.17 to 12.79)	0.37 (-1.08 to 8.97)
MET + SAX		3.03 (0.48 to 26.79)	2.97 (0.48 to 22.85)	1.87 (-0.61 to 14.70)
MET + DAP		1.11 (0.31 to 3.76)	1.11 (0.32 to 3.69)	0.10 (-0.95 to 1.88)
MET + EMP		1.56 (0.16 to 17.51)	1.55 (0.16 to 15.52)	0.51 (-1.08 to 11.20)
MET + PIO		0.94 (0.21 to 4.32)	0.94 (0.21 to 4.21)	-0.05 (-1.01 to 2.78)
MET + SAX	MET + GLM	2.18 (0.60 to 9.24)	2.13 (0.61 to 8.69)	1.24 (-1.80 to 9.67)
MET + DAP		0.77 (0.06 to 8.92)	0.77 (0.07 to 8.76)	-0.29 (-8.97 to 2.02)
MET + EMP		1.12 (0.44 to 2.86)	1.12 (0.45 to 2.78)	0.10 (-1.87 to 4.60)
MET + PIO		0.65 (0.04 to 10.11)	0.65 (0.05 to 9.86)	-0.40 (-8.93 to 2.79)
MET + DAP	MET + SAX	0.35 (0.03 to 3.38)	0.36 (0.04 to 3.33)	-1.77 (-14.64 to 1.47)
MET + EMP		0.51 (0.09 to 2.45)	0.52 (0.10 to 2.34)	-1.05 (-9.67 to 4.17)
MET + PIO		0.30 (0.02 to 3.48)	0.31 (0.03 to 3.40)	-1.83 (-14.69 to 1.93)
MET + EMP	MET + DAP	1.44 (0.11 to 19.90)	1.43 (0.11 to 17.75)	0.42 (-1.98 to 11.02)
MET + PIO		0.85 (0.13 to 6.51)	0.86 (0.13 to 6.33)	-0.14 (-2.10 to 2.96)
$\mathrm{MET}+\mathrm{PIO}$	MET + EMP	0.58 (0.04 to 10.20)	0.59 (0.04 to 9.98)	-0.52 (-11.09 to 2.69)
Random-effects model	Residual deviance	11.94 vs. 14 data points		
	Deviance information criteria	65.125		

$\mathrm{CrI}=$ credible interval; $\mathrm{DAP}=$ dapagliflozin; EMP = empagliflozin; $\mathrm{GLM}=$ glimepiride; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $R R=$ relative risk; SAX $=$ saxagliptin; vs. $=$ versus.

Heart Failure

Table 38: Heart Failure: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + GLC	MET	$1.65(0.23$ to 9.83$)$	$1.64(0.24$ to 9.22$)$	$0.52(-0.89$ to 6.50$)$
MET + GLM		$1.29(0.29$ to 7.00$)$	$1.28(0.29$ to 6.75$)$	$0.23(-0.93$ to 3.68$)$
MET + GLI		$0.48(0.02$ to 14.38$)$	$0.49(0.02$ to 12.83$)$	$-0.37(-1.36$ to 10.46$)$
MET + SAX		$0.20(0.02$ to 1.94$)$	$0.21(0.02$ to 1.92$)$	$-0.61(-1.49$ to 0.64$)$
MET + ALO		$0.43(0.07$ to 2.32$)$	$0.43(0.07$ to 2.30$)$	$-0.45(-1.37$ to 0.78$)$
MET + LIN		$1.51(0.15$ to 16.46$)$	$1.50(0.15$ to 14.87$)$	$0.40(-1.03$ to 9.92$)$
MET + SIT		$0.91(0.08$ to 11.46$)$	$1.02(0.09$ to 10.84$)$	$0.01(-1.24$ to 5.68$)$
MET + VIL		$3.61(1.53$ to 10.13$)$	$0.92(0.08$ to 10.14$)$	$-0.07(-1.22$ to 6.39$)$
MET + PIO		$0.79(0.08$ to 8.28$)$	$0.79(0.08$ to 8.67$)$	$2.10(0.52$ to 5.71$)$
MET + GLM		$0.31(0.01$ to 11.97$)$	$0.31(0.01$ to 10.89$)$	$-0.24(-6.33$ to 3.19$)$
MET + GLI		$0.13(0.01$ to 2.07$)$	$0.13(0.01$ to 2.06$)$	$-1.10(-7.21$ to 0.52$)$
MET + SAX		$0.26(0.02$ to 3.06$)$	$0.27(0.02$ to 3.04$)$	$-0.94(-7.01$ to 0.70$)$
MET + ALO				

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + LIN		0.94 (0.06 to 18.64)	0.94 (0.06 to 16.97)	-0.07 (-6.09 to 9.43)
MET + SIT		0.63 (0.03 to 11.22)	0.64 (0.04 to 10.63)	-0.40 (-6.55 to 5.07)
MET + VIL		0.57 (0.03 to 9.68)	0.58 (0.03 to 9.32)	-0.44 (-6.47 to 5.56)
MET + PIO		2.23 (0.45 to 13.13)	2.19 (0.47 to 12.69)	1.44 (-3.38 to 4.58)
MET + GLI	MET + GLM	0.36 (0.02 to 12.00)	0.37 (0.02 to 10.87)	-0.50 (-3.35 to 9.80)
MET + SAX		0.17 (0.01 to 0.96)	0.17 (0.01 to 0.96)	-0.82 (-3.79 to -0.02)
MET + ALO		0.32 (0.03 to 3.13)	0.32 (0.03 to 3.09)	-0.67 (-4.14 to 0.87)
MET + LIN		1.15 (0.19 to 7.68)	1.14 (0.19 to 7.02)	0.13 (-1.76 to 8.39)
MET + SIT		0.78 (0.07 to 7.67)	0.78 (0.07 to 7.36)	-0.19 (-3.03 to 4.82)
MET + VIL		0.72 (0.09 to 4.76)	0.72 (0.09 to 4.58)	-0.22 (-2.50 to 4.88)
$\mathrm{MET}+\mathrm{PIO}$		2.85 (0.51 to 14.92)	2.79 (0.52 to 14.32)	1.79 (-1.85 to 5.64)
MET + SAX	MET + GLI	0.43 (0.02 to 5.43)	0.43 (0.02 to 5.41)	-0.17 (-10.60 to 0.45)
MET + ALO		0.92 (0.02 to 32.32)	0.92 (0.02 to 32.14)	-0.02 (-11.05 to 1.24)
MET + LIN		3.24 (0.07 to 119.10)	3.19 (0.08 to 112.00)	0.59 (-9.29 to 9.94)
MET + SIT		2.18 (0.04 to 97.68)	2.16 (0.04 to 94.97)	0.31 (-10.10 to 5.66)
MET + VIL		1.96 (0.04 to 76.34)	1.95 (0.04 to 73.89)	0.23 (-9.84 to 6.03)
$\mathrm{MET}+\mathrm{PIO}$		7.73 (0.23 to 195.40)	7.51 (0.26 to 187.50)	2.27 (-8.28 to 6.13)
MET + ALO	MET + SAX	2.02 (0.12 to 39.29)	2.01 (0.12 to 38.92)	0.15 (-1.12 to 1.37)
MET + LIN		7.18 (0.59 to 151.20)	7.06 (0.59 to 140.70)	0.98 (-0.21 to 10.44)
MET + SIT		4.97 (0.24 to 109.10)	4.92 (0.24 to 105.30)	0.60 (-0.61 to 5.99)
MET + VIL		4.41 (0.31 to 96.31)	4.37 (0.31 to 93.63)	0.52 (-0.50 to 6.70)
$\mathrm{MET}+\mathrm{PIO}$		17.88 (1.70 to 218.50)	17.36 (1.68 to 210.20)	2.74 (0.70 to 6.45)
MET + LIN	MET + ALO	3.55 (0.21 to 60.20)	3.51 (0.21 to 55.06)	0.82 (-0.87 to 10.44)
MET + SIT		2.46 (0.14 to 47.02)	2.44 (0.14 to 44.20)	0.46 (-1.09 to 6.03)
MET + VIL		2.15 (0.09 to 45.45)	2.14 (0.10 to 42.27)	0.35 (-1.08 to 6.86)
$\mathrm{MET}+\mathrm{PIO}$		8.50 (1.59 to 57.53)	8.25 (1.58 to 54.69)	2.54 (0.59 to 6.24)
MET + SIT	MET + LIN	0.66 (0.04 to 12.26)	0.66 (0.04 to 11.90)	-0.32 (-9.31 to 4.58)
MET + VIL		0.59 (0.04 to 8.83)	0.59 (0.05 to 8.48)	-0.37 (-8.76 to 4.90)
$\mathrm{MET}+\mathrm{PIO}$		2.44 (0.22 to 29.44)	2.39 (0.23 to 28.08)	1.56 (-7.73 to 5.49)
MET + VIL	MET + SIT	0.94 (0.04 to 17.69)	0.94 (0.04 to 16.70)	-0.04 (-5.14 to 5.71)
MET + PIO		3.59 (0.32 to 41.88)	3.51 (0.33 to 39.90)	2.01 (-3.94 to 5.97)
$\mathrm{MET}+\mathrm{PIO}$	MET + VIL	4.07 (0.35 to 48.72)	3.97 (0.36 to 46.68)	2.01 (-4.07 to 5.87)
Random-effects model	Residual deviance	19.04 vs. 22 data points		
	Deviance information criteria	91.48		

$\mathrm{ALO}=$ alogliptin; $\mathrm{CrI}=$ credible interval; $\mathrm{GLC}=$ glicazide; $\mathrm{GLI}=$ glipizide; $\mathrm{GLM}=$ glimepiride; $\mathrm{LIN}=$ linagliptin; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $R D=$ risk difference; $R R=$ relative risk; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 22: Consistency Plot for Heart Failure (Individual-Drug Case Analysis)

Nocturnal Hypoglycemia

Table 39: Nocturnal Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + DUL	MET + SIT	1.49 (0.45 to 5.43)	1.47 (0.46 to 4.88)	1.37 (-1.87 to 10.04)
MET + IAS		1.96 (0.30 to 11.53)	1.91 (0.31 to 8.98)	2.66 (-2.31 to 21.25)
MET + IGA		5.90 (1.72 to 20.57)	5.14 (1.68 to 14.05)	12.34 (2.16 to 32.42)
MET + DSP		12.97 (1.66 to 118.00)	9.53 (1.63 to 29.45)	24.98 (2.00 to 74.22)
MET + IAS	MET + DUL	1.32 (0.13 to 11.32)	1.30 (0.15 to 8.92)	1.24 (-8.68 to 19.80)
MET + IGA		3.93 (0.66 to 23.15)	3.47 (0.69 to 16.17)	10.76 (-3.01 to 30.41)
MET + DSP		8.59 (0.74 to 112.80)	6.28 (0.77 to 31.96)	23.25 (-1.88 to 72.12)
MET + IGA	MET + IAS	3.00 (0.88 to 11.82)	2.67 (0.91 to 9.88)	8.93 (-1.27 to 21.39)
MET + DSP		6.52 (0.85 to 64.10)	4.71 (0.88 to 25.05)	21.05 (-1.07 to 65.79)
MET + DSP	MET + IGA	2.12 (0.45 to 13.68)	1.77 (0.50 to 4.87)	11.79 (-7.89 to 53.18)
Random-effects model	Residual deviance	8.187 vs. 8 data points		
	Deviance information criteria	49.407		

[^11]
Nonsevere Hypoglycemia

Table 40: Nonservere Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLC	MET	7.48 (1.97 to 32.64)	6.65 (1.93 to 20.67)	10.69 (1.75 to 36.20)
MET + GLM		5.58 (3.42 to 9.50)	5.13 (3.26 to 8.27)	7.82 (4.44 to 13.06)
MET + GLY		12.78 (4.30 to 38.85)	10.42 (4.03 to 23.28)	17.88 (5.91 to 40.33)
MET + GLI		10.49 (4.81 to 23.46)	8.87 (4.47 to 16.80)	14.96 (6.66 to 28.52)
MET + NAT		6.11 (2.03 to 20.30)	5.57 (1.99 to 15.01)	8.66 (1.89 to 26.11)
MET + SAX		0.78 (0.46 to 1.38)	0.78 (0.47 to 1.37)	-0.41 (-1.12 to 0.65)
MET + ALO		0.43 (0.12 to 1.43)	0.44 (0.13 to 1.42)	-1.06 (-1.83 to 0.77)
MET + LIN		0.58 (0.23 to 1.32)	0.59 (0.24 to 1.31)	-0.77 (-1.56 to 0.55)
MET + SIT		0.94 (0.59 to 1.59)	0.94 (0.59 to 1.57)	-0.11 (-0.86 to 0.98)
MET + VIL		0.90 (0.31 to 2.79)	0.91 (0.31 to 2.71)	-0.18 (-1.42 to 3.00)
MET + CAN		1.36 (0.61 to 3.03)	1.35 (0.61 to 2.92)	0.65 (-0.78 to 3.48)
MET + DAP		0.72 (0.29 to 1.75)	0.73 (0.29 to 1.72)	-0.51 (-1.45 to 1.30)
MET + EMP		0.84 (0.39 to 1.95)	0.84 (0.40 to 1.92)	-0.30 (-1.23 to 1.67)
MET + LIR		0.56 (0.24 to 1.42)	0.56 (0.24 to 1.41)	-0.82 (-1.59 to 0.74)
MET + EXE		1.42 (0.59 to 3.37)	1.41 (0.59 to 3.23)	0.78 (-0.80 to 4.12)
MET + DUL		0.92 (0.32 to 2.89)	0.92 (0.33 to 2.79)	-0.14 (-1.36 to 3.26)
MET + LIX		0.82 (0.39 to 1.72)	0.82 (0.40 to 1.70)	-0.33 (-1.21 to 1.28)
MET + ROS		1.33 (0.50 to 3.54)	1.33 (0.51 to 3.38)	0.61 (-0.99 to 4.32)
MET + PIO		0.40 (0.17 to 0.85)	0.40 (0.17 to 0.85)	-1.12 (-1.72 to -0.27)
MET + IND		3.54 (0.75 to 16.14)	3.38 (0.76 to 12.61)	4.48 (-0.46 to 21.64)
MET + IAS		13.76 (4.58 to 41.68)	11.06 (4.27 to 24.07)	19.12 (6.34 to 42.12)
MET + IGA		4.98 (2.12 to 11.20)	4.63 (2.07 to 9.45)	6.85 (2.07 to 15.54)
MET + DSP		10.49 (2.37 to 44.36)	8.87 (2.31 to 24.80)	14.94 (2.52 to 43.71)
MET + GLM	MET + GLC	0.75 (0.16 to 3.16)	0.78 (0.23 to 2.92)	-2.75 (-28.37 to 7.78)
MET + GLY		1.73 (0.34 to 7.65)	1.57 (0.42 to 5.66)	6.72 (-18.20 to 28.56)
MET + GLI		1.41 (0.27 to 6.58)	1.34 (0.36 to 5.30)	4.10 (-22.06 to 20.36)
MET + NAT		0.83 (0.28 to 2.32)	0.85 (0.35 to 2.13)	-1.71 (-19.42 to 8.70)
MET + SAX		0.10 (0.02 to 0.45)	0.12 (0.03 to 0.46)	-11.05 (-36.52 to -1.99)
MET + ALO		0.06 (0.01 to 0.34)	0.07 (0.01 to 0.35)	-11.61 (-37.02 to -2.53)
MET + LIN		0.08 (0.01 to 0.37)	0.09 (0.02 to 0.38)	-11.39 (-37.04 to -2.36)
MET + SIT		0.13 (0.03 to 0.52)	0.14 (0.04 to 0.53)	-10.73 (-36.27 to -1.75)
MET + VIL		0.12 (0.02 to 0.71)	0.14 (0.03 to 0.72)	-10.69 (-36.19 to -1.21)
MET + CAN		0.18 (0.03 to 0.83)	0.20 (0.05 to 0.84)	-9.87 (-35.45 to -0.67)
MET + DAP		0.10 (0.02 to 0.48)	0.11 (0.03 to 0.49)	-11.10 (-36.60 to -2.01)
MET + EMP		0.11 (0.02 to 0.55)	0.13 (0.03 to 0.56)	-10.89 (-36.50 to -1.68)
MET + LIR		0.07 (0.01 to 0.37)	0.08 (0.02 to 0.38)	-11.43 (-36.85 to -2.38)
MET + EXE		0.19 (0.04 to 0.89)	0.21 (0.05 to 0.89)	-9.73 (-35.26 to -0.44)
MET + DUL		0.12 (0.02 to 0.70)	0.14 (0.03 to 0.71)	-10.60 (-35.94 to -1.21)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + LIX		0.11 (0.02 to 0.50)	0.13 (0.03 to 0.51)	-10.94 (-36.44 to -1.87)
MET + ROS		0.18 (0.04 to 0.68)	0.20 (0.06 to 0.70)	-9.86 (-34.81 to -1.28)
MET + PIO		0.05 (0.01 to 0.24)	0.06 (0.01 to 0.25)	-11.75 (-37.30 to -2.79)
MET + IND		0.48 (0.06 to 3.42)	0.52 (0.08 to 2.96)	-5.62 (-31.08 to 12.31)
MET + IAS		1.87 (0.33 to 8.82)	1.67 (0.42 to 6.27)	8.03 (-18.23 to 31.21)
MET + IGA		0.67 (0.13 to 2.94)	0.70 (0.18 to 2.70)	-3.63 (-29.22 to 8.25)
MET + DSP		1.40 (0.19 to 9.39)	1.33 (0.24 to 6.32)	3.88 (-23.13 to 33.15)
MET + GLY	MET + GLM	2.29 (0.69 to 7.43)	2.03 (0.72 to 4.90)	10.00 (-3.32 to 32.51)
MET + GLI		1.89 (0.80 to 4.37)	1.73 (0.82 to 3.43)	7.05 (-2.15 to 20.55)
MET + NAT		1.10 (0.32 to 3.96)	1.09 (0.34 to 3.17)	0.82 (-8.01 to 18.48)
MET + SAX		0.14 (0.08 to 0.26)	0.15 (0.09 to 0.27)	-8.20 (-13.27 to -4.83)
MET + ALO		0.08 (0.02 to 0.27)	0.09 (0.02 to 0.28)	-8.78 (-14.11 to -5.08)
MET + LIN		0.11 (0.04 to 0.21)	0.12 (0.05 to 0.23)	-8.52 (-13.51 to -5.34)
MET + SIT		0.17 (0.09 to 0.30)	0.18 (0.11 to 0.32)	-7.89 (-13.05 to -4.50)
MET + VIL		0.16 (0.05 to 0.53)	0.18 (0.06 to 0.55)	-7.83 (-13.34 to -3.35)
MET + CAN		0.24 (0.10 to 0.60)	0.26 (0.11 to 0.62)	-7.04 (-12.50 to -2.80)
MET + DAP		0.13 (0.04 to 0.35)	0.14 (0.05 to 0.37)	-8.25 (-13.71 to -4.38)
MET + EMP		0.15 (0.07 to 0.33)	0.16 (0.08 to 0.35)	-8.02 (-12.87 to -4.68)
MET + LIR		0.10 (0.04 to 0.24)	0.11 (0.05 to 0.26)	-8.57 (-13.57 to -5.19)
MET + EXE		0.25 (0.10 to 0.65)	0.27 (0.11 to 0.67)	-6.92 (-12.38 to -2.54)
MET + DUL		0.17 (0.06 to 0.50)	0.18 (0.06 to 0.53)	-7.77 (-12.90 to -3.74)
MET + LIX		0.15 (0.06 to 0.34)	0.16 (0.07 to 0.36)	-8.08 (-13.39 to -4.38)
MET + ROS		0.24 (0.08 to 0.70)	0.26 (0.09 to 0.71)	-7.06 (-12.77 to -2.14)
$\mathrm{MET}+\mathrm{PIO}$		0.07 (0.03 to 0.17)	0.08 (0.03 to 0.18)	-8.90 (-14.14 to -5.51)
MET + IND		0.64 (0.13 to 2.98)	0.66 (0.14 to 2.54)	-3.19 (-10.67 to 13.76)
MET + IAS		2.49 (0.75 to 7.73)	2.17 (0.77 to 4.97)	11.22 (-2.68 to 34.03)
MET + IGA		0.90 (0.34 to 2.14)	0.91 (0.37 to 1.96)	-0.88 (-8.00 to 7.87)
MET + DSP		1.90 (0.40 to 8.02)	1.74 (0.43 to 4.97)	7.11 (-6.44 to 35.48)
MET + GLI	MET + GLY	0.83 (0.22 to 3.06)	0.86 (0.31 to 2.56)	-2.78 (-26.27 to 15.08)
MET + NAT		0.48 (0.11 to 2.19)	0.54 (0.16 to 1.92)	-8.68 (-31.02 to 10.65)
MET + SAX		0.06 (0.02 to 0.20)	0.08 (0.03 to 0.22)	-18.27 (-40.69 to -6.19)
MET + ALO		0.03 (0.01 to 0.16)	0.04 (0.01 to 0.18)	-18.80 (-41.23 to -6.76)
MET + LIN		0.05 (0.01 to 0.17)	0.06 (0.02 to 0.19)	-18.56 (-41.06 to -6.51)
MET + SIT		0.07 (0.02 to 0.23)	0.09 (0.04 to 0.25)	-17.95 (-40.23 to -6.01)
MET + VIL		0.07 (0.02 to 0.33)	0.09 (0.02 to 0.36)	-17.79 (-40.34 to -5.49)
MET + CAN		0.11 (0.03 to 0.39)	0.13 (0.04 to 0.41)	-17.05 (-39.46 to -4.90)
MET + DAP		0.06 (0.01 to 0.23)	0.07 (0.02 to 0.25)	-18.30 (-40.84 to -6.23)
MET + EMP		0.07 (0.02 to 0.26)	0.08 (0.03 to 0.28)	-18.08 (-40.52 to -5.85)
MET + LIR		0.04 (0.01 to 0.18)	0.05 (0.02 to 0.19)	-18.63 (-40.96 to -6.56)
MET + EXE		0.11 (0.03 to 0.39)	0.14 (0.05 to 0.42)	-16.90 (-39.00 to -5.02)
MET + DUL		0.07 (0.02 to 0.34)	0.09 (0.03 to 0.37)	-17.80 (-39.96 to -5.43)
MET + LIX		0.06 (0.02 to 0.23)	0.08 (0.03 to 0.25)	-18.08 (-40.53 to -6.11)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + ROS		0.11 (0.05 to 0.22)	0.13 (0.06 to 0.25)	-17.11 (-37.44 to -6.37)
MET + PIO		0.03 (0.01 to 0.11)	0.04 (0.01 to 0.12)	-18.96 (-41.45 to -6.97)
MET + IND		0.28 (0.05 to 1.54)	0.33 (0.07 to 1.43)	-12.58 (-34.62 to 5.50)
MET + IAS		1.09 (0.41 to 2.80)	1.07 (0.50 to 2.24)	1.24 (-14.92 to 17.66)
MET + IGA		0.39 (0.12 to 1.19)	0.44 (0.18 to 1.17)	-10.69 (-31.55 to 1.69)
MET + DSP		0.81 (0.16 to 4.33)	0.85 (0.21 to 3.05)	-2.88 (-26.40 to 26.41)
MET + NAT	MET + GLI	0.58 (0.15 to 2.48)	0.63 (0.19 to 2.10)	-6.03 (-21.46 to 13.00)
MET + SAX		0.07 (0.03 to 0.16)	0.09 (0.05 to 0.18)	-15.36 (-28.67 to -7.18)
MET + ALO		0.04 (0.01 to 0.11)	0.05 (0.02 to 0.13)	-15.94 (-28.83 to -8.02)
MET + LIN		0.06 (0.02 to 0.16)	0.07 (0.02 to 0.18)	-15.67 (-29.32 to -7.36)
MET + SIT		0.09 (0.04 to 0.19)	0.11 (0.06 to 0.21)	-15.04 (-28.27 to -6.92)
MET + VIL		0.09 (0.02 to 0.31)	0.10 (0.03 to 0.34)	-14.94 (-28.63 to -6.30)
MET + CAN		0.13 (0.04 to 0.36)	0.15 (0.06 to 0.39)	-14.15 (-27.67 to -5.64)
MET + DAP		0.07 (0.02 to 0.22)	0.08 (0.03 to 0.24)	-15.41 (-29.07 to -6.95)
MET + EMP		0.08 (0.03 to 0.24)	0.10 (0.04 to 0.27)	-15.18 (-28.73 to -6.69)
MET + LIR		0.05 (0.02 to 0.16)	0.06 (0.02 to 0.18)	-15.73 (-29.14 to -7.35)
MET + EXE		0.13 (0.04 to 0.40)	0.16 (0.06 to 0.44)	-14.00 (-27.55 to -5.44)
MET + DUL		0.09 (0.03 to 0.32)	0.10 (0.03 to 0.35)	-14.91 (-28.33 to -6.23)
MET + LIX		0.08 (0.03 to 0.22)	0.09 (0.04 to 0.25)	-15.21 (-28.71 to -6.81)
MET + ROS		0.13 (0.04 to 0.43)	0.15 (0.05 to 0.46)	-14.15 (-27.80 to -5.23)
MET + PIO		0.04 (0.01 to 0.11)	0.05 (0.02 to 0.12)	-16.06 (-29.69 to -7.74)
MET + IND		0.34 (0.06 to 1.72)	0.38 (0.08 to 1.57)	-9.94 (-24.44 to 7.38)
MET + IAS		1.31 (0.36 to 4.80)	1.24 (0.42 to 3.33)	3.99 (-14.19 to 27.81)
MET + IGA		0.47 (0.16 to 1.33)	0.52 (0.20 to 1.28)	-7.89 (-21.69 to 3.04)
MET + DSP		1.00 (0.20 to 4.81)	1.00 (0.24 to 3.24)	0.05 (-18.14 to 28.98)
MET + SAX	MET + NAT	0.13 (0.03 to 0.44)	0.14 (0.05 to 0.45)	-9.04 (-26.49 to -2.12)
MET + ALO		0.07 (0.01 to 0.35)	0.08 (0.02 to 0.36)	-9.59 (-26.99 to -2.63)
MET + LIN		0.09 (0.02 to 0.38)	0.11 (0.03 to 0.39)	-9.40 (-26.88 to -2.43)
MET + SIT		0.15 (0.04 to 0.51)	0.17 (0.06 to 0.52)	-8.73 (-26.20 to -1.83)
MET + VIL		0.15 (0.03 to 0.73)	0.16 (0.04 to 0.74)	-8.65 (-26.29 to -1.17)
MET + CAN		0.22 (0.05 to 0.85)	0.24 (0.07 to 0.86)	-7.89 (-25.43 to -0.62)
MET + DAP		0.12 (0.03 to 0.48)	0.13 (0.03 to 0.49)	-9.09 (-26.50 to -2.10)
MET + EMP		0.14 (0.03 to 0.56)	0.15 (0.04 to 0.57)	-8.86 (-26.21 to -1.72)
MET + LIR		0.09 (0.02 to 0.38)	0.10 (0.03 to 0.39)	-9.42 (-26.88 to -2.46)
MET + EXE		0.23 (0.05 to 0.92)	0.25 (0.07 to 0.92)	-7.74 (-25.38 to -0.36)
MET + DUL		0.15 (0.03 to 0.73)	0.17 (0.04 to 0.74)	-8.61 (-26.03 to -1.16)
MET + LIX		0.13 (0.03 to 0.50)	0.15 (0.04 to 0.51)	-8.93 (-26.49 to -1.95)
MET + ROS		0.22 (0.05 to 0.82)	0.24 (0.07 to 0.83)	-7.86 (-24.95 to -0.79)
MET + PIO		0.06 (0.01 to 0.24)	0.07 (0.02 to 0.25)	-9.74 (-27.24 to -2.92)
MET + IND		0.58 (0.08 to 3.60)	0.61 (0.10 to 3.09)	-3.85 (-21.90 to 13.53)
MET + IAS		2.26 (0.46 to 9.79)	1.98 (0.52 to 6.74)	9.88 (-10.71 to 33.41)
MET + IGA		0.81 (0.19 to 3.06)	0.83 (0.24 to 2.77)	-1.74 (-19.63 to 8.90)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + DSP		1.71 (0.27 to 10.02)	1.58 (0.31 to 6.55)	5.84 (-14.95 to 34.88)
MET + ALO	MET + SAX	0.55 (0.15 to 1.80)	0.56 (0.16 to 1.78)	-0.63 (-1.73 to 1.04)
MET + LIN		0.75 (0.26 to 1.82)	0.75 (0.27 to 1.80)	-0.36 (-1.56 to 0.97)
MET + SIT		1.21 (0.66 to 2.19)	1.20 (0.67 to 2.16)	0.30 (-0.72 to 1.33)
MET + VIL		1.16 (0.35 to 3.74)	1.16 (0.36 to 3.61)	0.23 (-1.30 to 3.33)
MET + CAN		1.73 (0.68 to 4.30)	1.72 (0.69 to 4.13)	1.04 (-0.63 to 3.85)
MET + DAP		0.92 (0.33 to 2.49)	0.92 (0.34 to 2.44)	-0.12 (-1.39 to 1.76)
MET + EMP		1.08 (0.43 to 2.71)	1.08 (0.44 to 2.66)	0.11 (-1.18 to 2.04)
MET + LIR		0.71 (0.29 to 1.91)	0.71 (0.29 to 1.89)	-0.41 (-1.51 to 1.11)
MET + EXE		1.82 (0.67 to 4.74)	1.80 (0.67 to 4.54)	1.17 (-0.64 to 4.53)
MET + DUL		1.18 (0.39 to 3.77)	1.18 (0.39 to 3.65)	0.26 (-1.17 to 3.58)
MET + LIX		1.06 (0.43 to 2.54)	1.06 (0.43 to 2.49)	0.08 (-1.20 to 1.78)
MET + ROS		1.71 (0.57 to 5.01)	1.69 (0.58 to 4.80)	1.00 (-0.84 to 4.71)
MET + PIO		0.51 (0.19 to 1.25)	0.52 (0.19 to 1.25)	-0.70 (-1.83 to 0.29)
MET + IND		4.53 (0.88 to 21.19)	4.30 (0.88 to 16.72)	4.87 (-0.21 to 21.97)
MET + IAS		17.71 (5.34 to 56.84)	14.10 (4.94 to 34.08)	19.50 (6.65 to 42.48)
MET + IGA		6.39 (2.37 to 15.56)	5.91 (2.31 to 13.27)	7.24 (2.36 to 15.89)
MET + DSP		13.54 (2.80 to 57.77)	11.37 (2.71 to 33.59)	15.33 (2.83 to 44.07)
MET + LIN	MET + ALO	1.37 (0.31 to 5.72)	1.36 (0.31 to 5.63)	0.28 (-1.61 to 1.70)
MET + SIT		2.19 (0.67 to 7.77)	2.16 (0.68 to 7.64)	0.93 (-0.78 to 2.08)
MET + VIL		2.13 (0.43 to 10.49)	2.11 (0.43 to 10.16)	0.86 (-1.21 to 3.98)
MET + CAN		3.16 (0.77 to 13.33)	3.10 (0.77 to 12.83)	1.66 (-0.48 to 4.54)
MET + DAP		1.66 (0.38 to 7.57)	1.65 (0.38 to 7.42)	0.51 (-1.40 to 2.47)
MET + EMP		1.95 (0.48 to 8.81)	1.94 (0.49 to 8.58)	0.74 (-1.17 to 2.76)
MET + LIR		1.29 (0.32 to 5.90)	1.28 (0.33 to 5.82)	0.22 (-1.51 to 1.80)
MET + EXE		3.27 (0.79 to 14.49)	3.21 (0.79 to 13.89)	1.76 (-0.40 to 5.19)
MET + DUL		2.15 (0.47 to 11.14)	2.13 (0.48 to 10.73)	0.87 (-1.06 to 4.22)
MET + LIX		1.90 (0.48 to 8.11)	1.89 (0.49 to 7.95)	0.70 (-1.16 to 2.46)
MET + ROS		3.09 (0.68 to 14.79)	3.04 (0.69 to 14.21)	1.61 (-0.62 to 5.34)
MET + PIO		0.92 (0.21 to 3.78)	0.92 (0.21 to 3.75)	-0.06 (-1.89 to 0.96)
MET + IND		8.22 (1.23 to 56.51)	7.70 (1.23 to 46.10)	5.47 (0.32 to 22.56)
MET + IAS		31.72 (6.63 to 163.60)	24.95 (5.88 to 107.50)	20.06 (7.13 to 43.06)
MET + IGA		11.52 (2.79 to 48.89)	10.54 (2.69 to 42.64)	7.82 (2.82 to 16.51)
MET + DSP		24.28 (3.81 to 155.60)	19.98 (3.61 to 98.18)	15.92 (3.41 to 44.75)
MET + SIT	MET + LIN	1.61 (0.67 to 4.47)	1.60 (0.68 to 4.40)	0.66 (-0.70 to 1.90)
MET + VIL		1.56 (0.41 to 6.57)	1.55 (0.42 to 6.37)	0.59 (-1.14 to 3.81)
MET + CAN		2.32 (0.77 to 7.88)	2.28 (0.78 to 7.56)	1.39 (-0.43 to 4.34)
MET + DAP		1.24 (0.37 to 4.37)	1.23 (0.37 to 4.28)	0.25 (-1.29 to 2.21)
MET + EMP		1.42 (0.53 to 4.57)	1.41 (0.54 to 4.48)	0.45 (-0.92 to 2.44)
MET + LIR		0.95 (0.33 to 3.32)	0.95 (0.34 to 3.27)	-0.06 (-1.37 to 1.53)
MET + EXE		2.43 (0.78 to 8.44)	2.39 (0.78 to 8.09)	1.50 (-0.41 to 4.96)
MET + DUL		1.58 (0.46 to 6.64)	1.56 (0.46 to 6.39)	0.60 (-1.01 to 4.06)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + LIX		1.41 (0.48 to 4.66)	1.40 (0.49 to 4.57)	0.43 (-1.08 to 2.23)
MET + ROS		2.29 (0.66 to 8.50)	2.26 (0.66 to 8.11)	1.37 (-0.64 to 5.11)
MET + PIO		0.68 (0.23 to 2.11)	0.69 (0.23 to 2.10)	-0.34 (-1.67 to 0.68)
MET + IND		6.07 (1.10 to 36.42)	5.72 (1.09 to 28.72)	5.22 (0.14 to 22.41)
MET + IAS		23.65 (6.36 to 96.90)	18.62 (5.78 to 60.75)	19.82 (7.03 to 42.93)
MET + IGA		8.56 (2.75 to 28.50)	7.87 (2.66 to 24.48)	7.57 (2.65 to 16.39)
MET + DSP		18.24 (3.52 to 96.56)	15.12 (3.38 to 57.40)	15.67 (3.19 to 44.58)
MET + VIL	MET + SIT	0.96 (0.32 to 2.92)	0.96 (0.32 to 2.83)	-0.07 (-1.54 to 2.97)
MET + CAN		1.43 (0.64 to 3.10)	1.42 (0.65 to 2.99)	0.74 (-0.75 to 3.39)
MET + DAP		0.76 (0.26 to 2.08)	0.76 (0.27 to 2.05)	-0.41 (-1.79 to 1.52)
MET + EMP		0.90 (0.37 to 2.18)	0.90 (0.37 to 2.14)	-0.18 (-1.50 to 1.76)
MET + LIR		0.59 (0.26 to 1.38)	0.59 (0.27 to 1.37)	-0.70 (-1.69 to 0.63)
MET + EXE		1.51 (0.62 to 3.45)	1.49 (0.63 to 3.32)	0.87 (-0.76 to 4.02)
MET + DUL		0.99 (0.35 to 2.75)	0.99 (0.36 to 2.66)	-0.03 (-1.34 to 3.06)
MET + LIX		0.87 (0.38 to 1.93)	0.87 (0.39 to 1.91)	-0.22 (-1.45 to 1.39)
MET + ROS		1.42 (0.50 to 3.97)	1.41 (0.50 to 3.80)	0.72 (-1.13 to 4.43)
MET + PIO		0.42 (0.16 to 0.97)	0.43 (0.16 to 0.97)	-1.00 (-2.14 to -0.05)
MET + IND		3.77 (0.82 to 16.37)	3.58 (0.82 to 12.88)	4.58 (-0.34 to 21.61)
MET + IAS		14.65 (4.76 to 42.99)	11.70 (4.43 to 25.74)	19.20 (6.48 to 41.94)
MET + IGA		5.30 (2.32 to 11.08)	4.92 (2.26 to 9.47)	6.96 (2.30 to 15.32)
MET + DSP		11.17 (2.56 to 44.40)	9.42 (2.48 to 25.54)	15.01 (2.68 to 43.69)
MET + CAN	MET + VIL	1.49 (0.40 to 5.38)	1.48 (0.41 to 5.20)	0.78 (-2.50 to 3.78)
MET + DAP		0.79 (0.19 to 3.21)	0.79 (0.19 to 3.15)	-0.34 (-3.59 to 1.81)
MET + EMP		0.92 (0.25 to 3.55)	0.92 (0.25 to 3.48)	-0.12 (-3.29 to 2.09)
MET + LIR		0.61 (0.16 to 2.39)	0.62 (0.17 to 2.36)	-0.63 (-3.72 to 1.15)
MET + EXE		1.55 (0.40 to 6.09)	1.54 (0.41 to 5.86)	0.89 (-2.48 to 4.43)
MET + DUL		1.02 (0.23 to 4.54)	1.02 (0.24 to 4.38)	0.03 (-3.16 to 3.46)
MET + LIX		0.90 (0.25 to 3.28)	0.90 (0.26 to 3.22)	-0.16 (-3.30 to 1.82)
MET + ROS		1.46 (0.33 to 6.61)	1.45 (0.34 to 6.31)	0.72 (-2.78 to 4.79)
MET + PIO		0.43 (0.11 to 1.51)	0.44 (0.12 to 1.51)	-0.93 (-4.04 to 0.40)
MET + IND		3.85 (0.60 to 24.94)	3.65 (0.61 to 20.09)	4.50 (-1.16 to 21.64)
MET + IAS		15.00 (3.39 to 72.74)	11.94 (3.11 to 45.80)	19.07 (6.04 to 42.19)
MET + IGA		5.45 (1.45 to 20.75)	5.04 (1.42 to 17.99)	6.86 (1.41 to 15.69)
MET + DSP		11.43 (1.91 to 68.53)	9.54 (1.85 to 41.43)	14.92 (2.27 to 43.66)
MET + DAP	MET + CAN	0.53 (0.16 to 1.77)	0.53 (0.16 to 1.75)	-1.15 (-4.11 to 1.13)
MET + EMP		0.62 (0.20 to 1.97)	0.63 (0.21 to 1.94)	-0.91 (-3.86 to 1.44)
MET + LIR		0.41 (0.14 to 1.29)	0.42 (0.14 to 1.29)	-1.43 (-4.24 to 0.44)
MET + EXE		1.05 (0.34 to 3.16)	1.04 (0.34 to 3.06)	0.11 (-3.00 to 3.58)
MET + DUL		0.68 (0.20 to 2.49)	0.69 (0.20 to 2.42)	-0.74 (-3.67 to 2.66)
MET + LIX		0.60 (0.21 to 1.78)	0.61 (0.22 to 1.76)	-0.97 (-3.84 to 1.14)
MET + ROS		0.98 (0.29 to 3.42)	0.98 (0.30 to 3.29)	-0.04 (-3.16 to 3.92)
$\mathrm{MET}+\mathrm{PIO}$		0.29 (0.09 to 0.86)	0.30 (0.10 to 0.86)	-1.75 (-4.61 to -0.19)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + IND		2.60 (0.49 to 13.86)	2.49 (0.50 to 11.02)	3.75 (-1.81 to 20.77)
MET + IAS		10.14 (2.77 to 37.63)	8.15 (2.59 to 23.61)	18.29 (5.41 to 41.30)
MET + IGA		3.68 (1.26 to 10.50)	3.43 (1.25 to 9.13)	6.10 (0.91 to 14.70)
MET + DSP		7.72 (1.56 to 38.41)	6.52 (1.53 to 22.97)	14.09 (1.61 to 42.84)
MET + EMP	MET + DAP	1.17 (0.36 to 4.11)	1.16 (0.37 to 4.03)	0.22 (-1.79 to 2.34)
MET + LIR		0.77 (0.23 to 2.84)	0.77 (0.24 to 2.80)	-0.30 (-2.20 to 1.42)
MET + EXE		1.98 (0.57 to 6.86)	1.95 (0.58 to 6.57)	1.25 (-1.09 to 4.79)
MET + DUL		1.28 (0.33 to 5.51)	1.28 (0.33 to 5.33)	0.36 (-1.77 to 3.86)
MET + LIX		1.14 (0.36 to 3.78)	1.14 (0.37 to 3.70)	0.18 (-1.83 to 2.06)
MET + ROS		1.85 (0.50 to 6.87)	1.83 (0.51 to 6.59)	1.10 (-1.29 to 4.83)
MET + PIO		0.55 (0.17 to 1.78)	0.55 (0.17 to 1.77)	-0.59 (-2.46 to 0.57)
MET + IND		4.93 (0.86 to 28.38)	4.66 (0.86 to 22.69)	4.93 (-0.26 to 22.17)
MET + IAS		19.24 (4.70 to 79.44)	15.20 (4.30 to 50.26)	19.52 (6.58 to 42.62)
MET + IGA		6.99 (2.07 to 22.90)	6.45 (2.02 to 19.77)	7.32 (2.24 to 16.01)
MET + DSP		14.72 (2.67 to 78.94)	12.30 (2.57 to 47.32)	15.33 (2.79 to 44.24)
MET + LIR	MET + EMP	0.66 (0.23 to 2.07)	0.66 (0.23 to 2.05)	-0.52 (-2.41 to 1.09)
MET + EXE		1.68 (0.52 to 5.21)	1.66 (0.53 to 5.01)	1.03 (-1.34 to 4.46)
MET + DUL		1.09 (0.31 to 4.13)	1.09 (0.31 to 4.01)	0.14 (-1.96 to 3.51)
MET + LIX		0.98 (0.32 to 2.80)	0.98 (0.33 to 2.75)	-0.03 (-2.12 to 1.76)
MET + ROS		1.59 (0.44 to 5.40)	1.57 (0.44 to 5.17)	0.88 (-1.63 to 4.62)
MET + PIO		0.47 (0.15 to 1.35)	0.48 (0.15 to 1.35)	-0.81 (-2.77 to 0.33)
MET + IND		4.23 (0.72 to 22.31)	4.01 (0.72 to 17.81)	4.72 (-0.63 to 21.78)
MET + IAS		16.52 (4.11 to 61.61)	13.08 (3.76 to 37.82)	19.30 (6.35 to 42.37)
MET + IGA		5.94 (1.84 to 17.35)	5.48 (1.80 to 14.98)	7.09 (1.94 to 15.73)
MET + DSP		12.54 (2.29 to 61.34)	10.48 (2.22 to 36.45)	15.14 (2.57 to 43.92)
MET + EXE	MET + LIR	2.56 (0.76 to 7.79)	2.52 (0.76 to 7.44)	1.56 (-0.45 to 4.86)
MET + DUL		1.67 (0.66 to 4.12)	1.66 (0.66 to 4.01)	0.66 (-0.49 to 3.42)
MET + LIX		1.48 (0.47 to 4.32)	1.47 (0.48 to 4.24)	0.48 (-1.16 to 2.17)
MET + ROS		2.40 (0.65 to 8.46)	2.36 (0.65 to 8.09)	1.40 (-0.71 to 5.12)
MET + PIO		0.71 (0.21 to 2.23)	0.71 (0.22 to 2.21)	-0.29 (-1.85 to 0.74)
MET + IND		6.40 (1.10 to 33.03)	6.03 (1.10 to 26.30)	5.28 (0.15 to 22.32)
MET + IAS		25.07 (6.20 to 89.25)	19.72 (5.60 to 57.71)	19.88 (6.96 to 42.83)
MET + IGA		9.00 (2.72 to 25.83)	8.25 (2.62 to 22.42)	7.63 (2.66 to 16.14)
MET + DSP		19.01 (3.46 to 91.31)	15.76 (3.31 to 54.78)	15.70 (3.21 to 44.42)
MET + DUL	MET + EXE	0.65 (0.18 to 2.57)	0.66 (0.19 to 2.51)	-0.86 (-4.25 to 2.63)
MET + LIX		0.58 (0.24 to 1.40)	0.59 (0.25 to 1.39)	-1.06 (-4.07 to 0.61)
MET + ROS		0.95 (0.28 to 3.15)	0.95 (0.29 to 3.05)	-0.12 (-3.71 to 3.62)
MET + PIO		0.28 (0.09 to 0.82)	0.29 (0.09 to 0.82)	-1.86 (-5.25 to -0.24)
MET + IND		2.49 (0.57 to 10.85)	2.39 (0.58 to 8.90)	3.61 (-1.41 to 19.94)
MET + IAS		9.75 (3.07 to 30.93)	7.82 (2.81 to 20.07)	18.13 (5.78 to 40.50)
MET + IGA		3.52 (1.62 to 7.44)	3.28 (1.58 to 6.69)	5.97 (1.88 to 13.22)
MET + DSP		7.42 (1.78 to 30.56)	6.26 (1.73 to 18.93)	13.98 (2.09 to 42.03)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + LIX	MET + DUL	0.89 (0.24 to 3.13)	0.89 (0.25 to 3.08)	-0.19 (-3.58 to 1.76)
MET + ROS		1.45 (0.33 to 5.67)	1.44 (0.34 to 5.46)	0.73 (-2.88 to 4.47)
MET + PIO		0.43 (0.11 to 1.54)	0.43 (0.11 to 1.54)	-0.96 (-4.37 to 0.43)
MET + IND		3.87 (0.60 to 22.09)	3.67 (0.61 to 18.10)	4.50 (-1.26 to 21.39)
MET + IAS		15.10 (3.29 to 62.66)	11.92 (3.01 to 41.04)	19.05 (5.91 to 41.69)
MET + IGA		5.38 (1.42 to 18.35)	4.97 (1.39 to 16.12)	6.82 (1.39 to 15.29)
MET + DSP		11.34 (1.90 to 61.49)	9.48 (1.84 to 38.17)	14.84 (2.22 to 43.37)
MET + ROS	MET + LIX	1.63 (0.50 to 5.46)	1.61 (0.50 to 5.22)	0.92 (-1.28 to 4.70)
MET + PIO		0.49 (0.16 to 1.33)	0.49 (0.16 to 1.33)	-0.77 (-2.46 to 0.31)
MET + IND		4.31 (0.86 to 21.33)	4.08 (0.86 to 16.91)	4.75 (-0.26 to 21.76)
MET + IAS		16.79 (4.88 to 57.73)	13.35 (4.48 to 35.67)	19.38 (6.62 to 42.17)
MET + IGA		6.10 (2.27 to 15.69)	5.63 (2.21 to 13.64)	7.12 (2.41 to 15.60)
MET + DSP		12.86 (2.74 to 59.03)	10.72 (2.63 to 34.60)	15.18 (2.85 to 43.96)
$\mathrm{MET}+\mathrm{PIO}$	MET + ROS	0.30 (0.08 to 1.00)	0.30 (0.09 to 1.00)	-1.71 (-5.44 to 0.00)
MET + IND		2.62 (0.49 to 14.87)	2.51 (0.50 to 12.03)	3.69 (-1.96 to 20.72)
MET + IAS		10.29 (3.47 to 31.27)	8.21 (3.12 to 20.99)	18.24 (6.12 to 40.05)
MET + IGA		3.69 (1.21 to 11.41)	3.45 (1.20 to 10.03)	6.01 (0.84 to 14.61)
MET + DSP		7.74 (1.56 to 40.77)	6.54 (1.53 to 25.05)	14.01 (1.72 to 42.85)
MET + IND	$\mathrm{MET}+\mathrm{PIO}$	8.98 (1.68 to 49.38)	8.45 (1.66 to 39.34)	5.58 (0.60 to 22.65)
MET + IAS		34.69 (9.61 to 137.20)	27.28 (8.63 to 86.03)	20.21 (7.42 to 43.19)
MET + IGA		12.43 (4.24 to 39.09)	11.39 (4.07 to 33.55)	7.94 (3.15 to 16.64)
MET + DSP		26.22 (5.43 to 137.00)	21.77 (5.18 to 80.81)	16.03 (3.67 to 44.94)
MET + IAS	MET + IND	3.93 (0.77 to 19.46)	3.25 (0.81 to 14.00)	13.66 (-3.27 to 35.47)
MET + IGA		1.41 (0.38 to 4.95)	1.37 (0.44 to 4.62)	2.19 (-11.59 to 8.99)
MET + DSP		2.99 (0.50 to 16.99)	2.59 (0.55 to 11.77)	9.65 (-7.04 to 36.58)
MET + IGA	MET + IAS	0.36 (0.13 to 0.93)	0.42 (0.20 to 0.94)	-11.91 (-31.84 to -0.57)
MET + DSP		0.76 (0.16 to 3.50)	0.80 (0.22 to 2.55)	-3.76 (-26.62 to 22.95)
MET + DSP	MET + IGA	2.10 (0.65 to 7.12)	1.91 (0.67 to 4.70)	7.79 (-2.89 to 33.11)
Random-effects model	Residual deviance	130.2 vs. 134 data points		
	Deviance information criteria	701.125		

ALO = alogliptin; CrI = credible interval; CAN = canagliflozin; DAP = dapagliflozin; DUL = dulaglutide; DSP = insulin degludec/insulin aspart mix; EMP = empagliflozin; EXE = exenatide; GLC = glicazide; GLI = glipizide; GLM = glimepiride; GLY = glyburide; IAS = insulin aspart; IGA = insulin glargine; IND = insulin degludec; LIN = linagliptin; LIR = liraglutide; LIX = lixisenatide; MET = metformin; NAT = nateglinide; OR = odds ratio; PIO = pioglitazone; RD = risk difference; ROS = rosiglitazone; $R R=$ relative risk; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 23: Consistency Plot for Nonsevere Hypoglycemia (Individual-Drug Case Analysis)

Serious Adverse Events

Table 41: Serious Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + GLC	MET	$1.61(0.75$ to 3.94$)$	$1.58(0.76$ to 3.66$)$	$1.57(-0.67$ to 7.15$)$
MET + GLM		$0.85(0.60$ to 1.25$)$	$0.85(0.61$ to 1.25$)$	$-0.40(-1.18$ to 0.62$)$
MET + GLI		$1.14(0.75$ to 1.75$)$	$1.13(0.75$ to 1.72$)$	$0.35(-0.72$ to 1.84$)$
MET + GLL		$1.00(0.50$ to 2.05$)$	$1.00(0.51$ to 2.00$)$	$0.00(-1.39$ to 2.62$)$
MET + NAT		$7.19(1.32$ to 50.71$)$	$6.16(1.31$ to 21.74$)$	$13.96(0.83$ to 55.77$)$
MET + SAX		$1.18(0.80$ to 1.73$)$	$1.17(0.80$ to 1.70$)$	$0.47(-0.59$ to 1.77$)$
MET + ALO		$1.36(0.82$ to 2.29$)$	$1.34(0.82$ to 2.22$)$	$0.92(-0.51$ to 3.16$)$
MET + LIN		$0.78(0.50$ to 1.42$)$	$0.79(0.50$ to 1.41$)$	$-0.57(-1.47$ to 1.04$)$
MET + SIT		$0.74(0.50$ to 1.13$)$	$0.74(0.51$ to 1.12$)$	$-0.69(-1.46$ to 0.31$)$
MET + VIL		$1.41(0.69$ to 3.24$)$	$1.39(0.70$ to 3.07$)$	$1.07(-0.88$ to 5.25$)$
MET + CAN		$0.92(0.56$ to 1.55$)$	$0.92(0.56$ to 1.53$)$	$-0.21(-1.24$ to 1.37$)$
MET + DAP		$1.06(0.69$ to 1.65$)$	$1.06(0.69$ to 1.62$)$	$0.17(-0.88$ to 1.61$)$
MET + EMP		$1.51(0.80$ to 2.86$)$	$1.49(0.81$ to 2.73$)$	$1.32(-0.55$ to 4.50$)$
MET + LIR				

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + EXE		0.81 (0.38 to 1.74)	0.82 (0.39 to 1.71)	-0.49 (-1.74 to 1.85)
MET + DUL		1.18 (0.61 to 2.41)	1.18 (0.62 to 2.32)	0.48 (-1.07 to 3.44)
MET + LIX		0.98 (0.61 to 1.62)	0.98 (0.62 to 1.60)	-0.04 (-1.08 to 1.55)
MET + ROS		0.90 (0.40 to 2.06)	0.90 (0.41 to 2.00)	-0.27 (-1.72 to 2.61)
MET + PIO		1.19 (0.87 to 1.77)	1.19 (0.87 to 1.74)	0.51 (-0.36 to 1.92)
MET + IAS		1.23 (0.23 to 6.97)	1.23 (0.23 to 6.05)	0.60 (-2.15 to 13.15)
MET + IGA		1.55 (0.61 to 3.82)	1.52 (0.61 to 3.56)	1.42 (-1.08 to 6.86)
MET + GLM	MET + GLC	0.53 (0.22 to 1.21)	0.54 (0.23 to 1.20)	-1.96 (-7.43 to 0.43)
MET + GLI		0.70 (0.27 to 1.66)	0.71 (0.29 to 1.63)	-1.22 (-6.73 to 1.42)
MET + GLL		0.62 (0.21 to 1.65)	0.63 (0.22 to 1.62)	-1.55 (-7.13 to 1.63)
MET + NAT		4.47 (0.97 to 25.66)	3.83 (0.97 to 12.62)	12.07 (-0.11 to 51.57)
MET + SAX		0.73 (0.29 to 1.70)	0.73 (0.31 to 1.67)	-1.13 (-6.66 to 1.49)
MET + ALO		0.84 (0.31 to 2.09)	0.84 (0.33 to 2.03)	-0.65 (-6.28 to 2.43)
MET + LIN		0.49 (0.19 to 1.23)	0.50 (0.21 to 1.23)	-2.11 (-7.53 to 0.52)
MET + SIT		0.58 (0.23 to 1.31)	0.59 (0.25 to 1.30)	-1.75 (-7.31 to 0.65)
MET + VIL		0.46 (0.18 to 1.04)	0.47 (0.20 to 1.04)	-2.26 (-7.75 to 0.08)
MET + CAN		0.88 (0.29 to 2.59)	0.89 (0.31 to 2.49)	-0.46 (-6.09 to 3.98)
MET + DAP		0.57 (0.21 to 1.43)	0.58 (0.22 to 1.42)	-1.77 (-7.42 to 0.98)
MET + EMP		0.66 (0.25 to 1.59)	0.67 (0.27 to 1.57)	-1.41 (-6.96 to 1.28)
MET + LIR		0.93 (0.32 to 2.50)	0.93 (0.34 to 2.41)	-0.29 (-5.95 to 3.63)
MET + EXE		0.51 (0.17 to 1.41)	0.52 (0.18 to 1.40)	-1.99 (-7.45 to 1.00)
MET + DUL		0.74 (0.24 to 1.95)	0.75 (0.25 to 1.90)	-1.05 (-6.86 to 2.33)
MET + LIX		0.61 (0.23 to 1.52)	0.62 (0.24 to 1.50)	-1.60 (-7.25 to 1.15)
MET + ROS		0.55 (0.17 to 1.67)	0.56 (0.18 to 1.64)	-1.80 (-7.62 to 1.76)
MET + PIO		0.74 (0.35 to 1.51)	0.75 (0.37 to 1.49)	-1.05 (-6.06 to 1.11)
MET + IAS		0.76 (0.12 to 5.05)	0.77 (0.13 to 4.45)	-0.92 (-6.93 to 11.42)
MET + IGA		0.94 (0.28 to 3.15)	0.94 (0.30 to 2.97)	-0.25 (-5.94 to 5.68)
MET + GLI	MET + GLM	1.33 (0.81 to 2.12)	1.32 (0.82 to 2.08)	0.74 (-0.51 to 2.23)
MET + GLL		1.18 (0.60 to 2.26)	1.17 (0.60 to 2.19)	0.39 (-1.01 to 2.78)
MET + NAT		8.44 (1.48 to 60.82)	7.19 (1.47 to 26.35)	14.28 (1.12 to 56.14)
MET + SAX		1.39 (0.91 to 2.06)	1.38 (0.91 to 2.02)	0.86 (-0.24 to 2.05)
MET + ALO		1.59 (0.87 to 2.80)	1.57 (0.88 to 2.70)	1.30 (-0.34 to 3.52)
MET + LIN		0.92 (0.65 to 1.45)	0.92 (0.66 to 1.44)	-0.17 (-0.88 to 1.01)
MET + SIT		1.09 (0.70 to 1.64)	1.09 (0.71 to 1.62)	0.21 (-0.86 to 1.23)
MET + VIL		0.87 (0.61 to 1.19)	0.88 (0.62 to 1.19)	-0.29 (-1.06 to 0.41)
MET + CAN		1.66 (0.75 to 3.93)	1.64 (0.75 to 3.71)	1.46 (-0.68 to 5.65)
MET + DAP		1.08 (0.59 to 1.97)	1.07 (0.59 to 1.94)	0.17 (-1.16 to 1.89)
MET + EMP		1.26 (0.83 to 1.79)	1.25 (0.83 to 1.76)	0.57 (-0.45 to 1.72)
MET + LIR		1.77 (0.90 to 3.45)	1.74 (0.90 to 3.29)	1.71 (-0.25 to 4.80)
MET + EXE		0.95 (0.44 to 2.12)	0.95 (0.45 to 2.07)	-0.11 (-1.50 to 2.28)
MET + DUL		1.40 (0.66 to 2.88)	1.38 (0.67 to 2.78)	0.87 (-0.88 to 3.80)
MET + LIX		1.16 (0.64 to 2.03)	1.15 (0.65 to 1.99)	0.36 (-1.01 to 2.01)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + ROS		1.05 (0.45 to 2.56)	1.05 (0.46 to 2.47)	0.12 (-1.50 to 3.06)
MET + PIO		1.41 (0.92 to 2.14)	1.40 (0.93 to 2.09)	0.91 (-0.21 to 2.26)
MET + IAS		1.46 (0.26 to 7.92)	1.44 (0.27 to 6.84)	1.02 (-1.90 to 13.42)
MET + IGA		1.82 (0.66 to 4.51)	1.79 (0.67 to 4.19)	1.82 (-0.86 to 7.12)
MET + GLL	MET + GLI	0.88 (0.40 to 1.93)	0.88 (0.41 to 1.88)	-0.36 (-2.26 to 2.35)
MET + NAT		6.31 (1.11 to 44.33)	5.41 (1.10 to 19.96)	13.56 (0.32 to 55.26)
MET + SAX		1.03 (0.70 to 1.58)	1.03 (0.71 to 1.55)	0.10 (-1.16 to 1.36)
MET + ALO		1.20 (0.79 to 1.78)	1.19 (0.80 to 1.74)	0.57 (-0.69 to 2.24)
MET + LIN		0.69 (0.40 to 1.33)	0.70 (0.41 to 1.32)	-0.90 (-2.45 to 0.80)
MET + SIT		0.82 (0.55 to 1.21)	0.83 (0.56 to 1.20)	-0.52 (-1.81 to 0.48)
MET + VIL		0.66 (0.38 to 1.11)	0.66 (0.39 to 1.11)	-1.02 (-2.55 to 0.26)
MET + CAN		1.25 (0.56 to 2.95)	1.24 (0.57 to 2.81)	0.71 (-1.64 to 4.88)
MET + DAP		0.81 (0.42 to 1.57)	0.82 (0.43 to 1.55)	-0.55 (-2.35 to 1.34)
MET + EMP		0.94 (0.53 to 1.65)	0.94 (0.54 to 1.63)	-0.19 (-1.91 to 1.51)
MET + LIR		1.33 (0.66 to 2.63)	1.32 (0.67 to 2.53)	0.97 (-1.24 to 4.07)
MET + EXE		0.72 (0.31 to 1.64)	0.72 (0.32 to 1.61)	-0.84 (-2.63 to 1.62)
MET + DUL		1.04 (0.51 to 2.18)	1.04 (0.52 to 2.12)	0.12 (-1.80 to 3.02)
MET + LIX		0.87 (0.48 to 1.60)	0.87 (0.49 to 1.58)	-0.39 (-2.08 to 1.42)
MET + ROS		0.79 (0.34 to 1.95)	0.79 (0.35 to 1.90)	-0.62 (-2.57 to 2.38)
MET + PIO		1.06 (0.65 to 1.79)	1.06 (0.66 to 1.76)	0.17 (-1.39 to 1.83)
MET + IAS		1.07 (0.20 to 6.12)	1.07 (0.21 to 5.35)	0.21 (-2.76 to 12.69)
MET + IGA		1.35 (0.53 to 3.51)	1.34 (0.54 to 3.28)	1.03 (-1.60 to 6.39)
MET + NAT	MET + GLL	7.24 (1.18 to 58.41)	6.15 (1.17 to 26.15)	13.80 (0.56 to 55.62)
MET + SAX		1.18 (0.56 to 2.49)	1.17 (0.57 to 2.43)	0.46 (-2.14 to 2.25)
MET + ALO		1.36 (0.58 to 3.12)	1.35 (0.59 to 3.02)	0.91 (-1.96 to 3.47)
MET + LIN		0.78 (0.38 to 1.78)	0.79 (0.40 to 1.76)	-0.56 (-2.99 to 1.28)
MET + SIT		0.93 (0.44 to 1.94)	0.94 (0.46 to 1.91)	-0.17 (-2.79 to 1.38)
MET + VIL		0.74 (0.41 to 1.30)	0.75 (0.43 to 1.30)	-0.67 (-2.89 to 0.47)
MET + CAN		1.42 (0.52 to 4.07)	1.40 (0.53 to 3.86)	1.06 (-2.13 to 5.40)
MET + DAP		0.92 (0.39 to 2.16)	0.92 (0.40 to 2.12)	-0.22 (-2.93 to 1.89)
MET + EMP		1.07 (0.49 to 2.23)	1.06 (0.51 to 2.19)	0.17 (-2.43 to 1.97)
MET + LIR		1.52 (0.60 to 3.65)	1.50 (0.61 to 3.50)	1.32 (-1.79 to 4.59)
MET + EXE		0.82 (0.30 to 2.21)	0.82 (0.31 to 2.16)	-0.48 (-3.23 to 2.13)
MET + DUL		1.19 (0.46 to 3.00)	1.19 (0.47 to 2.89)	0.50 (-2.49 to 3.62)
MET + LIX		0.99 (0.42 to 2.27)	0.99 (0.43 to 2.23)	-0.03 (-2.79 to 2.03)
MET + ROS		0.89 (0.31 to 2.66)	0.90 (0.32 to 2.59)	-0.27 (-3.20 to 2.90)
MET + PIO		1.20 (0.59 to 2.52)	1.20 (0.60 to 2.46)	0.52 (-2.00 to 2.33)
MET + IAS		1.24 (0.21 to 7.47)	1.23 (0.22 to 6.49)	0.59 (-3.07 to 13.06)
MET + IGA		1.55 (0.49 to 4.53)	1.52 (0.50 to 4.25)	1.38 (-2.12 to 6.72)
MET + SAX	MET + NAT	0.16 (0.02 to 0.90)	0.19 (0.05 to 0.91)	-13.46 (-55.33 to -0.33)
MET + ALO		0.19 (0.03 to 1.13)	0.22 (0.06 to 1.12)	-12.93 (-54.66 to 0.45)
MET + LIN		0.11 (0.01 to 0.65)	0.13 (0.03 to 0.66)	-14.46 (-56.20 to -1.24)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SIT		0.13 (0.02 to 0.71)	0.15 (0.04 to 0.71)	-14.08 (-55.92 to -1.03)
MET + VIL		0.10 (0.01 to 0.57)	0.12 (0.03 to 0.58)	-14.56 (-56.41 to -1.48)
MET + CAN		0.20 (0.03 to 1.33)	0.23 (0.05 to 1.31)	-12.64 (-54.07 to 1.17)
MET + DAP		0.13 (0.02 to 0.77)	0.15 (0.04 to 0.78)	-14.13 (-56.16 to -0.80)
MET + EMP		0.15 (0.02 to 0.88)	0.17 (0.05 to 0.88)	-13.73 (-55.45 to -0.43)
MET + LIR		0.21 (0.03 to 1.24)	0.24 (0.06 to 1.23)	-12.45 (-54.12 to 0.89)
MET + EXE		0.11 (0.01 to 0.67)	0.13 (0.03 to 0.68)	-14.33 (-55.70 to -1.14)
MET + DUL		0.17 (0.02 to 0.99)	0.20 (0.04 to 0.99)	-13.28 (-55.16 to -0.02)
MET + LIX		0.14 (0.02 to 0.80)	0.16 (0.04 to 0.80)	-13.89 (-55.63 to -0.70)
MET + ROS		0.12 (0.02 to 0.82)	0.14 (0.03 to 0.83)	-14.14 (-55.75 to -0.66)
MET + PIO		0.17 (0.02 to 0.88)	0.19 (0.06 to 0.88)	-13.36 (-55.03 to -0.43)
MET + IAS		0.17 (0.01 to 1.80)	0.20 (0.03 to 1.71)	-12.51 (-53.50 to 4.09)
MET + IGA		0.21 (0.03 to 1.46)	0.24 (0.06 to 1.43)	-12.25 (-53.92 to 1.78)
MET + ALO	MET + SAX	1.15 (0.67 to 1.93)	1.15 (0.68 to 1.88)	0.45 (-1.21 to 2.53)
MET + LIN		0.67 (0.41 to 1.20)	0.67 (0.42 to 1.19)	-1.02 (-2.32 to 0.53)
MET + SIT		0.80 (0.51 to 1.20)	0.80 (0.52 to 1.20)	-0.62 (-1.98 to 0.50)
MET + VIL		0.63 (0.39 to 1.01)	0.64 (0.40 to 1.01)	-1.15 (-2.45 to 0.02)
MET + CAN		1.20 (0.54 to 2.87)	1.19 (0.55 to 2.73)	0.60 (-1.71 to 4.80)
MET + DAP		0.78 (0.42 to 1.46)	0.78 (0.43 to 1.45)	-0.68 (-2.29 to 1.18)
MET + EMP		0.90 (0.53 to 1.51)	0.90 (0.54 to 1.49)	-0.30 (-1.81 to 1.31)
MET + LIR		1.29 (0.65 to 2.51)	1.28 (0.66 to 2.40)	0.86 (-1.33 to 3.98)
MET + EXE		0.69 (0.30 to 1.56)	0.70 (0.31 to 1.54)	-0.94 (-2.71 to 1.51)
MET + DUL		1.00 (0.49 to 2.10)	1.00 (0.49 to 2.03)	0.01 (-1.-1.91 to 2.99)
MET + LIX		0.84 (0.46 to 1.53)	0.84 (0.47 to 1.51)	-0.50 (-2.12 to 1.33)
MET + ROS		0.76 (0.33 to 1.85)	0.77 (0.34 to 1.81)	-0.73 (-2.58 to 2.26)
MET + PIO		1.02 (0.64 to 1.66)	1.02 (0.65 to 1.64)	0.05 (-1.-1.43 to 1.65)
MET + IAS		1.04 (0.19 to 5.89)	1.04 (0.20 to 5.13)	0.13 (-2.90 to 12.64)
MET + IGA		1.31 (0.49 to 3.34)	1.30 (0.50 to 3.12)	0.95 (-1.-1.81 to 6.34)
MET + LIN	MET + ALO	0.58 (0.31 to 1.23)	0.59 (0.32 to 1.22)	-1.-1.47 (-3.76 to 0.59)
MET + SIT		0.69 (0.41 to 1.14)	0.70 (0.42 to 1.13)	-1.09 (-3.23 to 0.33)
MET + VIL		0.55 (0.30 to 1.00)	0.56 (0.31 to 1.00)	-1.60 (-3.86 to 0.00)
MET + CAN		1.04 (0.43 to 2.70)	1.04 (0.44 to 2.57)	0.15 (-2.84 to 4.54)
MET + DAP		0.68 (0.33 to 1.40)	0.69 (0.34 to 1.38)	-1.11 (-3.61 to 1.02)
MET + EMP		0.79 (0.41 to 1.50)	0.79 (0.42 to 1.48)	-0.74 (-3.12 to 1.22)
MET + LIR		1.12 (0.51 to 2.36)	1.11 (0.53 to 2.27)	0.41 (-2.42 to 3.68)
MET + EXE		0.59 (0.25 to 1.48)	0.60 (0.26 to 1.46)	-1.41 (-3.86 to 1.31)
MET + DUL		0.87 (0.40 to 1.91)	0.88 (0.41 to 1.86)	-0.43 (-2.99 to 2.56)
MET + LIX		0.73 (0.37 to 1.43)	0.73 (0.38 to 1.42)	-0.96 (-3.34 to 1.10)
MET + ROS		0.66 (0.27 to 1.66)	0.67 (0.28 to 1.63)	-1.15 (-3.86 to 1.87)
MET + PIO		0.89 (0.50 to 1.60)	0.89 (0.52 to 1.57)	-0.40 (-2.65 to 1.48)
MET + IAS		0.90 (0.17 to 5.22)	0.91 (0.17 to 4.56)	-0.33 (-3.71 to 12.14)
MET + IGA		1.12 (0.42 to 3.09)	1.11 (0.44 to 2.91)	0.40 (-2.63 to 5.92)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SIT	MET + LIN	1.19 (0.63 to 1.96)	1.19 (0.64 to 1.93)	0.39 (-1.23 to 1.49)
MET + VIL		0.95 (0.52 to 1.47)	0.95 (0.53 to 1.45)	-0.10 (-1.57 to 0.77)
MET + CAN		1.81 (0.72 to 4.62)	1.78 (0.73 to 4.35)	1.63 (-0.83 to 5.87)
MET + DAP		1.17 (0.54 to 2.31)	1.16 (0.55 to 2.26)	0.35 (-1.48 to 2.13)
MET + EMP		1.36 (0.71 to 2.22)	1.35 (0.71 to 2.17)	0.74 (-0.90 to 2.08)
MET + LIR		1.91 (0.88 to 3.95)	1.87 (0.88 to 3.76)	1.85 (-0.34 to 4.94)
MET + EXE		1.02 (0.43 to 2.42)	1.02 (0.44 to 2.35)	0.04 (-1.74 to 2.50)
MET + DUL		1.51 (0.63 to 3.23)	1.49 (0.64 to 3.11)	1.04 (-1.10 to 3.97)
MET + LIX		1.25 (0.61 to 2.33)	1.24 (0.62 to 2.28)	0.52 (-1.25 to 2.21)
MET + ROS		1.13 (0.43 to 2.91)	1.12 (0.44 to 2.81)	0.26 (-1.77 to 3.26)
MET + PIO		1.52 (0.85 to 2.56)	1.51 (0.86 to 2.50)	1.07 (-0.46 to 2.50)
MET + IAS		1.55 (0.26 to 8.67)	1.54 (0.27 to 7.53)	1.14 (-2.01 to 13.66)
MET + IGA		1.96 (0.65 to 5.17)	1.92 (0.66 to 4.80)	1.96 (-0.95 to 7.37)
MET + VIL	MET + SIT	0.79 (0.50 to 1.30)	0.80 (0.50 to 1.29)	-0.51 (-1.57 to 0.60)
MET + CAN		1.53 (0.73 to 3.31)	1.51 (0.73 to 3.13)	1.26 (-0.75 to 5.23)
MET + DAP		0.99 (0.53 to 1.85)	0.99 (0.54 to 1.81)	-0.03 (-1.43 to 1.75)
MET + EMP		1.14 (0.69 to 1.89)	1.13 (0.70 to 1.85)	0.33 (-0.92 to 1.87)
MET + LIR		1.62 (0.89 to 2.95)	1.59 (0.89 to 2.81)	1.48 (-0.30 to 4.49)
MET + EXE		0.87 (0.40 to 1.88)	0.88 (0.41 to 1.84)	-0.31 (-1.69 to 2.00)
MET + DUL		1.27 (0.66 to 2.46)	1.27 (0.67 to 2.37)	0.67 (-0.89 to 3.41)
MET + LIX		1.06 (0.62 to 1.82)	1.05 (0.63 to 1.79)	0.13 (-1.12 to 1.76)
MET + ROS		0.96 (0.43 to 2.29)	0.96 (0.44 to 2.23)	-0.10 (-1.64 to 2.82)
MET + PIO		1.29 (0.84 to 2.06)	1.28 (0.84 to 2.01)	0.69 (-0.48 to 2.21)
MET + IAS		1.32 (0.25 to 6.95)	1.30 (0.26 to 6.00)	0.77 (-2.00 to 13.10)
MET + IGA		1.65 (0.68 to 3.89)	1.63 (0.69 to 3.63)	1.58 (-0.79 to 6.78)
MET + CAN	MET + VIL	1.92 (0.84 to 4.58)	1.88 (0.85 to 4.32)	1.77 (-0.38 to 5.94)
MET + DAP		1.24 (0.66 to 2.35)	1.23 (0.66 to 2.30)	0.46 (-0.87 to 2.18)
MET + EMP		1.44 (0.88 to 2.30)	1.43 (0.88 to 2.25)	0.85 (-0.30 to 2.21)
MET + LIR		2.05 (1.00 to 4.10)	2.00 (1.00 to 3.90)	2.01 (-0.01 to 5.11)
MET + EXE		1.10 (0.49 to 2.49)	1.10 (0.49 to 2.43)	0.20 (-1.24 to 2.56)
MET + DUL		1.61 (0.75 to 3.43)	1.59 (0.75 to 3.28)	1.17 (-0.61 to 4.12)
MET + LIX		1.33 (0.72 to 2.47)	1.32 (0.72 to 2.42)	0.64 (-0.71 to 2.36)
MET + ROS		1.20 (0.51 to 3.04)	1.20 (0.52 to 2.94)	0.39 (-1.19 to 3.35)
MET + PIO		1.63 (1.04 to 2.54)	1.61 (1.03 to 2.48)	1.21 (0.08 to 2.54)
MET + IAS		1.68 (0.30 to 9.30)	1.65 (0.30 to 7.97)	1.29 (-1.60 to 13.72)
MET + IGA		2.11 (0.76 to 5.26)	2.06 (0.77 to 4.88)	2.12 (-0.54 to 7.44)
MET + DAP	MET + CAN	0.65 (0.25 to 1.62)	0.66 (0.27 to 1.60)	-1.27 (-5.54 to 1.32)
MET + EMP		0.75 (0.31 to 1.74)	0.76 (0.32 to 1.71)	-0.91 (-5.13 to 1.54)
MET + LIR		1.07 (0.39 to 2.61)	1.07 (0.40 to 2.51)	0.26 (-4.24 to 3.85)
MET + EXE		0.57 (0.20 to 1.55)	0.58 (0.21 to 1.53)	-1.56 (-5.59 to 1.27)
MET + DUL		0.84 (0.30 to 2.15)	0.85 (0.31 to 2.10)	-0.56 (-4.88 to 2.81)
MET + LIX		0.69 (0.28 to 1.61)	0.70 (0.30 to 1.59)	-1.11 (-5.24 to 1.32)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + ROS		0.63 (0.21 to 1.92)	0.64 (0.22 to 1.88)	-1.32 (-5.72 to 2.09)
MET + PIO		0.85 (0.37 to 1.90)	0.86 (0.39 to 1.87)	-0.54 (-4.63 to 1.85)
MET + IAS		0.85 (0.15 to 5.14)	0.85 (0.15 to 4.55)	-0.52 (-5.06 to 11.69)
MET + IGA		1.07 (0.35 to 3.34)	1.07 (0.36 to 3.15)	0.25 (-4.11 to 6.03)
MET + EMP	MET + DAP	1.16 (0.59 to 2.22)	1.15 (0.59 to 2.17)	0.37 (-1.49 to 2.12)
MET + LIR		1.65 (0.70 to 3.70)	1.62 (0.70 to 3.53)	1.52 (-1.06 to 4.84)
MET + EXE		0.88 (0.34 to 2.18)	0.89 (0.35 to 2.14)	-0.28 (-2.32 to 2.24)
MET + DUL		1.29 (0.56 to 3.14)	1.28 (0.57 to 3.01)	0.69 (-1.53 to 3.87)
MET + LIX		1.07 (0.54 to 2.19)	1.06 (0.55 to 2.14)	0.16 (-1.66 to 2.07)
MET + ROS		0.97 (0.38 to 2.66)	0.97 (0.39 to 2.58)	-0.07 (-2.16 to 3.04)
$\mathrm{MET}+\mathrm{PIO}$		1.31 (0.71 to 2.43)	1.30 (0.72 to 2.37)	0.72 (-1.08 to 2.43)
MET + IAS		1.34 (0.22 to 8.36)	1.32 (0.23 to 7.20)	0.80 (-2.52 to 13.53)
MET + IGA		1.69 (0.58 to 4.68)	1.66 (0.58 to 4.35)	1.62 (-1.36 to 7.12)
MET + LIR	MET + EMP	1.41 (0.70 to 2.97)	1.39 (0.70 to 2.84)	1.12 (-1.08 to 4.39)
MET + EXE		0.76 (0.33 to 1.83)	0.76 (0.34 to 1.79)	-0.68 (-2.46 to 1.91)
MET + DUL		1.12 (0.53 to 2.46)	1.11 (0.54 to 2.38)	0.32 (-1.71 to 3.34)
MET + LIX		0.92 (0.49 to 1.77)	0.92 (0.50 to 1.74)	-0.22 (-1.97 to 1.68)
MET + ROS		0.84 (0.34 to 2.16)	0.85 (0.35 to 2.10)	-0.43 (-2.49 to 2.61)
MET + PIO		1.13 (0.68 to 1.94)	1.12 (0.69 to 1.91)	0.35 (-1.24 to 1.98)
MET + IAS		1.17 (0.20 to 6.53)	1.17 (0.21 to 5.67)	0.48 (-2.73 to 12.92)
MET + IGA		1.47 (0.53 to 3.77)	1.45 (0.54 to 3.52)	1.26 (-1.61 to 6.58)
MET + EXE	MET + LIR	0.54 (0.21 to 1.40)	0.55 (0.22 to 1.38)	-1.77 (-4.97 to 1.06)
MET + DUL		0.79 (0.38 to 1.60)	0.80 (0.39 to 1.57)	-0.79 (-3.74 to 1.80)
MET + LIX		0.64 (0.35 to 1.28)	0.65 (0.36 to 1.27)	-1.37 (-4.24 to 0.73)
MET + ROS		0.60 (0.22 to 1.50)	0.61 (0.23 to 1.48)	-1.50 (-4.99 to 1.50)
$\mathrm{MET}+\mathrm{PIO}$		0.79 (0.39 to 1.63)	0.80 (0.41 to 1.61)	-0.80 (-4.07 to 1.50)
MET + IAS		0.81 (0.13 to 4.84)	0.82 (0.14 to 4.29)	-0.69 (-5.04 to 11.64)
MET + IGA		1.02 (0.34 to 3.00)	1.02 (0.36 to 2.83)	0.07 (-3.75 to 5.69)
MET + DUL	MET + EXE	1.46 (0.55 to 3.95)	1.45 (0.56 to 3.81)	0.96 (-1.75 to 4.08)
MET + LIX		1.21 (0.56 to 2.55)	1.21 (0.57 to 2.50)	0.45 (-1.75 to 2.03)
MET + ROS		1.11 (0.36 to 3.47)	1.11 (0.36 to 3.36)	0.23 (-2.55 to 3.33)
MET + PIO		1.47 (0.70 to 3.22)	1.46 (0.71 to 3.14)	0.99 (-1.24 to 2.70)
MET + IAS		1.52 (0.27 to 8.55)	1.50 (0.27 to 7.54)	1.07 (-2.36 to 13.27)
MET + IGA		1.89 (0.64 to 5.61)	1.85 (0.64 to 5.26)	1.82 (-1.10 to 7.27)
MET + LIX	MET + DUL	0.82 (0.39 to 1.83)	0.83 (0.40 to 1.80)	-0.55 (-3.44 to 1.57)
MET + ROS		0.76 (0.28 to 2.06)	0.76 (0.29 to 2.02)	-0.72 (-3.79 to 2.26)
MET + PIO		1.01 (0.48 to 2.18)	1.01 (0.50 to 2.13)	0.03 (-2.95 to 2.14)
MET + IAS		1.03 (0.17 to 6.23)	1.03 (0.18 to 5.49)	0.10 (-3.89 to 12.49)
MET + IGA		1.29 (0.43 to 3.82)	1.28 (0.44 to 3.58)	0.86 (-2.71 to 6.37)
MET + ROS	MET + LIX	0.92 (0.37 to 2.33)	0.92 (0.37 to 2.27)	-0.21 (-2.31 to 2.74)
MET + PIO		1.21 (0.69 to 2.21)	1.21 (0.70 to 2.16)	0.55 (-1.20 to 2.23)
MET + IAS		1.25 (0.22 to 7.13)	1.24 (0.23 to 6.23)	0.63 (-2.53 to 13.09)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + IGA		1.56 (0.56 to 4.25)	1.54 (0.56 to 3.96)	1.42 (-1.43 to 6.95)
MET + PIO	MET + ROS	1.35 (0.56 to 3.26)	1.34 (0.57 to 3.17)	0.80 (-2.19 to 2.80)
MET + IAS		1.36 (0.21 to 9.35)	1.35 (0.22 to 8.11)	0.80 (-3.16 to 13.29)
MET + IGA		1.74 (0.48 to 5.83)	1.70 (0.50 to 5.44)	1.64 (-2.27 to 7.27)
MET + IAS	$\mathrm{MET}+\mathrm{PIO}$	1.03 (0.18 to 5.97)	1.03 (0.19 to 5.18)	0.08 (-3.03 to 12.63)
MET + IGA		1.27 (0.47 to 3.36)	1.26 (0.48 to 3.15)	0.85 (-1.96 to 6.35)
MET + IGA	MET + IAS	1.26 (0.29 to 5.18)	1.25 (0.33 to 4.99)	0.73 (-9.20 to 4.72)
Random-effects model	Residual deviance	122.8 vs. 130 data points		
	Deviance information criteria	685.156		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLC = glicazide; GLI = glipizide; GLL = gliclazide; GLM = glimepiride; IAS = insulin aspart; IGA = insulin glargine; LIX = lixisenatide; LIN = linagliptin; LIR = liraglutide; MET = metformin; NAT = nateglinide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; $\mathrm{SIT}=$ sitagliptin;
VIL $=$ vildagliptin; vs. $=$ versus .
Figure 24: Consistency Plot for Serious Adverse Events (Individual-Drug Case Analysis)

Severe Hypoglycemia

Table 42: Severe Hypoglycemia : Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	3.18 (0.69 to 24.16)	3.11 (0.69 to 21.14)	1.95 (-0.41 to 12.88)
MET + GLY		1.34 (0.15 to 13.11)	1.33 (0.15 to 12.25)	0.29 (-1.37 to 7.48)
MET + GLI		4.90 (0.65 to 53.64)	4.70 (0.65 to 38.24)	3.49 (-0.39 to 29.42)
MET + SAX		0.46 (0.03 to 6.67)	0.46 (0.03 to 6.41)	-0.44 (-1.70 to 4.38)
MET + LIN		0.23 (0.01 to 2.72)	0.24 (0.01 to 2.68)	-0.64 (-1.96 to 1.24)
MET + SIT		0.54 (0.11 to 3.72)	0.54 (0.11 to 3.65)	-0.39 (-1.63 to 1.84)
MET + CAN		0.19 (0.01 to 1.69)	0.19 (0.01 to 1.68)	-0.69 (-1.95 to 0.49)
MET + LIR		0.45 (0.05 to 4.91)	0.45 (0.05 to 4.78)	-0.45 (-1.77 to 2.71)
MET + LIX		0.38 (0.02 to 6.66)	0.39 (0.02 to 6.37)	-0.48 (-1.84 to 4.73)
MET + IGA		1.38 (0.11 to 21.85)	1.38 (0.11 to 18.69)	0.31 (-1.39 to 15.47)
MET + GLY	MET + GLM	0.40 (0.02 to 6.11)	0.41 (0.02 to 5.74)	-1.56 (-13.01 to 6.22)
MET + GLI		1.45 (0.20 to 12.23)	1.43 (0.22 to 9.69)	1.16 (-6.15 to 23.69)
MET + SAX		0.14 (0.01 to 1.63)	0.14 (0.01 to 1.60)	-2.30 (-12.03 to 1.51)
MET + LIN		0.07 (0.01 to 0.44)	0.07 (0.01 to 0.45)	-2.65 (-12.63 to -0.57)
MET + SIT		0.17 (0.04 to 0.60)	0.17 (0.04 to 0.61)	-2.37 (-11.95 to -0.39)
MET + CAN		0.06 (0.00 to 0.68)	0.06 (0.00 to 0.68)	-2.71 (-13.51 to -0.32)
MET + LIR		0.14 (0.02 to 0.82)	0.14 (0.02 to 0.82)	-2.38 (-11.99 to -0.23)
MET + LIX		0.11 (0.01 to 2.14)	0.11 (0.01 to 2.07)	-2.33 (-12.56 to 2.27)
MET + IGA		0.41 (0.04 to 6.13)	0.42 (0.04 to 5.43)	-1.34 (-10.45 to 11.72)
MET + GLI	MET + GLY	3.83 (0.17 to 87.65)	3.66 (0.18 to 67.29)	2.96 (-5.35 to 29.11)
MET + SAX		0.35 (0.01 to 10.64)	0.35 (0.01 to 10.14)	-0.65 (-7.92 to 4.22)
MET + LIN		0.16 (0.01 to 5.13)	0.17 (0.01 to 5.05)	-0.94 (-8.12 to 1.32)
MET + SIT		0.41 (0.02 to 7.72)	0.41 (0.03 to 7.56)	-0.66 (-8.02 to 1.96)
MET + CAN		0.13 (0.00 to 3.46)	0.14 (0.00 to 3.42)	-1.01 (-8.25 to 0.69)
MET + LIR		0.33 (0.02 to 8.68)	0.33 (0.02 to 8.50)	-0.73 (-7.98 to 2.70)
MET + LIX		0.28 (0.01 to 10.45)	0.28 (0.01 to 9.98)	-0.73 (-7.91 to 4.59)
MET + IGA		1.04 (0.03 to 36.44)	1.04 (0.03 to 31.33)	0.03 (-7.36 to 15.49)
MET + SAX	MET + GLI	0.10 (0.01 to 0.71)	0.10 (0.01 to 0.72)	-3.80 (-27.14 to -0.27)
MET + LIN		0.05 (0.00 to 0.67)	0.05 (0.00 to 0.68)	-4.16 (-29.74 to -0.24)
MET + SIT		0.11 (0.02 to 0.42)	0.12 (0.03 to 0.42)	-3.93 (-28.39 to -0.38)
MET + CAN		0.04 (0.00 to 0.54)	0.04 (0.00 to 0.55)	-4.24 (-30.09 to -0.32)
MET + LIR		0.09 (0.01 to 0.96)	0.10 (0.01 to 0.96)	-3.87 (-28.84 to -0.04)
MET + LIX		0.08 (0.00 to 1.23)	0.08 (0.00 to 1.22)	-3.79 (-27.99 to 0.42)
MET + IGA		0.28 (0.02 to 4.27)	0.30 (0.03 to 3.88)	-2.46 (-25.53 to 7.51)
MET + LIN	MET + SAX	0.47 (0.02 to 13.34)	0.47 (0.02 to 13.18)	-0.17 (-4.79 to 1.42)
MET + SIT		1.20 (0.16 to 11.00)	1.20 (0.16 to 10.95)	0.06 (-3.92 to 1.28)
MET + CAN		0.41 (0.01 to 10.31)	0.41 (0.01 to 10.21)	-0.21 (-5.07 to 0.89)
MET + LIR		0.96 (0.06 to 17.89)	0.96 (0.06 to 17.64)	-0.01 (-4.49 to 2.55)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + LIX		0.83 (0.03 to 20.35)	0.83 (0.03 to 19.87)	-0.05 (-3.98 to 4.63)
MET + IGA		3.08 (0.15 to 83.30)	3.03 (0.16 to 76.94)	0.68 (-2.83 to 15.27)
MET + SIT	MET + LIN	2.42 (0.22 to 36.19)	2.41 (0.22 to 35.75)	0.23 (-1.31 to 2.21)
MET + CAN		0.78 (0.02 to 32.26)	0.78 (0.02 to 31.95)	-0.04 (-1.95 to 1.18)
MET + LIR		1.97 (0.12 to 42.45)	1.96 (0.12 to 41.73)	0.15 (-1.39 to 2.98)
MET + LIX		1.71 (0.05 to 71.85)	1.70 (0.05 to 67.63)	0.10 (-1.65 to 5.35)
MET + IGA		6.58 (0.25 to 167.80)	6.44 (0.25 to 153.00)	0.93 (-0.77 to 15.85)
MET + CAN	MET + SIT	0.37 (0.01 to 3.36)	0.37 (0.01 to 3.33)	-0.27 (-2.44 to 0.72)
MET + LIR		0.81 (0.11 to 5.48)	0.81 (0.12 to 5.38)	-0.07 (-1.47 to 2.30)
MET + LIX		0.69 (0.05 to 9.10)	0.69 (0.05 to 8.63)	-0.11 (-1.65 to 4.68)
MET + IGA		2.48 (0.34 to 23.78)	2.45 (0.34 to 20.54)	0.67 (-0.57 to 15.16)
MET + LIR	MET + CAN	2.26 (0.19 to 72.41)	2.25 (0.19 to 70.60)	0.19 (-0.83 to 3.40)
MET + LIX		1.90 (0.07 to 101.00)	1.89 (0.07 to 93.99)	0.13 (-0.91 to 5.54)
MET + IGA		7.43 (0.37 to 321.60)	7.26 (0.38 to 285.70)	1.01 (-0.46 to 16.29)
MET + LIX	MET + LIR	0.85 (0.03 to 18.72)	0.85 (0.03 to 17.83)	-0.04 (-2.84 to 5.01)
MET + IGA		3.00 (0.20 to 61.00)	2.97 (0.20 to 53.45)	0.69 (-1.58 to 15.53)
MET + IGA	MET + LIX	3.84 (0.14 to 133.80)	3.77 (0.15 to 120.10)	0.69 (-3.55 to 15.49)
Random-effects model	Residual deviance	18.96 vs. 26 data points		
	Deviance information criteria	102.777		

$\mathrm{CAN}=$ canagliflozin; $\mathrm{CrI}=$ credible interval; $\mathrm{GLI}=$ glipizide; $\mathrm{GLM}=$ glimepiride; $\mathrm{GLY}=$ glyburide; $\mathrm{IGA}=$ insulin glargine; $\mathrm{LIN}=$ linagliptin; $\mathrm{LIR}=$ liraglutide;
$\mathrm{LIX}=$ lixisenatide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; $\mathrm{SIT}=$ sitagliptin; vs. = versus.
Figure 25: Consistency Plot for Severe Hypoglycemia (Individual-Drug Case Analysis)

Urogenital Adverse Events (People)

Table 43: Urogenital Adverse Events (People): Odds Ratios, Relative Risks, and
Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	1.10 (0.73 to 1.65)	1.09 (0.74 to 1.61)	0.33 (-1.05 to 1.99)
MET + GLI		0.60 (0.28 to 1.26)	0.61 (0.29 to 1.25)	-1.39 (-2.81 to 0.84)
MET + SAX		1.13 (0.75 to 1.74)	1.12 (0.75 to 1.70)	0.43 (-0.99 to 2.29)
MET + LIN		1.02 (0.57 to 1.74)	1.02 (0.58 to 1.70)	0.06 (-1.67 to 2.31)
MET + SIT		1.10 (0.73 to 1.67)	1.10 (0.74 to 1.64)	0.35 (-1.05 to 2.07)
MET + DAP		2.15 (0.86 to 5.94)	2.06 (0.86 to 5.09)	3.82 (-0.53 to 13.93)
MET + EMP		1.00 (0.63 to 1.55)	1.00 (0.64 to 1.53)	0.00 (-1.41 to 1.74)
MET + EXE		1.27 (0.43 to 3.77)	1.26 (0.44 to 3.44)	0.91 (-2.13 to 8.52)
MET + DUL		0.93 (0.37 to 2.22)	0.93 (0.38 to 2.12)	-0.24 (-2.40 to 3.82)
MET + PIO		0.73 (0.22 to 2.27)	0.73 (0.23 to 2.18)	-0.95 (-3.01 to 4.09)
MET + IGA		0.78 (0.07 to 7.53)	0.79 (0.07 to 6.11)	-0.76 (-3.64 to 18.04)
MET + GLI	MET + GLM	0.55 (0.25 to 1.19)	0.56 (0.25 to 1.18)	-1.69 (-3.62 to 0.62)
MET + SAX		1.03 (0.64 to 1.69)	1.03 (0.65 to 1.65)	0.11 (-1.73 to 2.10)
MET + LIN		0.93 (0.57 to 1.48)	0.93 (0.58 to 1.46)	-0.27 (-1.87 to 1.66)
MET + SIT		1.01 (0.63 to 1.60)	1.01 (0.64 to 1.57)	0.04 (-1.80 to 1.85)
MET + DAP		1.95 (0.73 to 5.73)	1.88 (0.74 to 4.95)	3.45 (-1.19 to 13.73)
MET + EMP		0.92 (0.61 to 1.34)	0.92 (0.62 to 1.33)	-0.31 (-1.77 to 1.16)
MET + EXE		1.18 (0.38 to 3.57)	1.17 (0.39 to 3.27)	0.65 (-2.72 to 8.29)
MET + DUL		0.85 (0.33 to 2.11)	0.85 (0.34 to 2.03)	-0.58 (-3.08 to 3.62)
MET + PIO		0.67 (0.20 to 2.10)	0.67 (0.21 to 2.01)	-1.25 (-3.68 to 3.76)
MET + IGA		0.71 (0.07 to 6.89)	0.72 (0.07 to 5.67)	-1.08 (-4.17 to 17.69)
MET + SAX	MET + GLI	1.88 (0.86 to 4.20)	1.84 (0.87 to 4.05)	1.81 (-0.54 to 3.84)
MET + LIN		1.69 (0.69 to 4.14)	1.66 (0.70 to 3.99)	1.42 (-1.19 to 3.94)
MET + SIT		1.83 (1.00 to 3.44)	1.79 (1.00 to 3.35)	1.71 (0.01 to 3.14)
MET + DAP		3.56 (1.12 to 12.47)	3.37 (1.12 to 10.69)	5.14 (0.40 to 15.31)
MET + EMP		1.66 (0.72 to 3.78)	1.64 (0.73 to 3.66)	1.38 (-1.06 to 3.44)
MET + EXE		2.13 (0.69 to 6.88)	2.07 (0.70 to 6.25)	2.29 (-0.93 to 9.66)
MET + DUL		1.54 (0.54 to 4.44)	1.53 (0.55 to 4.23)	1.11 (-1.51 to 5.17)
MET + PIO		1.19 (0.34 to 4.10)	1.19 (0.35 to 3.90)	0.39 (-2.12 to 5.26)
MET + IGA		1.31 (0.12 to 12.51)	1.30 (0.12 to 10.13)	0.63 (-2.77 to 19.13)
MET + LIN	MET + SAX	0.90 (0.47 to 1.70)	0.90 (0.48 to 1.67)	-0.39 (-2.70 to 2.18)
MET + SIT		0.98 (0.60 to 1.56)	0.98 (0.62 to 1.53)	-0.09 (-1.99 to 1.76)
MET + DAP		1.92 (0.68 to 5.62)	1.85 (0.69 to 4.84)	3.40 (-1.50 to 13.74)
MET + EMP		0.89 (0.50 to 1.52)	0.89 (0.51 to 1.50)	-0.44 (-2.59 to 1.61)
MET + EXE		1.13 (0.38 to 3.44)	1.12 (0.39 to 3.17)	0.50 (-2.86 to 8.00)
MET + DUL		0.82 (0.32 to 2.08)	0.83 (0.33 to 2.01)	-0.69 (-3.30 to 3.59)
MET + PIO		0.64 (0.19 to 2.08)	0.65 (0.20 to 2.00)	-1.37 (-3.89 to 3.67)
MET + IGA		0.70 (0.06 to 6.65)	0.70 (0.06 to 5.46)	-1.15 (-4.42 to 17.51)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SIT	MET + LIN	1.09 (0.58 to 2.08)	1.08 (0.59 to 2.02)	0.31 (-2.23 to 2.56)
MET + DAP		2.11 (0.73 to 6.65)	2.02 (0.74 to 5.73)	3.71 (-1.19 to 14.07)
MET + EMP		0.99 (0.54 to 1.78)	0.99 (0.55 to 1.75)	-0.04 (-2.36 to 1.94)
MET + EXE		1.27 (0.38 to 4.12)	1.26 (0.40 to 3.77)	0.91 (-2.90 to 8.60)
MET + DUL		0.91 (0.33 to 2.54)	0.92 (0.34 to 2.43)	-0.30 (-3.26 to 4.10)
MET + PIO		0.72 (0.20 to 2.49)	0.73 (0.21 to 2.39)	-0.97 (-3.96 to 4.17)
MET + IGA		0.76 (0.07 to 8.02)	0.77 (0.07 to 6.56)	-0.81 (-4.36 to 18.03)
MET + DAP	MET + SIT	1.96 (0.72 to 5.74)	1.89 (0.73 to 4.94)	3.47 (-1.26 to 13.75)
MET + EMP		0.91 (0.53 to 1.56)	0.91 (0.54 to 1.54)	-0.34 (-2.34 to 1.70)
MET + EXE		1.16 (0.43 to 3.13)	1.15 (0.44 to 2.89)	0.59 (-2.27 to 7.74)
MET + DUL		0.84 (0.36 to 1.95)	0.84 (0.37 to 1.89)	-0.60 (-2.84 to 3.33)
MET + PIO		0.66 (0.21 to 1.87)	0.67 (0.22 to 1.81)	-1.28 (-3.43 to 3.29)
MET + IGA		0.71 (0.07 to 6.24)	0.71 (0.07 to 5.13)	-1.10 (-4.18 to 17.22)
MET + EMP	MET + DAP	0.47 (0.16 to 1.30)	0.48 (0.18 to 1.28)	-3.80 (-14.14 to 0.96)
MET + EXE		0.59 (0.14 to 2.40)	0.61 (0.16 to 2.25)	-2.78 (-13.20 to 5.52)
MET + DUL		0.43 (0.11 to 1.50)	0.45 (0.13 to 1.47)	-3.97 (-14.45 to 1.87)
MET + PIO		0.33 (0.07 to 1.46)	0.35 (0.08 to 1.43)	-4.62 (-14.92 to 1.75)
MET + IGA		0.36 (0.02 to 3.92)	0.38 (0.03 to 3.32)	-4.13 (-14.73 to 14.17)
MET + EXE	MET + EMP	1.28 (0.41 to 4.11)	1.27 (0.42 to 3.76)	0.94 (-2.44 to 8.63)
MET + DUL		0.93 (0.35 to 2.39)	0.93 (0.36 to 2.29)	-0.25 (-2.91 to 3.95)
MET + PIO		0.73 (0.21 to 2.34)	0.74 (0.22 to 2.24)	-0.92 (-3.53 to 4.07)
MET + IGA		0.78 (0.07 to 7.89)	0.78 (0.08 to 6.47)	-0.77 (-3.95 to 18.02)
MET + DUL	MET + EXE	0.73 (0.19 to 2.78)	0.74 (0.21 to 2.68)	-1.16 (-8.86 to 3.80)
$\mathrm{MET}+\mathrm{PIO}$		0.57 (0.19 to 1.63)	0.58 (0.20 to 1.60)	-1.79 (-7.74 to 1.79)
MET + IGA		0.62 (0.06 to 4.28)	0.63 (0.07 to 3.67)	-1.38 (-7.42 to 13.74)
MET + PIO	MET + DUL	0.79 (0.19 to 3.21)	0.79 (0.20 to 3.08)	-0.64 (-5.13 to 4.52)
MET + IGA		0.82 (0.07 to 8.75)	0.83 (0.07 to 7.24)	-0.54 (-5.35 to 17.93)
MET + IGA	MET + PIO	1.09 (0.09 to 10.42)	1.09 (0.10 to 8.42)	0.21 (-4.59 to 17.56)

$\mathrm{CrI}=$ credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLI = glipizide; GLM = glimepiride; IGA = insulin glargine; $\mathrm{LIN}=$ linagliptin; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; SIT $=$ sitagliptin.

Figure 26: Consistency Plot for Urogenital Adverse Events (People) (Individual-Drug Case Analysis)

Withdrawals Due to Adverse Events (WAE)
Table 44: Withdrawals Due to Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLC	MET	$1.16(0.46$ to 3.02$)$	$1.15(0.46$ to 2.87$)$	$0.41(-1.52$ to 4.88$)$
MET + GLM		$0.82(0.55$ to 1.25$)$	$0.82(0.55$ to 1.25$)$	$-0.48(-1.31$ to 0.62$)$
MET + GLY		$2.39(0.62$ to 9.66$)$	$2.30(0.62$ to 7.91$)$	$3.51(-1.04$ to 18.13$)$
MET + GLI		$0.82(0.38$ to 1.67$)$	$0.82(0.39$ to 1.65$)$	$-0.49(-1.73$ to 1.67$)$
MET + GLL		$0.51(0.17$ to 1.61$)$	$0.52(0.17$ to 1.59$)$	$-1.30(-2.37$ to 1.52$)$
MET + MIT		$0.39(0.01$ to 5.57$)$	$0.39(0.01$ to 4.98$)$	$-1.63(-2.91$ to 10.45$)$
MET + NAT		$1.15(0.67$ to 1.97$)$	$1.15(0.67$ to 1.92$)$	$0.39(-0.94$ to 2.38$)$
MET + SAX		$0.83(0.36$ to 1.94$)$	$0.83(0.36$ to 1.89$)$	$-0.46(-1.81$ to 2.32$)$
MET + ALO		$0.69(0.35$ to 1.47$)$	$0.69(0.35$ to 1.45$)$	$-0.83(-1.86$ to 1.17$)$
MET + LIN		$0.89(0.60$ to 1.36$)$	$0.89(0.60$ to 1.35$)$	$-0.30(-1.15$ to 0.87$)$
MET + SIT		$1.31(0.44$ to 1.36$)$	$0.76(0.45$ to 1.35$)$	$-0.64(-1.60$ to 0.90$)$
MET + VIL		$0.61(0.28$ to 1.39$)$	$1.30(0.62$ to 2.84$)$	$0.61(0.28$ to 1.38$)$
MET + CAN		$1.11(0.55$ to 2.27$)$	$1.10(0.56$ to 2.20$)$	$0.28(-1.07$ to 4.67$)$
MET + DAP			0.24 to 3.12$)$	
MET + EMP				

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + LIR		2.54 (1.25 to 5.34)	2.44 (1.24 to 4.81)	3.90 (0.68 to 9.97)
MET + EXE		2.12 (1.06 to 4.30)	2.06 (1.05 to 3.96)	2.87 (0.15 to 7.71)
MET + DUL		1.28 (0.61 to 2.80)	1.27 (0.62 to 2.68)	0.74 (-1.05 to 4.41)
MET + ALB		1.55 (0.65 to 3.82)	1.52 (0.65 to 3.56)	1.42 (-0.96 to 6.72)
MET + LIX		1.89 (0.99 to 3.67)	1.85 (0.99 to 3.44)	2.28 (-0.04 to 6.36)
MET + ROS		1.82 (0.82 to 4.48)	1.78 (0.82 to 4.10)	2.11 (-0.50 to 7.89)
MET + PIO		1.35 (0.78 to 2.45)	1.34 (0.78 to 2.36)	0.92 (-0.62 to 3.50)
MET + IGA		0.33 (0.06 to 1.42)	0.34 (0.06 to 1.41)	-1.77 (-2.76 to 1.07)
MET + GLM	MET + GLC	0.71 (0.27 to 1.86)	0.72 (0.28 to 1.84)	-0.87 (-5.27 to 1.19)
MET + GLY		2.05 (0.45 to 9.93)	1.98 (0.47 to 8.38)	2.92 (-2.74 to 17.31)
MET + GLI		0.70 (0.22 to 2.15)	0.71 (0.23 to 2.11)	-0.88 (-5.34 to 1.83)
MET + GLL		0.44 (0.11 to 1.81)	0.45 (0.12 to 1.78)	-1.64 (-6.09 to 1.45)
MET + MIT		0.34 (0.01 to 5.74)	0.35 (0.01 to 5.13)	-1.79 (-6.65 to 9.96)
MET + NAT		0.81 (0.18 to 3.42)	0.81 (0.19 to 3.24)	-0.54 (-5.10 to 5.05)
MET + SAX		0.99 (0.34 to 2.82)	0.99 (0.36 to 2.75)	-0.02 (-4.53 to 2.69)
MET + ALO		0.72 (0.21 to 2.41)	0.72 (0.22 to 2.35)	-0.83 (-5.29 to 2.35)
MET + LIN		0.60 (0.19 to 1.92)	0.60 (0.20 to 1.89)	-1.20 (-5.67 to 1.42)
MET + SIT		0.77 (0.29 to 2.03)	0.77 (0.30 to 2.00)	-0.69 (-5.08 to 1.41)
MET + VIL		0.65 (0.24 to 1.84)	0.66 (0.25 to 1.82)	-1.03 (-5.43 to 1.24)
MET + CAN		1.14 (0.36 to 3.73)	1.14 (0.38 to 3.57)	0.40 (-4.12 to 4.54)
MET + DAP		0.53 (0.15 to 1.86)	0.54 (0.16 to 1.84)	-1.41 (-5.97 to 1.34)
MET + EMP		0.96 (0.30 to 3.04)	0.96 (0.32 to 2.94)	-0.12 (-4.67 to 3.20)
MET + LIR		2.20 (0.69 to 6.93)	2.12 (0.71 to 6.31)	3.36 (-1.91 to 9.63)
MET + EXE		1.84 (0.59 to 5.46)	1.79 (0.61 to 5.08)	2.37 (-2.56 to 7.34)
MET + DUL		1.11 (0.34 to 3.65)	1.11 (0.35 to 3.50)	0.32 (-4.41 to 4.37)
MET + ALB		1.35 (0.38 to 4.62)	1.34 (0.39 to 4.33)	1.00 (-3.90 to 6.50)
MET + LIX		1.63 (0.53 to 4.93)	1.60 (0.55 to 4.63)	1.82 (-3.00 to 6.28)
MET + ROS		1.58 (0.55 to 4.79)	1.55 (0.57 to 4.47)	1.61 (-2.67 to 7.15)
$\mathrm{MET}+\mathrm{PIO}$		1.17 (0.49 to 2.78)	1.16 (0.51 to 2.70)	0.49 (-3.34 to 2.87)
MET + IGA		0.28 (0.04 to 1.52)	0.29 (0.04 to 1.50)	-2.08 (-6.47 to 1.01)
MET + GLY	MET + GLM	2.90 (0.71 to 12.36)	2.79 (0.71 to 10.11)	3.97 (-0.73 to 18.61)
MET + GLI		0.99 (0.44 to 2.12)	1.00 (0.45 to 2.07)	-0.01 (-1.48 to 2.11)
MET + GLL		0.62 (0.21 to 1.95)	0.63 (0.21 to 1.91)	-0.81 (-2.14 to 1.88)
MET + MIT		0.47 (0.02 to 7.07)	0.48 (0.02 to 6.29)	-1.12 (-2.76 to 10.88)
MET + NAT		1.14 (0.29 to 4.28)	1.14 (0.30 to 4.01)	0.29 (-1.86 to 6.17)
MET + SAX		1.40 (0.76 to 2.56)	1.39 (0.76 to 2.49)	0.86 (-0.65 to 2.83)
MET + ALO		1.01 (0.42 to 2.47)	1.01 (0.42 to 2.40)	0.03 (-1.56 to 2.75)
MET + LIN		0.84 (0.44 to 1.71)	0.84 (0.45 to 1.68)	-0.35 (-1.43 to 1.43)
MET + SIT		1.08 (0.68 to 1.75)	1.08 (0.69 to 1.72)	0.18 (-0.89 to 1.30)
MET + VIL		0.92 (0.53 to 1.67)	0.92 (0.54 to 1.64)	-0.17 (-1.26 to 1.26)
MET + CAN		1.60 (0.69 to 3.86)	1.58 (0.70 to 3.67)	1.28 (-0.81 to 5.14)
MET + DAP		0.74 (0.30 to 1.86)	0.74 (0.31 to 1.83)	-0.56 (-1.99 to 1.57)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + EMP		1.35 (0.68 to 2.75)	1.34 (0.68 to 2.65)	0.74 (-0.79 to 3.43)
MET + LIR		3.09 (1.53 to 6.50)	2.95 (1.51 to 5.86)	4.34 (1.24 to 10.19)
MET + EXE		2.60 (1.23 to 5.38)	2.50 (1.23 to 4.96)	3.33 (0.56 to 8.08)
MET + DUL		1.57 (0.71 to 3.55)	1.55 (0.71 to 3.38)	1.21 (-0.74 to 4.82)
MET + ALB		1.90 (0.80 to 4.57)	1.86 (0.80 to 4.25)	1.90 (-0.48 to 7.02)
MET + LIX		2.31 (1.10 to 4.80)	2.24 (1.10 to 4.49)	2.76 (0.25 to 6.84)
MET + ROS		2.22 (0.92 to 5.78)	2.16 (0.92 to 5.31)	2.56 (-0.21 to 8.39)
MET + PIO		1.65 (0.94 to 2.97)	1.63 (0.94 to 2.86)	1.39 (-0.16 to 3.76)
MET + IGA		0.40 (0.07 to 1.75)	0.41 (0.07 to 1.73)	-1.28 (-2.58 to 1.51)
MET + GLI	MET + GLY	0.34 (0.07 to 1.58)	0.35 (0.08 to 1.56)	-3.95 (-18.65 to 1.10)
MET + GLL		0.21 (0.04 to 1.24)	0.22 (0.04 to 1.23)	-4.66 (-19.14 to 0.51)
MET + MIT		0.16 (0.00 to 3.42)	0.17 (0.01 to 3.13)	-4.54 (-19.23 to 7.58)
MET + NAT		0.39 (0.06 to 2.43)	0.41 (0.07 to 2.35)	-3.46 (-18.22 to 3.65)
MET + SAX		0.48 (0.11 to 2.11)	0.50 (0.13 to 2.07)	-3.07 (-17.79 to 1.93)
MET + ALO		0.35 (0.07 to 1.75)	0.36 (0.08 to 1.72)	-3.89 (-18.40 to 1.48)
MET + LIN		0.29 (0.06 to 1.41)	0.30 (0.08 to 1.40)	-4.26 (-18.87 to 0.75)
MET + SIT		0.37 (0.09 to 1.56)	0.39 (0.11 to 1.55)	-3.77 (-18.40 to 0.96)
MET + VIL		0.32 (0.07 to 1.39)	0.33 (0.09 to 1.38)	-4.10 (-18.69 to 0.71)
MET + CAN		0.55 (0.11 to 2.68)	0.57 (0.14 to 2.60)	-2.55 (-17.31 to 3.45)
MET + DAP		0.25 (0.05 to 1.27)	0.27 (0.06 to 1.26)	-4.49 (-19.07 to 0.53)
MET + EMP		0.46 (0.10 to 2.14)	0.48 (0.12 to 2.09)	-3.15 (-17.82 to 2.26)
MET + LIR		1.06 (0.23 to 5.05)	1.06 (0.27 to 4.69)	0.33 (-14.32 to 8.03)
MET + EXE		0.89 (0.19 to 4.07)	0.89 (0.22 to 3.83)	-0.63 (-15.45 to 6.12)
MET + DUL		0.54 (0.11 to 2.56)	0.56 (0.13 to 2.47)	-2.67 (-17.32 to 3.16)
MET + ALB		0.65 (0.13 to 3.27)	0.67 (0.15 to 3.12)	-2.00 (-16.90 to 5.02)
MET + LIX		0.79 (0.17 to 3.58)	0.80 (0.20 to 3.41)	-1.19 (-15.90 to 5.06)
MET + ROS		0.77 (0.25 to 2.31)	0.78 (0.29 to 2.24)	-1.32 (-13.31 to 3.10)
MET + PIO		0.57 (0.13 to 2.37)	0.59 (0.16 to 2.31)	-2.53 (-17.16 to 2.57)
MET + IGA		0.13 (0.02 to 1.05)	0.14 (0.02 to 1.05)	-5.12 (-19.88 to 0.11)
MET + GLL	MET + GLI	0.63 (0.17 to 2.40)	0.63 (0.18 to 2.36)	-0.78 (-3.08 to 2.13)
MET + MIT		0.47 (0.01 to 7.80)	0.48 (0.01 to 6.97)	-1.05 (-3.61 to 11.06)
MET + NAT		1.15 (0.27 to 4.98)	1.14 (0.27 to 4.67)	0.30 (-2.48 to 6.23)
MET + SAX		1.41 (0.66 to 3.11)	1.40 (0.67 to 3.03)	0.87 (-1.26 to 2.83)
MET + ALO		1.01 (0.50 to 2.22)	1.01 (0.51 to 2.18)	0.02 (-1.54 to 2.19)
MET + LIN		0.84 (0.33 to 2.46)	0.85 (0.34 to 2.41)	-0.33 (-2.53 to 1.94)
MET + SIT		1.09 (0.55 to 2.34)	1.09 (0.56 to 2.30)	0.19 (-1.74 to 1.59)
$\mathrm{MET}+\mathrm{VIL}$		0.93 (0.40 to 2.35)	0.93 (0.40 to 2.31)	-0.16 (-2.35 to 1.70)
MET + CAN		1.61 (0.60 to 4.73)	1.59 (0.61 to 4.52)	1.28 (-1.40 to 5.26)
MET + DAP		0.74 (0.26 to 2.31)	0.75 (0.26 to 2.27)	-0.55 (-2.87 to 1.78)
MET + EMP		1.36 (0.52 to 3.78)	1.35 (0.53 to 3.64)	0.76 (-1.73 to 3.80)
MET + LIR		3.11 (1.22 to 8.51)	2.97 (1.21 to 7.71)	4.32 (0.67 to 10.40)
MET + EXE		2.60 (1.01 to 7.04)	2.51 (1.01 to 6.53)	3.30 (0.02 to 8.20)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + DUL		1.58 (0.60 to 4.54)	1.56 (0.61 to 4.33)	1.20 (-1.39 to 4.98)
MET + ALB		1.91 (0.65 to 5.91)	1.87 (0.65 to 5.54)	1.87 (-1.15 to 7.18)
MET + LIX		2.31 (0.91 to 6.11)	2.24 (0.92 to 5.73)	2.72 (-0.29 to 6.94)
MET + ROS		2.24 (0.77 to 7.19)	2.18 (0.78 to 6.60)	2.56 (-0.77 to 8.46)
MET + PIO		1.66 (0.73 to 4.07)	1.64 (0.73 to 3.91)	1.39 (-0.99 to 4.07)
MET + IGA		0.41 (0.06 to 2.00)	0.41 (0.07 to 1.97)	-1.22 (-3.48 to 1.63)
MET + MIT	MET + GLL	0.76 (0.02 to 14.22)	0.77 (0.02 to 12.62)	-0.29 (-3.25 to 11.70)
MET + NAT		1.83 (0.32 to 9.80)	1.81 (0.33 to 9.23)	1.06 (-2.16 to 6.94)
MET + SAX		2.24 (0.64 to 7.58)	2.20 (0.65 to 7.34)	1.64 (-1.29 to 3.85)
MET + ALO		1.62 (0.41 to 6.30)	1.60 (0.42 to 6.11)	0.80 (-2.10 to 3.66)
MET + LIN		1.35 (0.38 to 4.96)	1.35 (0.39 to 4.85)	0.47 (-2.28 to 2.56)
MET + SIT		1.74 (0.55 to 5.46)	1.72 (0.56 to 5.35)	0.99 (-1.76 to 2.43)
MET + VIL		1.49 (0.57 to 3.94)	1.48 (0.58 to 3.87)	0.63 (-1.59 to 1.90)
MET + CAN		2.57 (0.68 to 10.10)	2.52 (0.69 to 9.54)	2.04 (-1.06 to 5.96)
MET + DAP		1.18 (0.30 to 4.75)	1.18 (0.31 to 4.64)	0.24 (-2.58 to 2.45)
MET + EMP		2.17 (0.60 to 7.77)	2.13 (0.61 to 7.47)	1.53 (-1.35 to 4.46)
MET + LIR		4.99 (1.35 to 18.14)	4.72 (1.33 to 16.47)	5.06 (1.09 to 11.11)
MET + EXE		4.17 (1.13 to 14.86)	3.98 (1.12 to 13.77)	4.06 (0.39 to 8.97)
MET + DUL		2.53 (0.66 to 9.35)	2.47 (0.67 to 8.92)	1.99 (-1.17 to 5.68)
MET + ALB		3.06 (0.74 to 12.03)	2.97 (0.75 to 11.24)	2.65 (-0.81 to 7.90)
MET + LIX		3.72 (1.00 to 13.15)	3.58 (1.00 to 12.25)	3.50 (0.01 to 7.72)
MET + ROS		3.61 (0.91 to 14.34)	3.47 (0.92 to 13.25)	3.30 (-0.28 to 9.11)
MET + PIO		2.66 (0.82 to 8.51)	2.60 (0.83 to 8.15)	2.15 (-0.64 to 4.73)
MET + IGA		0.64 (0.09 to 3.93)	0.65 (0.09 to 3.84)	-0.45 (-3.26 to 2.37)
MET + NAT	MET + MIT	2.44 (0.12 to 84.11)	2.39 (0.13 to 80.05)	1.22 (-10.64 to 6.97)
MET + SAX		2.96 (0.20 to 93.50)	2.90 (0.22 to 90.62)	1.90 (-10.16 to 4.34)
MET + ALO		2.14 (0.13 to 73.52)	2.11 (0.15 to 71.26)	1.06 (-10.85 to 4.17)
MET + LIN		1.78 (0.12 to 56.02)	1.76 (0.13 to 54.55)	0.75 (-11.16 to 3.07)
MET + SIT		2.29 (0.16 to 71.57)	2.27 (0.17 to 69.62)	1.30 (-10.74 to 2.99)
MET + VIL		1.96 (0.13 to 61.06)	1.94 (0.14 to 59.56)	0.94 (-11.09 to 2.93)
MET + CAN		3.42 (0.22 to 111.70)	3.33 (0.24 to 106.70)	2.22 (-9.58 to 6.35)
MET + DAP		1.56 (0.10 to 51.44)	1.55 (0.11 to 50.36)	0.54 (-11.44 to 2.87)
MET + EMP		2.86 (0.18 to 89.29)	2.80 (0.20 to 86.34)	1.75 (-10.21 to 4.92)
MET + LIR		6.57 (0.43 to 203.80)	6.18 (0.46 to 189.40)	5.06 (-6.55 to 11.46)
MET + EXE		5.51 (0.35 to 178.80)	5.23 (0.38 to 166.80)	4.13 (-7.74 to 9.34)
MET + DUL		3.35 (0.21 to 105.60)	3.26 (0.23 to 100.40)	2.17 (-9.57 to 6.08)
MET + ALB		4.03 (0.24 to 128.60)	3.89 (0.27 to 122.40)	2.75 (-9.03 to 8.22)
MET + LIX		4.93 (0.32 to 160.30)	4.72 (0.35 to 151.60)	3.62 (-8.16 to 8.07)
MET + ROS		4.78 (0.29 to 151.50)	4.58 (0.31 to 141.00)	3.41 (-8.51 to 9.41)
MET + PIO		3.48 (0.23 to 107.90)	3.38 (0.26 to 103.30)	2.36 (-9.54 to 5.36)
MET + IGA		0.82 (0.04 to 36.26)	0.82 (0.04 to 35.49)	-0.16 (-11.92 to 2.87)
MET + SAX	MET + NAT	1.23 (0.31 to 5.04)	1.22 (0.33 to 4.88)	0.54 (-5.38 to 3.34)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + ALO		0.89 (0.20 to 4.14)	0.89 (0.21 to 4.03)	-0.26 (-6.16 to 3.00)
MET + LIN		0.74 (0.18 to 3.35)	0.75 (0.19 to 3.29)	-0.61 (-6.49 to 2.10)
MET + SIT		0.95 (0.26 to 3.79)	0.96 (0.27 to 3.71)	-0.11 (-5.93 to 2.08)
MET + VIL		0.81 (0.21 to 3.42)	0.82 (0.22 to 3.35)	-0.44 (-6.31 to 1.94)
MET + CAN		1.42 (0.33 to 6.49)	1.40 (0.35 to 6.20)	0.96 (-4.93 to 5.24)
MET + DAP		0.65 (0.15 to 3.07)	0.66 (0.16 to 3.02)	-0.82 (-6.70 to 1.91)
MET + EMP		1.18 (0.28 to 5.27)	1.18 (0.30 to 5.09)	0.44 (-5.45 to 3.88)
MET + LIR		2.74 (0.64 to 12.11)	2.62 (0.66 to 11.10)	3.89 (-2.50 to 10.26)
MET + EXE		2.28 (0.55 to 9.75)	2.20 (0.58 to 9.09)	2.91 (-3.15 to 8.11)
MET + DUL		1.38 (0.32 to 6.36)	1.37 (0.34 to 6.07)	0.89 (-5.03 to 5.05)
MET + ALB		1.66 (0.36 to 8.18)	1.63 (0.38 to 7.66)	1.51 (-4.57 to 7.19)
MET + LIX		2.02 (0.49 to 8.69)	1.97 (0.51 to 8.15)	2.36 (-3.76 to 7.01)
MET + ROS		1.97 (0.45 to 9.10)	1.92 (0.47 to 8.49)	2.19 (-4.01 to 8.20)
MET + PIO		1.46 (0.38 to 5.87)	1.44 (0.40 to 5.67)	1.07 (-4.82 to 4.21)
MET + IGA		0.35 (0.04 to 2.41)	0.36 (0.04 to 2.38)	-1.50 (-7.35 to 1.64)
MET + ALO	MET + SAX	0.72 (0.29 to 1.84)	0.73 (0.30 to 1.81)	-0.83 (-3.02 to 2.03)
MET + LIN		0.60 (0.26 to 1.49)	0.61 (0.27 to 1.48)	-1.19 (-3.31 to 1.11)
MET + SIT		0.77 (0.43 to 1.42)	0.78 (0.45 to 1.41)	-0.68 (-2.63 to 0.86)
MET + VIL		0.66 (0.32 to 1.43)	0.67 (0.33 to 1.42)	-1.02 (-3.14 to 0.92)
MET + CAN		1.15 (0.46 to 2.95)	1.14 (0.48 to 2.82)	0.43 (-2.26 to 4.41)
MET + DAP		0.53 (0.20 to 1.43)	0.54 (0.21 to 1.41)	-1.40 (-3.59 to 0.96)
MET + EMP		0.97 (0.41 to 2.32)	0.97 (0.42 to 2.25)	-0.10 (-2.54 to 2.95)
MET + LIR		2.21 (0.95 to 5.27)	2.13 (0.95 to 4.79)	3.47 (-0.19 to 9.57)
MET + EXE		1.85 (0.79 to 4.35)	1.80 (0.80 to 4.05)	2.44 (-0.83 to 7.45)
MET + DUL		1.12 (0.46 to 2.80)	1.12 (0.47 to 2.68)	0.35 (-2.25 to 4.11)
MET + ALB		1.35 (0.50 to 3.74)	1.34 (0.52 to 3.50)	1.03 (-1.98 to 6.35)
MET + LIX		1.65 (0.72 to 3.75)	1.62 (0.73 to 3.53)	1.89 (-1.12 to 6.14)
MET + ROS		1.59 (0.62 to 4.47)	1.56 (0.63 to 4.13)	1.69 (-1.55 to 7.63)
$\mathrm{MET}+\mathrm{PIO}$		1.18 (0.57 to 2.50)	1.17 (0.58 to 2.43)	0.52 (-1.86 to 3.28)
MET + IGA		0.29 (0.05 to 1.33)	0.29 (0.05 to 1.31)	-2.09 (-4.21 to 0.80)
MET + LIN	MET + ALO	0.83 (0.29 to 2.50)	0.84 (0.30 to 2.45)	-0.36 (-3.15 to 1.91)
MET + SIT		1.07 (0.46 to 2.51)	1.07 (0.48 to 2.47)	0.15 (-2.50 to 1.72)
MET + VIL		0.91 (0.35 to 2.45)	0.91 (0.36 to 2.41)	-0.20 (-2.93 to 1.72)
MET + CAN		1.58 (0.53 to 5.00)	1.56 (0.54 to 4.75)	1.22 (-1.94 to 5.22)
MET + DAP		0.73 (0.23 to 2.37)	0.74 (0.24 to 2.33)	-0.57 (-3.45 to 1.79)
MET + EMP		1.33 (0.46 to 3.98)	1.32 (0.47 to 3.84)	0.71 (-2.27 to 3.81)
MET + LIR		3.07 (1.07 to 9.08)	2.92 (1.06 to 8.23)	4.24 (0.25 to 10.34)
MET + EXE		2.56 (0.89 to 7.37)	2.47 (0.90 to 6.83)	3.25 (-0.41 to 8.18)
MET + DUL		1.56 (0.52 to 4.74)	1.54 (0.53 to 4.51)	1.17 (-1.94 to 4.96)
MET + ALB		1.88 (0.57 to 6.12)	1.84 (0.58 to 5.72)	1.84 (-1.62 to 7.19)
MET + LIX		2.28 (0.80 to 6.48)	2.21 (0.80 to 6.07)	2.68 (-0.83 to 6.93)
MET + ROS		2.20 (0.69 to 7.43)	2.14 (0.70 to 6.83)	2.49 (-1.24 to 8.46)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO		1.64 (0.65 to 4.23)	1.61 (0.66 to 4.07)	1.34 (-1.49 to 4.00)
MET + IGA		0.40 (0.06 to 2.03)	0.40 (0.06 to 2.00)	-1.26 (-4.08 to 1.63)
MET + SIT	MET + LIN	1.30 (0.59 to 2.74)	1.29 (0.59 to 2.69)	0.53 (-1.46 to 1.89)
MET + VIL		1.10 (0.47 to 2.54)	1.10 (0.48 to 2.50)	0.17 (-1.80 to 1.80)
MET + CAN		1.89 (0.68 to 5.39)	1.86 (0.69 to 5.11)	1.59 (-0.97 to 5.51)
MET + DAP		0.88 (0.29 to 2.59)	0.88 (0.30 to 2.54)	-0.22 (-2.35 to 1.97)
MET + EMP		1.61 (0.61 to 3.98)	1.59 (0.62 to 3.84)	1.08 (-1.21 to 3.95)
MET + LIR		3.67 (1.36 to 9.60)	3.49 (1.34 to 8.72)	4.63 (1.00 to 10.64)
MET + EXE		3.07 (1.14 to 7.86)	2.95 (1.13 to 7.26)	3.62 (0.39 to 8.46)
MET + DUL		1.87 (0.64 to 5.14)	1.84 (0.65 to 4.90)	1.54 (-1.07 to 5.28)
MET + ALB		2.25 (0.75 to 6.52)	2.20 (0.75 to 6.09)	2.22 (-0.69 to 7.40)
MET + LIX		2.76 (1.02 to 6.89)	2.67 (1.02 to 6.45)	3.08 (0.07 to 7.22)
MET + ROS		2.65 (0.87 to 7.89)	2.57 (0.87 to 7.24)	2.89 (-0.39 to 8.65)
MET + PIO		1.97 (0.81 to 4.55)	1.93 (0.82 to 4.37)	1.70 (-0.59 to 4.30)
MET + IGA		0.48 (0.08 to 2.28)	0.48 (0.08 to 2.24)	-0.92 (-2.97 to 1.87)
MET + VIL	MET + SIT	0.85 (0.45 to 1.61)	0.85 (0.46 to 1.59)	-0.35 (-1.64 to 1.22)
MET + CAN		1.47 (0.68 to 3.38)	1.46 (0.68 to 3.22)	1.09 (-0.89 to 4.88)
MET + DAP		0.68 (0.28 to 1.69)	0.69 (0.28 to 1.67)	-0.74 (-2.20 to 1.39)
MET + EMP		1.25 (0.58 to 2.66)	1.24 (0.59 to 2.57)	0.57 (-1.20 to 3.37)
MET + LIR		2.85 (1.44 to 5.77)	2.73 (1.42 to 5.20)	4.16 (1.08 to 9.97)
MET + EXE		2.39 (1.13 to 4.85)	2.31 (1.13 to 4.48)	3.15 (0.35 to 7.84)
MET + DUL		1.45 (0.68 to 3.05)	1.43 (0.69 to 2.91)	1.03 (-0.85 to 4.48)
MET + ALB		1.75 (0.72 to 4.18)	1.72 (0.73 to 3.90)	1.71 (-0.72 to 6.85)
MET + LIX		2.13 (1.03 to 4.26)	2.08 (1.03 to 3.99)	2.58 (0.08 to 6.59)
MET + ROS		2.05 (0.85 to 5.19)	2.00 (0.85 to 4.78)	2.38 (-0.42 to 8.15)
MET + PIO		1.52 (0.83 to 2.82)	1.50 (0.83 to 2.72)	1.21 (-0.48 to 3.69)
MET + IGA		0.37 (0.07 to 1.55)	0.38 (0.07 to 1.53)	-1.45 (-2.77 to 1.22)
MET + CAN	MET + VIL	1.73 (0.69 to 4.49)	1.71 (0.69 to 4.24)	1.45 (-0.88 to 5.30)
MET + DAP		0.80 (0.30 to 2.17)	0.81 (0.31 to 2.13)	-0.39 (-2.14 to 1.77)
MET + EMP		1.46 (0.62 to 3.39)	1.45 (0.62 to 3.27)	0.90 (-1.07 to 3.72)
MET + LIR		3.35 (1.41 to 7.96)	3.19 (1.40 to 7.18)	4.49 (1.05 to 10.46)
MET + EXE		2.80 (1.18 to 6.49)	2.70 (1.17 to 5.98)	3.47 (0.48 to 8.31)
MET + DUL		1.71 (0.68 to 4.20)	1.68 (0.68 to 3.99)	1.37 (-0.91 to 5.02)
MET + ALB		2.06 (0.75 to 5.45)	2.02 (0.76 to 5.07)	2.06 (-0.67 to 7.27)
MET + LIX		2.50 (1.06 to 5.68)	2.42 (1.06 to 5.31)	2.90 (0.17 to 7.05)
MET + ROS		2.42 (0.91 to 6.52)	2.35 (0.91 to 5.98)	2.72 (-0.26 to 8.50)
MET + PIO		1.79 (0.91 to 3.48)	1.76 (0.91 to 3.35)	1.54 (-0.24 to 3.94)
MET + IGA		0.44 (0.07 to 1.99)	0.44 (0.08 to 1.96)	-1.10 (-2.76 to 1.68)
MET + DAP	MET + CAN	0.46 (0.15 to 1.40)	0.47 (0.16 to 1.39)	-1.82 (-5.72 to 0.83)
MET + EMP		0.84 (0.29 to 2.33)	0.85 (0.31 to 2.27)	-0.52 (-4.62 to 2.79)
MET + LIR		1.93 (0.68 to 5.36)	1.87 (0.70 to 4.90)	3.00 (-1.83 to 9.15)
MET + EXE		1.62 (0.57 to 4.31)	1.58 (0.58 to 4.02)	2.01 (-2.63 to 7.10)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + DUL		0.98 (0.34 to 2.75)	0.98 (0.36 to 2.65)	-0.06 (-4.17 to 3.82)
MET + ALB		1.18 (0.36 to 3.70)	1.17 (0.38 to 3.48)	0.59 (-3.83 to 6.08)
MET + LIX		1.44 (0.52 to 3.80)	1.42 (0.53 to 3.58)	1.44 (-2.99 to 5.87)
MET + ROS		1.39 (0.44 to 4.43)	1.37 (0.46 to 4.12)	1.24 (-3.42 to 7.38)
MET + PIO		1.03 (0.40 to 2.56)	1.03 (0.42 to 2.48)	0.10 (-3.93 to 3.17)
MET + IGA		0.25 (0.04 to 1.23)	0.26 (0.04 to 1.22)	-2.48 (-6.35 to 0.55)
MET + EMP	MET + DAP	1.83 (0.62 to 5.39)	1.80 (0.63 to 5.17)	1.29 (-1.17 to 4.32)
MET + LIR		4.16 (1.43 to 12.62)	3.95 (1.40 to 11.35)	4.85 (1.15 to 10.99)
MET + EXE		3.51 (1.19 to 9.99)	3.37 (1.18 to 9.22)	3.85 (0.52 to 8.76)
MET + DUL		2.13 (0.70 to 6.38)	2.08 (0.71 to 6.07)	1.76 (-0.87 to 5.49)
MET + ALB		2.55 (0.77 to 8.46)	2.49 (0.78 to 7.84)	2.41 (-0.64 to 7.76)
MET + LIX		3.13 (1.11 to 8.60)	3.02 (1.10 to 8.03)	3.29 (0.29 to 7.47)
MET + ROS		3.01 (0.94 to 9.89)	2.91 (0.94 to 9.07)	3.09 (-0.17 to 8.94)
MET + PIO		2.22 (0.83 to 6.07)	2.18 (0.83 to 5.80)	1.92 (-0.54 to 4.73)
MET + IGA		0.55 (0.08 to 2.93)	0.55 (0.08 to 2.86)	-0.70 (-2.89 to 2.18)
MET + LIR	MET + EMP	2.29 (0.89 to 5.97)	2.20 (0.89 to 5.44)	3.53 (-0.48 to 9.65)
MET + EXE		1.92 (0.72 to 4.91)	1.87 (0.73 to 4.56)	2.54 (-1.32 to 7.47)
MET + DUL		1.16 (0.43 to 3.21)	1.15 (0.44 to 3.08)	0.45 (-2.75 to 4.34)
MET + ALB		1.40 (0.47 to 4.15)	1.39 (0.48 to 3.91)	1.12 (-2.48 to 6.39)
MET + LIX		1.71 (0.65 to 4.33)	1.67 (0.66 to 4.08)	1.98 (-1.64 to 6.28)
MET + ROS		1.65 (0.57 to 5.04)	1.62 (0.58 to 4.65)	1.79 (-2.04 to 7.81)
MET + PIO		1.22 (0.51 to 2.88)	1.21 (0.53 to 2.79)	0.62 (-2.43 to 3.44)
MET + IGA		0.30 (0.05 to 1.50)	0.30 (0.05 to 1.49)	-1.98 (-4.90 to 1.07)
MET + EXE	MET + LIR	0.84 (0.32 to 2.08)	0.85 (0.34 to 1.99)	-0.99 (-7.44 to 4.44)
MET + DUL		0.51 (0.23 to 1.10)	0.52 (0.25 to 1.10)	-3.04 (-8.32 to 0.45)
MET + ALB		0.61 (0.21 to 1.77)	0.63 (0.22 to 1.70)	-2.35 (-8.61 to 3.30)
MET + LIX		0.75 (0.29 to 1.85)	0.76 (0.31 to 1.78)	-1.54 (-7.87 to 3.42)
MET + ROS		0.72 (0.25 to 2.14)	0.74 (0.27 to 2.04)	-1.69 (-8.24 to 4.62)
$\mathrm{MET}+\mathrm{PIO}$		0.53 (0.23 to 1.24)	0.55 (0.25 to 1.23)	-2.93 (-8.94 to 0.90)
MET + IGA		0.13 (0.02 to 0.62)	0.14 (0.02 to 0.64)	-5.50 (-11.57 to -1.61)
MET + DUL	MET + EXE	0.60 (0.23 to 1.66)	0.62 (0.24 to 1.62)	-2.08 (-7.03 to 2.32)
MET + ALB		0.73 (0.25 to 2.19)	0.74 (0.27 to 2.09)	-1.39 (-6.60 to 4.28)
MET + LIX		0.89 (0.44 to 1.83)	0.90 (0.46 to 1.77)	-0.56 (-4.69 to 3.09)
MET + ROS		0.86 (0.30 to 2.58)	0.87 (0.32 to 2.44)	-0.71 (-6.23 to 5.60)
MET + PIO		0.64 (0.29 to 1.41)	0.65 (0.31 to 1.39)	-1.91 (-6.56 to 1.37)
MET + IGA		0.16 (0.03 to 0.65)	0.17 (0.03 to 0.66)	-4.47 (-9.15 to -1.40)
MET + ALB	MET + DUL	1.21 (0.39 to 3.69)	1.20 (0.41 to 3.46)	0.65 (-3.43 to 6.09)
MET + LIX		1.47 (0.55 to 3.81)	1.45 (0.56 to 3.61)	1.51 (-2.71 to 5.86)
MET + ROS		1.42 (0.48 to 4.47)	1.40 (0.49 to 4.15)	1.33 (-3.08 to 7.30)
MET + PIO		1.06 (0.42 to 2.64)	1.05 (0.43 to 2.56)	0.18 (-3.69 to 3.23)
MET + IGA		0.26 (0.04 to 1.26)	0.26 (0.04 to 1.25)	-2.42 (-6.15 to 0.63)

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + LIX	MET + ALB	1.23 (0.41 to 3.51)	1.21 (0.43 to 3.31)	0.86 (-4.83 to 5.47)
MET + ROS		1.18 (0.36 to 4.02)	1.17 (0.38 to 3.75)	0.68 (-5.21 to 6.90)
MET + PIO		0.87 (0.32 to 2.38)	0.88 (0.34 to 2.31)	-0.51 (-5.76 to 2.80)
MET + IGA		0.21 (0.03 to 1.11)	0.22 (0.03 to 1.10)	-3.08 (-8.34 to 0.27)
MET + ROS	MET + LIX	0.97 (0.34 to 2.84)	0.97 (0.36 to 2.67)	-0.15 (-5.07 to 5.98)
MET + PIO		0.72 (0.32 to 1.63)	0.73 (0.34 to 1.59)	-1.34 (-5.56 to 1.93)
MET + IGA		0.17 (0.03 to 0.80)	0.18 (0.03 to 0.81)	-3.92 (-8.05 to -0.72)
MET + PIO	MET + ROS	0.74 (0.27 to 1.86)	0.75 (0.29 to 1.81)	-1.16 (-7.00 to 2.28)
MET + IGA		0.18 (0.03 to 0.95)	0.19 (0.03 to 0.95)	-3.77 (-9.60 to -0.16)
MET + IGA	$\mathrm{MET}+\mathrm{PIO}$	0.24 (0.04 to 1.10)	0.25 (0.04 to 1.09)	-2.61 (-5.24 to 0.29)
Random-effects model	Residual deviance	149.5 vs. 148 data points		
	Deviance information criteria	780.747		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; IGA = insulin glargine; GLC = glicazide; GLI = glipizide; GLL = gliclazide; GLM = glimepiride; GLY = glyburide; LIN = linagliptin; LIR = liraglutide; LIX = lixisenatide; MET = metformin; MIT = mitiglinide; NAT = nateglinide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 27: Consistency Plot for Withdrawals Due to Adverse Events (Individual-Drug Case Analysis)

Bladder Cancer

Table 45: Bladder Cancer: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + GLM	MET	0.89 (0.01 to 523.20)	0.89 (0.01 to 482.80)	-0.01 (-0.63 to 9.39)
MET + GLI		0.56 (0.00 to 2,400.00)	0.56 (0.00 to 1,025.00)	-0.02 (-0.62 to 45.71)
MET + SAX		3.10 (0.02 to 3,999.00)	3.08 (0.02 to 1,712.00)	0.20 (-0.49 to 63.54)
MET + ALO		2.33 (0.00 to 13,720.00)	2.32 (0.00 to 1,815.00)	0.12 (-0.53 to 88.91)
MET + SIT		1.18 (0.00 to 646.40)	1.18 (0.00 to 571.20)	0.01 (-0.65 to 14.04)
MET + DAP		1.03 (0.03 to 29.27)	1.03 (0.03 to 28.93)	0.00 (-0.55 to 1.14)
MET + GLI	MET + GLM	0.69 (0.00 to 154.20)	0.70 (0.00 to 96.61)	0.00 (-3.83 to 34.79)
MET + SAX		3.41 (0.12 to 205.00)	3.31 (0.12 to 136.60)	0.15 (-1.22 to 52.47)
MET + ALO		2.95 (0.01 to 2804.00)	2.84 (0.01 to 764.60)	0.08 (-2.95 to 84.49)
MET + SIT		1.03 (0.00 to 442.70)	1.03 (0.00 to 417.90)	0.00 (-6.57 to 10.40)
MET + DAP		1.06 (0.00 to 338.60)	1.06 (0.00 to 335.10)	0.00 (-9.43 to 1.26)
MET + SAX	MET + GLI	4.60 (0.14 to 699.30)	4.31 (0.19 to 661.90)	0.13 (-8.39 to 29.44)
MET + ALO		3.67 (0.16 to 509.40)	3.25 (0.16 to 366.40)	0.09 (-2.19 to 59.81)
MET + SIT		1.40 (0.00 to 4,509.00)	1.39 (0.00 to 3,948.00)	0.00 (-37.02 to 9.69)
MET + DAP		2.05 (0.00 to 2,034.00)	2.05 (0.00 to 2,029.00)	0.02 (-45.55 to 1.21)
MET + ALO	MET + SAX	0.82 (0.00 to 321.60)	0.84 (0.00 to 158.40)	0.00 (-22.91 to 60.34)
MET + SIT		0.25 (0.00 to 343.60)	0.26 (0.00 to 316.40)	-0.12 (-56.41 to 8.33)
MET + DAP		0.31 (0.00 to 166.60)	0.31 (0.00 to 165.30)	-0.20 (-63.58 to 1.10)
MET + SIT	MET + ALO	0.32 (0.00 to 823.70)	0.33 (0.00 to 763.90)	-0.06 (-85.45 to 9.07)
MET + DAP		0.41 (0.00 to 642.10)	0.41 (0.00 to 638.60)	-0.10 (-88.91 to 1.08)
MET + DAP	MET + SIT	0.90 (0.00 to 1,224.00)	0.90 (0.00 to 1,215.00)	-0.01 (-14.10 to 1.26)
Random-effects model	Residual deviance	5.709 vs. 13 data points		
	Deviance information criteria	41.432		

$\mathrm{ALO}=$ alogliptin; $\mathrm{CrI}=$ credible interval; $\mathrm{DAP}=$ dapagliflozin; $\mathrm{GLI}=$ glipizide; $\mathrm{GLM}=$ glimepiride; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference;
$R R=$ relative risk; SAX = saxagliptin; SIT = sitagliptin; vs. = versus.
Body Mass Index (BMI)
Table 46: Body Mass Index Reference Case : Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% CrI)
MET + GLM	MET	$0.45(-0.30$ to 1.37$)$
MET + SAX		$-0.03(-1.15$ to 1.09$)$
MET + SIT		$-0.17(-1.28$ to 0.82$)$
MET + VIL		$-0.49(-1.43$ to 0.29$)$
MET + EXE		$-1.28(-2.16$ to -0.31$)$
MET + ROS		$2.90(1.41$ to 4.25$)$
MET + PIO	$0.59(-0.41$ to 1.70$)$	

Treatment	Reference	MD (95\% Crl)
MET + IGA		2.44 (-0.74 to 5.69)
MET + SAX	MET + GLM	-0.48 (-1.95 to 0.82)
MET + SIT		-0.62 (-2.11 to 0.58)
MET + VIL		-0.94 (-2.30 to 0.10)
MET + EXE		-1.73 (-2.69 to -0.83)
MET + ROS		2.46 (0.72 to 3.92)
MET + PIO		0.14 (-0.77 to 1.03)
MET + IGA		1.99 (-1.20 to 5.22)
MET + SIT	MET + SAX	-0.14 (-1.74 to 1.32)
MET + VIL		-0.46 (-1.95 to 0.87)
MET + EXE		$-1.25(-2.65$ to 0.26)
MET + ROS		2.93 (1.07 to 4.61)
MET + PIO		0.62 (-0.84 to 2.23)
MET + IGA		2.47 (-0.86 to 5.93)
MET + VIL	MET + SIT	-0.32 (-1.55 to 0.87)
MET + EXE		-1.11 (-2.41 to 0.40)
MET + ROS		3.08 (1.29 to 4.78)
MET + PIO		0.76 (-0.60 to 2.36)
MET + IGA		2.61 (-0.65 to 6.08)
MET + EXE	MET + VIL	-0.79 (-1.93 to 0.61)
MET + ROS		3.39 (1.73 to 5.02)
MET + PIO		1.08 (-0.14 to 2.58)
MET + IGA		2.93 (-0.35 to 6.34)
MET + ROS	MET + EXE	4.18 (2.38 to 5.74)
MET + PIO		1.87 (0.68 to 3.10)
MET + IGA		3.72 (0.65 to 6.83)
MET + PIO	MET + ROS	-2.32 (-3.92 to -0.45)
MET + IGA		-0.46 (-3.91 to 3.11)
MET + IGA	MET + PIO	1.85 (-1.41 to 5.16)
Random-effects model		
	Residual deviance	26.45 vs. 28 data points
	Deviance information criteria	38.532

[^12]Figure 28: Consistency Plot for Body Mass Index (Individual-Drug Case Analysis)

Cardiovascular Death
Table 47: Cardiovascular Mortality: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	2.99 (0.11 to 1305.00)	2.97 (0.11 to 323.40)	0.49 (-0.28 to 75.26)
MET + GLY		0.16 (0.00 to 140.00)	0.16 (0.00 to 103.60)	-0.18 (-0.44 to 25.36)
MET + GLI		2.38 (0.35 to 41.30)	2.37 (0.35 to 38.07)	0.35 (-0.20 to 7.71)
MET + SAX		0.95 (0.23 to 4.26)	0.95 (0.23 to 4.23)	-0.01 (-0.29 to 0.68)
MET + ALO		0.90 (0.08 to 20.18)	0.90 (0.08 to 19.41)	-0.03 (-0.33 to 3.91)
MET + LIN		3.26 (0.06 to 1875.00)	3.24 (0.06 to 348.20)	0.56 (-0.30 to 80.79)
MET + SIT		0.60 (0.15 to 2.81)	0.60 (0.15 to 2.80)	-0.10 (-0.33 to 0.35)
MET + VIL		1.04 (0.08 to 9.90)	1.04 (0.08 to 9.69)	0.01 (-0.33 to 1.95)
MET + CAN		1.03 (0.00 to 101.40)	1.03 (0.00 to 81.56)	0.01 (-0.38 to 18.81)
MET + DAP		0.90 (0.11 to 9.58)	0.90 (0.11 to 9.39)	-0.03 (-0.34 to 1.54)
MET + EMP		0.97 (0.04 to 23.10)	0.97 (0.04 to 22.03)	-0.01 (-0.36 to 4.88)
MET + LIR		0.15 (0.01 to 2.31)	0.15 (0.01 to 2.31)	-0.20 (-0.43 to 0.33)
MET + EXE		1.28 (0.04 to 29.75)	1.28 (0.04 to 27.64)	0.07 (-0.34 to 6.38)
MET + DUL		1.11 (0.05 to 31.54)	1.11 (0.05 to 29.69)	0.03 (-0.34 to 6.44)
MET + LIX		0.78 (0.02 to 68.04)	0.78 (0.02 to 56.73)	-0.05 (-0.39 to 13.83)
MET + ROS		0.90 (0.00 to 190.10)	0.90 (0.00 to 133.40)	-0.02 (-0.41 to 25.95)
$\mathrm{MET}+\mathrm{PIO}$		1.51 (0.15 to 29.50)	1.51 (0.15 to 27.53)	0.13 (-0.30 to 6.31)
MET + GLY	MET + GLM	0.03 (0.00 to 139.60)	0.03 (0.00 to 76.30)	-0.54 (-75.01 to 23.57)
MET + GLI		0.83 (0.00 to 38.34)	0.83 (0.01 to 36.98)	-0.09 (-69.78 to 4.33)
MET + SAX		0.30 (0.00 to 10.29)	0.31 (0.00 to 10.28)	-0.49 (-75.09 to 0.52)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + ALO		0.26 (0.00 to 20.61)	0.27 (0.00 to 20.26)	-0.42 (-73.60 to 2.23)
MET + LIN		1.01 (0.11 to 9.40)	1.01 (0.12 to 8.38)	0.00 (-15.73 to 20.64)
MET + SIT		0.19 (0.00 to 4.46)	0.20 (0.00 to 4.44)	-0.58 (-75.11 to 0.16)
MET + VIL		0.37 (0.00 to 18.53)	0.38 (0.00 to 18.33)	-0.40 (-75.16 to 1.29)
MET + CAN		0.24 (0.00 to 145.20)	0.26 (0.00 to 130.40)	-0.36 (-70.27 to 14.62)
MET + DAP		0.29 (0.00 to 15.63)	0.29 (0.00 to 15.48)	-0.46 (-75.21 to 1.06)
MET + EMP		0.28 (0.00 to 69.64)	0.29 (0.00 to 65.60)	-0.41 (-75.16 to 4.09)
MET + LIR		0.04 (0.00 to 2.24)	0.04 (0.00 to 2.24)	-0.70 (-75.29 to 0.08)
MET + EXE		0.44 (0.00 to 40.11)	0.45 (0.00 to 38.87)	-0.27 (-72.44 to 4.20)
MET + DUL		0.30 (0.00 to 39.11)	0.30 (0.00 to 37.67)	-0.37 (-73.88 to 4.91)
MET + LIX		0.24 (0.00 to 26.33)	0.24 (0.00 to 23.82)	-0.41 (-75.07 to 11.58)
MET + ROS		0.16 (0.00 to 178.60)	0.17 (0.00 to 113.70)	-0.36 (-74.87 to 24.95)
$\mathrm{MET}+\mathrm{PIO}$		0.49 (0.00 to 26.86)	0.49 (0.00 to 26.39)	-0.30 (-70.46 to 2.69)
MET + GLI	MET + GLY	20.47 (0.02 to 218,800.00)	20.16 (0.02 to 213,100.00)	0.44 (-24.85 to 7.79)
MET + SAX		6.85 (0.00 to 93,640.00)	6.82 (0.01 to 93,450.00)	0.15 (-25.36 to 0.87)
MET + ALO		7.06 (0.00 to 96,700.00)	7.01 (0.01 to 96,240.00)	0.12 (-25.08 to 4.02)
MET + LIN		35.19 (0.01 to 588,700.00)	32.03 (0.01 to 332,800.00)	0.54 (-23.18 to 80.37)
MET + SIT		3.89 (0.00 to 50,010.00)	3.88 (0.00 to 49,930.00)	0.08 (-25.45 to 0.49)
MET + VIL		6.94 (0.00 to 109,400.00)	6.91 (0.01 to 108,100.00)	0.17 (-25.24 to 2.00)
MET + CAN		7.04 (0.00 to 96,340.00)	6.96 (0.00 to 88,980.00)	0.10 (-24.49 to 18.55)
MET + DAP		6.08 (0.00 to 82,520.00)	6.06 (0.00 to 82,290.00)	0.13 (-25.42 to 1.60)
MET + EMP		5.72 (0.01 to 131,000.00)	5.69 (0.01 to 125,900.00)	0.10 (-24.09 to 4.91)
MET + LIR		0.90 (0.00 to 9,650.00)	0.90 (0.00 to 9,645.00)	0.00 (-25.49 to 0.48)
MET + EXE		8.94 (0.00 to 197,700.00)	8.89 (0.01 to 191,200.00)	0.18 (-25.06 to 6.29)
MET + DUL		8.09 (0.01 to 155,600.00)	8.00 (0.01 to 155,000.00)	0.15 (-24.84 to 6.18)
MET + LIX		4.22 (0.01 to 98,450.00)	4.20 (0.01 to 89,600.00)	0.07 (-24.87 to 13.58)
MET + ROS		3.86 (0.16 to 1,194.00)	3.76 (0.18 to 1,182.00)	0.04 (-9.73 to 8.96)
MET + PIO		9.45 (0.01 to 119,200.00)	9.40 (0.01 to 118,200.00)	0.24 (-24.94 to 6.28)
MET + SAX	MET + GLI	0.38 (0.03 to 3.07)	0.38 (0.03 to 3.06)	-0.36 (-7.57 to 0.33)
MET + ALO		0.37 (0.05 to 2.03)	0.38 (0.05 to 2.02)	-0.33 (-5.09 to 0.53)
MET + LIN		1.26 (0.02 to 368.20)	1.25 (0.02 to 110.40)	0.11 (-4.36 to 76.78)
MET + SIT		0.23 (0.03 to 1.62)	0.23 (0.03 to 1.61)	-0.46 (-7.57 to 0.10)
MET + VIL		0.41 (0.02 to 7.92)	0.41 (0.02 to 7.83)	-0.32 (-7.61 to 1.55)
MET + CAN		0.42 (0.00 to 67.55)	0.43 (0.00 to 56.16)	-0.25 (-7.62 to 18.34)
MET + DAP		0.36 (0.01 to 5.39)	0.36 (0.01 to 5.34)	-0.35 (-7.57 to 1.10)
MET + EMP		0.38 (0.01 to 19.55)	0.38 (0.01 to 18.25)	-0.29 (-7.77 to 4.58)
MET + LIR		0.06 (0.00 to 1.74)	0.06 (0.00 to 1.74)	-0.55 (-7.90 to 0.12)
MET + EXE		0.49 (0.01 to 18.13)	0.49 (0.01 to 17.01)	-0.25 (-6.10 to 4.66)
MET + DUL		0.40 (0.01 to 16.88)	0.40 (0.01 to 15.62)	-0.28 (-6.46 to 4.88)
MET + LIX		0.30 (0.01 to 34.33)	0.30 (0.01 to 27.92)	-0.32 (-7.23 to 13.48)
MET + ROS		0.26 (0.00 to 88.60)	0.26 (0.00 to 69.31)	-0.31 (-7.48 to 25.58)
$\mathrm{MET}+\mathrm{PIO}$		0.61 (0.03 to 12.01)	0.61 (0.03 to 11.72)	-0.20 (-5.93 to 3.39)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + ALO	MET + SAX	0.94 (0.08 to 17.86)	0.94 (0.08 to 17.30)	-0.01 (-0.61 to 3.75)
MET + LIN		3.65 (0.05 to 2,014.00)	3.62 (0.05 to 345.20)	0.57 (-0.57 to 80.74)
MET + SIT		0.65 (0.11 to 3.66)	0.65 (0.11 to 3.64)	-0.08 (-0.70 to 0.33)
MET + VIL		1.09 (0.08 to 13.83)	1.09 (0.08 to 13.59)	0.02 (-0.74 to 1.94)
MET + CAN		1.05 (0.00 to 136.70)	1.05 (0.00 to 113.20)	0.01 (-0.80 to 18.81)
MET + DAP		0.96 (0.08 to 8.42)	0.96 (0.08 to 8.32)	-0.01 (-0.71 to 1.47)
MET + EMP		1.01 (0.03 to 37.19)	1.01 (0.03 to 35.55)	0.00 (-0.77 to 4.95)
MET + LIR		0.16 (0.01 to 2.96)	0.16 (0.01 to 2.95)	-0.18 (-0.89 to 0.34)
MET + EXE		1.35 (0.03 to 36.34)	1.35 (0.03 to 33.99)	0.07 (-0.72 to 6.40)
MET + DUL		1.09 (0.04 to 35.80)	1.09 (0.04 to 33.80)	0.02 (-0.62 to 6.34)
MET + LIX		0.75 (0.03 to 89.69)	0.75 (0.03 to 73.10)	-0.05 (-0.69 to 13.77)
MET + ROS		0.77 (0.00 to 309.10)	0.77 (0.00 to 186.20)	-0.05 (-0.77 to 25.96)
MET + PIO		1.64 (0.12 to 32.22)	1.63 (0.12 to 30.45)	0.13 (-0.63 to 6.25)
MET + LIN	MET + ALO	4.36 (0.04 to 945.60)	4.32 (0.04 to 303.60)	0.47 (-2.24 to 79.68)
MET + SIT		0.62 (0.05 to 8.82)	0.63 (0.05 to 8.80)	-0.08 (-3.77 to 0.31)
MET + VIL		1.11 (0.04 to 34.25)	1.11 (0.04 to 33.65)	0.02 (-3.79 to 1.94)
MET + CAN		1.06 (0.00 to 226.30)	1.06 (0.00 to 188.60)	0.01 (-3.80 to 18.52)
MET + DAP		0.98 (0.02 to 23.04)	0.98 (0.02 to 22.78)	0.00 (-3.93 to 1.48)
MET + EMP		1.05 (0.01 to 69.31)	1.05 (0.01 to 65.87)	0.01 (-3.91 to 4.87)
MET + LIR		0.15 (0.00 to 5.97)	0.15 (0.00 to 5.96)	-0.18 (-4.08 to 0.36)
MET + EXE		1.34 (0.02 to 70.78)	1.33 (0.02 to 67.51)	0.06 (-3.05 to 5.52)
MET + DUL		1.02 (0.03 to 64.91)	1.02 (0.03 to 61.83)	0.00 (-3.04 to 5.39)
MET + LIX		0.81 (0.02 to 114.80)	0.81 (0.02 to 93.43)	-0.02 (-3.25 to 13.74)
MET + ROS		0.73 (0.00 to 292.60)	0.73 (0.00 to 195.10)	-0.04 (-3.78 to 25.91)
$\mathrm{MET}+\mathrm{PIO}$		1.63 (0.06 to 56.63)	1.63 (0.07 to 54.89)	0.11 (-2.69 to 4.88)
MET + SIT	MET + LIN	0.18 (0.00 to 8.41)	0.18 (0.00 to 8.40)	-0.66 (-80.65 to 0.21)
MET + VIL		0.37 (0.00 to 29.35)	0.37 (0.00 to 29.12)	-0.40 (-80.79 to 1.26)
MET + CAN		0.23 (0.00 to 195.40)	0.25 (0.00 to 170.20)	-0.41 (-76.51 to 14.44)
MET + DAP		0.29 (0.00 to 25.66)	0.29 (0.00 to 25.52)	-0.51 (-80.68 to 0.94)
MET + EMP		0.26 (0.00 to 111.80)	0.26 (0.00 to 106.70)	-0.44 (-80.49 to 4.08)
MET + LIR		0.04 (0.00 to 4.84)	0.04 (0.00 to 4.83)	-0.76 (-80.96 to 0.13)
MET + EXE		0.41 (0.00 to 67.44)	0.41 (0.00 to 64.67)	-0.34 (-77.67 to 4.08)
MET + DUL		0.30 (0.00 to 60.43)	0.30 (0.00 to 55.35)	-0.42 (-79.82 to 4.61)
MET + LIX		0.25 (0.00 to 42.85)	0.25 (0.00 to 39.76)	-0.40 (-80.12 to 10.71)
MET + ROS		0.17 (0.00 to 139.50)	0.17 (0.00 to 102.40)	-0.35 (-79.83 to 23.54)
$\mathrm{MET}+\mathrm{PIO}$		0.41 (0.00 to 46.85)	0.41 (0.00 to 46.17)	-0.37 (-76.31 to 2.82)
MET + VIL	MET + SIT	1.70 (0.13 to 27.91)	1.70 (0.13 to 27.49)	0.09 (-0.41 to 2.05)
MET + CAN		1.68 (0.01 to 229.00)	1.68 (0.01 to 190.70)	0.10 (-0.46 to 18.89)
MET + DAP		1.57 (0.13 to 16.98)	1.57 (0.13 to 16.78)	0.07 (-0.41 to 1.58)
MET + EMP		1.63 (0.04 to 58.26)	1.63 (0.04 to 55.76)	0.08 (-0.48 to 5.03)
MET + LIR		0.25 (0.01 to 3.50)	0.25 (0.01 to 3.48)	-0.09 (-0.51 to 0.34)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + EXE		2.06 (0.06 to 53.35)	2.05 (0.06 to 50.32)	0.14 (-0.38 to 6.40)
MET + DUL		1.77 (0.08 to 47.69)	1.77 (0.08 to 44.69)	0.11 (-0.32 to 6.34)
MET + LIX		1.33 (0.03 to 76.15)	1.33 (0.03 to 64.44)	0.04 (-0.38 to 13.72)
MET + ROS		1.24 (0.00 to 447.10)	1.23 (0.00 to 346.90)	0.04 (-0.45 to 26.04)
$\mathrm{MET}+\mathrm{PIO}$		2.72 (0.20 to 39.30)	2.71 (0.21 to 36.45)	0.22 (-0.30 to 6.25)
MET + CAN	MET + VIL	0.93 (0.00 to 120.00)	0.93 (0.00 to 100.60)	-0.01 (-1.71 to 18.51)
MET + DAP		0.87 (0.04 to 18.58)	0.87 (0.04 to 18.35)	-0.03 (-1.97 to 1.49)
MET + EMP		0.85 (0.02 to 52.42)	0.85 (0.02 to 50.36)	-0.03 (-1.88 to 4.88)
MET + LIR		0.14 (0.00 to 4.77)	0.14 (0.00 to 4.76)	-0.20 (-2.14 to 0.29)
MET + EXE		1.11 (0.02 to 56.42)	1.11 (0.02 to 53.61)	0.02 (-1.71 to 6.20)
MET + DUL		1.02 (0.02 to 69.26)	1.02 (0.02 to 64.02)	0.00 (-1.93 to 6.28)
MET + LIX		0.71 (0.01 to 112.80)	0.71 (0.01 to 94.70)	-0.05 (-1.93 to 13.69)
MET + ROS		0.71 (0.00 to 444.10)	0.71 (0.00 to 289.60)	-0.06 (-1.83 to 25.60)
$\mathrm{MET}+\mathrm{PIO}$		1.48 (0.09 to 39.51)	1.48 (0.09 to 37.47)	0.10 (-1.46 to 5.93)
MET + DAP	MET + CAN	0.84 (0.01 to 442.80)	0.84 (0.01 to 441.70)	-0.03 (-18.63 to 1.32)
MET + EMP		0.95 (0.01 to 643.10)	0.95 (0.01 to 627.00)	0.00 (-18.36 to 4.30)
MET + LIR		0.16 (0.00 to 79.16)	0.16 (0.00 to 79.05)	-0.18 (-18.89 to 0.29)
MET + EXE		1.22 (0.01 to 1,004.00)	1.22 (0.01 to 917.00)	0.03 (-18.54 to 6.35)
MET + DUL		1.00 (0.00 to 1,359.00)	1.00 (0.00 to 1,323.00)	0.00 (-18.54 to 6.31)
MET + LIX		0.85 (0.00 to 1,384.00)	0.85 (0.00 to 1,129.00)	-0.02 (-18.47 to 12.70)
MET + ROS		0.72 (0.00 to 1,039.00)	0.72 (0.00 to 785.50)	-0.02 (-17.36 to 22.78)
$\mathrm{MET}+\mathrm{PIO}$		1.55 (0.01 to 1,109.00)	1.55 (0.01 to 1,033.00)	0.07 (-18.58 to 5.69)
MET + EMP	MET + DAP	1.06 (0.03 to 63.42)	1.06 (0.03 to 60.68)	0.01 (-1.38 to 4.91)
MET + LIR		0.17 (0.00 to 4.72)	0.17 (0.00 to 4.71)	-0.17 (-1.71 to 0.35)
MET + EXE		1.36 (0.02 to 93.87)	1.36 (0.02 to 87.18)	0.06 (-1.38 to 6.40)
MET + DUL		1.28 (0.02 to 82.11)	1.28 (0.02 to 73.26)	0.05 (-1.55 to 6.52)
MET + LIX		0.88 (0.02 to 91.87)	0.88 (0.02 to 77.46)	-0.02 (-1.58 to 13.86)
MET + ROS		0.78 (0.00 to 202.30)	0.78 (0.00 to 154.80)	-0.03 (-1.31 to 25.76)
$\mathrm{MET}+\mathrm{PIO}$		1.62 (0.09 to 61.48)	1.62 (0.10 to 58.48)	0.12 (-1.33 to 6.27)
MET + LIR	MET + EMP	0.16 (0.00 to 8.71)	0.16 (0.00 to 8.69)	-0.17 (-5.12 to 0.38)
MET + EXE		1.23 (0.01 to 110.80)	1.23 (0.01 to 104.80)	0.04 (-4.73 to 6.39)
MET + DUL		1.17 (0.01 to 111.90)	1.17 (0.01 to 100.70)	0.03 (-4.81 to 6.40)
MET + LIX		0.76 (0.01 to 169.50)	0.76 (0.01 to 137.80)	-0.03 (-4.67 to 13.53)
MET + ROS		0.84 (0.00 to 186.40)	0.84 (0.00 to 123.30)	-0.02 (-4.55 to 25.70)
$\mathrm{MET}+\mathrm{PIO}$		1.42 (0.03 to 127.00)	1.42 (0.03 to 121.70)	0.08 (-4.71 to 6.39)
MET + EXE	MET + LIR	8.63 (0.13 to 538.70)	8.57 (0.13 to 505.60)	0.25 (-0.30 to 6.53)
MET + DUL		6.97 (0.24 to 312.00)	6.94 (0.24 to 300.70)	0.21 (-0.18 to 6.54)
MET + LIX		5.48 (0.10 to 777.30)	5.46 (0.10 to 627.90)	0.13 (-0.33 to 14.02)
MET + ROS		5.25 (0.00 to 2,162.00)	5.23 (0.00 to 1,214.00)	0.15 (-0.45 to 26.09)
MET + PIO		10.72 (0.31 to 602.00)	10.64 (0.31 to 562.30)	0.32 (-0.23 to 6.34)
MET + DUL	MET + EXE	0.85 (0.01 to 75.29)	0.85 (0.01 to 69.73)	-0.03 (-5.44 to 5.80)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + LIX		0.67 (0.00 to 107.70)	0.67 (0.00 to 86.89)	-0.06 (-6.33 to 13.03)
MET + ROS		0.51 (0.00 to 183.60)	0.51 (0.00 to 112.00)	-0.08 (-6.25 to 25.51)
MET + PIO		1.15 (0.05 to 62.03)	1.14 (0.06 to 60.59)	0.03 (-4.55 to 3.82)
MET + LIX	MET + DUL	0.70 (0.01 to 109.80)	0.70 (0.01 to 88.66)	-0.04 (-6.17 to 13.49)
MET + ROS		0.65 (0.00 to 277.50)	0.65 (0.00 to 240.10)	-0.05 (-5.72 to 24.79)
MET + PIO		1.53 (0.03 to 82.54)	1.53 (0.03 to 78.33)	0.10 (-5.60 to 5.44)
MET + ROS	MET + LIX	1.12 (0.00 to 247.50)	1.12 (0.00 to 136.10)	0.01 (-13.65 to 25.26)
MET + PIO		2.14 (0.02 to 123.20)	2.13 (0.02 to 118.00)	0.15 (-12.43 to 5.75)
MET + PIO	MET + ROS	1.98 (0.01 to 2,038.00)	1.98 (0.01 to 1,995.00)	0.13 (-25.77 to 6.13)
Random-effects model	Residual deviance	36.73 vs. 71 data points		
	Deviance information criteria	216.532		

$\mathrm{ALO}=$ alogliptin; $\mathrm{CAN}=$ canagliflozin; $\mathrm{CrI}=$ credible interval; $\mathrm{DAP}=$ dapagliflozin; $\mathrm{DUL}=$ dulaglutide; $\mathrm{EMP}=$ empagliflozin; $\mathrm{EXE}=$ exenatide; $\mathrm{GLI}=$ glipizide; GLL = gliclazide; GLM = glimepiride; GLY = glyburide; LIN = linagliptin; LIR = liraglutide; LIX = lixisenatide; MET = metformin; OR = odds ratio; PIO = pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 29: Consistency Plot for Cardiovascular Mortality (Individual-Drug Case Analysis)

Diastolic Blood Pressure (Diastolic BP)

Table 48: Diastolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + GLM	MET	-0.29 (-1.49 to 0.84)
MET + GLY		-1.47 (-5.96 to 3.43)
MET + SIT		-0.93 (-1.77 to -0.02)
MET + VIL		-1.72 (-3.87 to 0.40)
MET + CAN		-2.13 (-3.25 to -1.00)
MET + DAP		-1.61 (-3.31 to 0.05)
MET + EMP		-2.50 (-3.65 to -1.33)
MET + EXE		-1.74 (-3.00 to -0.44)
MET + LIR		-0.39 (-1.92 to 1.19)
MET + DUL		-0.45 (-1.92 to 1.02)
MET + LIX		-2.17 (-4.21 to -0.08)
MET + ROS		-2.49 (-7.30 to 2.69)
MET + PIO		-1.80 (-3.32 to -0.40)
MET + GLY	MET + GLM	-1.17 (-5.74 to 3.93)
MET + SIT		-0.64 (-1.83 to 0.65)
$\mathrm{MET}+\mathrm{VIL}$		-1.43 (-3.84 to 1.02)
MET + CAN		-1.84 (-3.34 to -0.27)
MET + DAP		-1.32 (-3.34 to 0.71)
MET + EMP		-2.20 (-3.37 to -0.92)
MET + EXE		-1.44 (-2.97 to 0.13)
MET + LIR		-0.09 (-1.86 to 1.76)
MET + DUL		-0.15 (-1.88 to 1.63)
MET + LIX		-1.87 (-4.08 to 0.41)
MET + ROS		-2.20 (-7.07 to 3.20)
MET + PIO		-1.51 (-2.81 to -0.28)
MET + SIT	MET + GLY	0.54 (-4.31 to 4.98)
MET + VIL		-0.26 (-5.73 to 4.80)
MET + CAN		-0.66 (-5.64 to 3.90)
MET + DAP		-0.15 (-5.39 to 4.65)
MET + EMP		-1.03 (-6.12 to 3.56)
MET + EXE		-0.27 (-5.35 to 4.40)
MET + LIR		1.08 (-3.96 to 5.73)
MET + DUL		1.02 (-4.01 to 5.65)
MET + LIX		-0.70 (-6.02 to 4.19)
MET + ROS		-1.02 (-2.80 to 0.78)
$\mathrm{MET}+\mathrm{PIO}$		-0.34 (-5.53 to 4.32)
MET + VIL	MET + SIT	-0.79 (-3.12 to 1.50)
MET + CAN		-1.20 (-2.40 to -0.02)

Treatment	Reference	MD (95\% Crl)
MET + DAP		-0.68 (-2.65 to 1.18)
MET + EMP		-1.57 (-2.93 to -0.23)
MET + EXE		-0.81 (-2.12 to 0.51)
MET + LIR		0.54 (-0.86 to 1.93)
MET + DUL		0.48 (-0.88 to 1.81)
MET + LIX		-1.24 (-3.29 to 0.78)
MET + ROS		-1.56 (-6.35 to 3.55)
MET + PIO		-0.87 (-2.38 to 0.50)
MET + CAN	MET + VIL	-0.41 (-2.83 to 2.01)
MET + DAP		0.11 (-2.67 to 2.80)
MET + EMP		-0.77 (-3.19 to 1.66)
MET + EXE		-0.01 (-2.47 to 2.45)
MET + LIR		1.34 (-1.30 to 3.98)
MET + DUL		1.28 (-1.33 to 3.84)
MET + LIX		-0.44 (-3.41 to 2.56)
MET + ROS		-0.77 (-6.15 to 4.90)
MET + PIO		-0.08 (-2.71 to 2.43)
MET + DAP	MET + CAN	0.52 (-1.55 to 2.51)
MET + EMP		-0.37 (-1.90 to 1.21)
MET + EXE		0.39 (-1.22 to 2.03)
MET + LIR		1.74 (-0.05 to 3.52)
MET + DUL		1.68 (-0.06 to 3.42)
MET + LIX		-0.03 (-2.29 to 2.21)
MET + ROS		-0.36 (-5.24 to 4.89)
MET + PIO		0.33 (-1.47 to 2.01)
MET + EMP	MET + DAP	-0.89 (-2.88 to 1.19)
MET + EXE		-0.13 (-2.20 to 2.04)
MET + LIR		1.22 (-1.00 to 3.61)
MET + DUL		1.16 (-0.98 to 3.44)
MET + LIX		-0.55 (-3.25 to 2.15)
MET + ROS		-0.88 (-5.98 to 4.58)
MET + PIO		-0.19 (-2.40 to 2.01)
MET + EXE	MET + EMP	0.76 (-0.90 to 2.38)
MET + LIR		2.11 (0.23 to 3.98)
MET + DUL		2.05 (0.21 to 3.87)
MET + LIX		0.33 (-1.98 to 2.67)
MET + ROS		0.01 (-4.94 to 5.41)
MET + PIO		0.70 (-1.01 to 2.24)
MET + LIR	MET + EXE	1.35 (-0.40 to 3.09)
MET + DUL		1.29 (-0.48 to 3.05)
MET + LIX		-0.43 (-2.32 to 1.46)
MET + ROS		-0.75 (-5.76 to 4.60)

[^13]Figure 30: Consistency Plot for Diastolic Blood Pressure (Individual-Drug Case Analysis)

Fatal Stoke

Table 49: Fatal Stroke: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	5.47 (0.12 to 2,730.00)	5.41 (0.12 to 411.00)	0.88 (-0.25 to 83.71)
MET + GLI		2.20 (0.10 to 96.82)	2.20 (0.10 to 80.84)	0.24 (-0.29 to 15.74)
MET + VIL		0.87 (0.09 to 8.59)	0.87 (0.09 to 8.48)	-0.02 (-0.32 to 1.31)
MET + SAX		0.80 (0.10 to 5.76)	0.80 (0.10 to 5.73)	-0.04 (-0.31 to 0.78)
MET + ALO		0.36 (0.00 to 103.20)	0.36 (0.00 to 88.13)	-0.11 (-0.39 to 14.58)
MET + SIT		0.91 (0.12 to 7.02)	0.91 (0.12 to 6.97)	-0.02 (-0.31 to 0.90)
MET + CAN		0.70 (0.00 to 219.00)	0.70 (0.00 to 157.90)	-0.06 (-0.37 to 26.99)
MET + DAP		0.65 (0.04 to 9.67)	0.65 (0.04 to 9.53)	-0.06 (-0.34 to 1.50)
MET + EMP		0.97 (0.04 to 48.59)	0.97 (0.04 to 45.27)	-0.01 (-0.34 to 6.66)
MET + LIR		4.34 (0.01 to 3336.00)	4.31 (0.01 to 480.10)	0.69 (-0.31 to 86.32)
MET + EXE		0.79 (0.01 to 19.47)	0.79 (0.01 to 18.73)	-0.04 (-0.34 to 3.34)
MET + DUL		3.40 (0.13 to 329.50)	3.38 (0.13 to 207.70)	0.49 (-0.26 to 36.69)
MET + LIX		0.70 (0.02 to 35.21)	0.70 (0.02 to 33.44)	-0.05 (-0.35 to 5.31)
MET + PIO		0.76 (0.04 to 14.64)	0.76 (0.04 to 14.28)	-0.04 (-0.35 to 2.49)
MET + GLI	MET + GLM	0.43 (0.00 to 59.54)	0.43 (0.00 to 53.57)	-0.37 (-81.82 to 11.88)
MET + VIL		0.16 (0.00 to 14.65)	0.16 (0.00 to 14.54)	-0.84 (-83.60 to 0.91)
MET + SAX		0.15 (0.00 to 9.46)	0.15 (0.00 to 9.41)	-0.86 (-83.60 to 0.44)
MET + ALO		0.05 (0.00 to 68.32)	0.05 (0.00 to 59.65)	-0.73 (-83.33 to 12.96)
MET + SIT		0.19 (0.00 to 4.58)	0.19 (0.00 to 4.57)	-0.82 (-83.54 to 0.27)
MET + CAN		0.12 (0.00 to 105.10)	0.13 (0.00 to 76.31)	-0.60 (-82.67 to 21.74)
MET + DAP		0.11 (0.00 to 12.79)	0.11 (0.00 to 12.71)	-0.86 (-83.61 to 1.00)
MET + EMP		0.17 (0.00 to 42.65)	0.17 (0.00 to 40.04)	-0.71 (-83.27 to 5.43)
MET + LIR		0.76 (0.00 to 1,481.00)	0.78 (0.00 to 390.20)	-0.07 (-77.17 to 83.17)
MET + EXE		0.13 (0.00 to 20.38)	0.13 (0.00 to 20.01)	-0.78 (-83.03 to 2.12)
MET + DUL		0.59 (0.00 to 171.40)	0.60 (0.00 to 122.50)	-0.23 (-78.38 to 33.50)
MET + LIX		0.13 (0.00 to 19.33)	0.14 (0.00 to 18.57)	-0.75 (-83.48 to 3.26)
$\mathrm{MET}+\mathrm{PIO}$		0.13 (0.00 to 15.68)	0.13 (0.00 to 15.52)	-0.81 (-83.67 to 1.61)
$\mathrm{MET}+\mathrm{VIL}$	MET + GLI	0.39 (0.00 to 19.07)	0.39 (0.01 to 18.91)	-0.21 (-15.76 to 1.14)
MET + SAX		0.38 (0.01 to 4.94)	0.38 (0.01 to 4.93)	-0.24 (-15.56 to 0.31)
MET + ALO		0.14 (0.00 to 83.63)	0.14 (0.00 to 74.12)	-0.22 (-15.52 to 13.66)
MET + SIT		0.42 (0.01 to 8.13)	0.42 (0.01 to 8.10)	-0.22 (-15.59 to 0.53)
MET + CAN		0.29 (0.00 to 176.90)	0.29 (0.00 to 117.30)	-0.17 (-14.79 to 26.14)
MET + DAP		0.28 (0.00 to 14.84)	0.28 (0.00 to 14.66)	-0.26 (-15.56 to 1.20)
MET + EMP		0.48 (0.00 to 57.19)	0.48 (0.00 to 53.59)	-0.15 (-15.54 to 6.15)
MET + LIR		2.05 (0.00 to 3,657.00)	2.02 (0.00 to 694.60)	0.28 (-11.73 to 85.20)
MET + EXE		0.33 (0.00 to 19.72)	0.33 (0.00 to 19.31)	-0.20 (-15.30 to 2.49)
MET + DUL		1.51 (0.01 to 268.90)	1.50 (0.02 to 202.80)	0.14 (-14.11 to 35.44)
MET + LIX		0.32 (0.00 to 32.18)	0.32 (0.00 to 30.38)	-0.20 (-15.36 to 4.74)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO		0.33 (0.00 to 19.14)	0.34 (0.00 to 18.79)	-0.21 (-15.65 to 2.11)
MET + SAX	MET + VIL	0.90 (0.04 to 17.40)	0.90 (0.04 to 17.31)	-0.01 (-1.36 to 0.84)
MET + ALO		0.40 (0.00 to 141.10)	0.41 (0.00 to 118.10)	-0.05 (-1.34 to 14.48)
MET + SIT		1.03 (0.05 to 18.97)	1.03 (0.05 to 18.82)	0.00 (-1.34 to 0.93)
MET + CAN		0.82 (0.00 to 316.00)	0.82 (0.00 to 238.80)	-0.02 (-1.31 to 26.90)
MET + DAP		0.70 (0.02 to 26.27)	0.71 (0.02 to 25.81)	-0.04 (-1.39 to 1.53)
MET + EMP		1.11 (0.02 to 89.66)	1.11 (0.02 to 84.23)	0.01 (-1.34 to 6.64)
MET + LIR		4.85 (0.01 to 6,188.00)	4.79 (0.01 to 1,047.00)	0.62 (-1.01 to 86.29)
MET + EXE		0.89 (0.01 to 40.35)	0.89 (0.01 to 39.10)	-0.01 (-1.30 to 3.32)
MET + DUL		4.23 (0.07 to 741.60)	4.20 (0.07 to 422.20)	0.47 (-1.09 to 36.70)
MET + LIX		0.82 (0.01 to 68.67)	0.82 (0.01 to 65.22)	-0.02 (-1.35 to 5.24)
MET + PIO		0.84 (0.03 to 23.44)	0.84 (0.03 to 22.93)	-0.02 (-1.17 to 2.42)
MET + ALO	MET + SAX	0.42 (0.00 to 171.90)	0.42 (0.00 to 147.70)	-0.06 (-0.87 to 14.60)
MET + SIT		1.15 (0.10 to 13.26)	1.15 (0.10 to 13.16)	0.02 (-0.74 to 0.86)
MET + CAN		0.88 (0.00 to 413.90)	0.88 (0.00 to 269.40)	-0.01 (-0.80 to 26.98)
MET + DAP		0.79 (0.04 to 15.80)	0.79 (0.04 to 15.57)	-0.03 (-0.76 to 1.47)
MET + EMP		1.30 (0.03 to 96.43)	1.30 (0.03 to 89.71)	0.04 (-0.82 to 6.62)
MET + LIR		5.95 (0.01 to 6373.00)	5.88 (0.01 to 913.70)	0.69 (-0.62 to 86.33)
MET + EXE		0.99 (0.01 to 35.97)	0.99 (0.01 to 34.99)	0.00 (-0.81 to 3.33)
MET + DUL		4.40 (0.11 to 533.10)	4.36 (0.11 to 356.90)	0.50 (-0.53 to 36.65)
MET + LIX		0.90 (0.02 to 56.65)	0.90 (0.02 to 53.14)	-0.01 (-0.77 to 5.25)
$\mathrm{MET}+\mathrm{PIO}$		0.95 (0.04 to 29.07)	0.95 (0.04 to 28.50)	-0.01 (-0.82 to 2.51)
MET + SIT	MET + ALO	2.63 (0.01 to 24,420.00)	2.62 (0.01 to 24,320.00)	0.07 (-14.50 to 0.94)
MET + CAN		2.15 (0.00 to 126,700.00)	2.14 (0.00 to 80,010.00)	0.03 (-12.81 to 24.95)
MET + DAP		1.88 (0.00 to 18,190.00)	1.87 (0.00 to 18,140.00)	0.03 (-14.61 to 1.57)
MET + EMP		3.10 (0.01 to 45,410.00)	3.08 (0.01 to 43,350.00)	0.07 (-14.18 to 6.26)
MET + LIR		15.29 (0.00 to 87,9100.00)	14.09 (0.01 to 372,900.00)	0.53 (-11.74 to 85.76)
MET + EXE		2.12 (0.00 to 31,840.00)	2.12 (0.00 to 31,260.00)	0.04 (-14.33 to 3.17)
MET + DUL		11.80 (0.02 to 116,300.00)	11.44 (0.02 to 106,600.00)	0.43 (-13.12 to 35.72)
MET + LIX		2.29 (0.00 to 35,820.00)	2.29 (0.00 to 34,890.00)	0.03 (-14.14 to 5.06)
$\mathrm{MET}+\mathrm{PIO}$		1.90 (0.01 to 17760.00)	1.90 (0.01 to 17550.00)	0.03 (-13.75 to 1.77)
MET + CAN	MET + SIT	0.80 (0.00 to 358.90)	0.80 (0.00 to 224.80)	-0.03 (-0.90 to 26.98)
MET + DAP		0.70 (0.02 to 18.57)	0.70 (0.02 to 18.38)	-0.04 (-0.96 to 1.53)
MET + EMP		1.06 (0.03 to 80.09)	1.06 (0.03 to 75.85)	0.01 (-0.89 to 6.60)
MET + LIR		5.21 (0.01 to 3,910.00)	5.15 (0.01 to 628.80)	0.66 (-0.62 to 86.20)
MET + EXE		0.84 (0.01 to 29.85)	0.84 (0.01 to 28.90)	-0.02 (-0.85 to 3.28)
MET + DUL		3.65 (0.15 to 306.20)	3.62 (0.15 to 200.50)	0.46 (-0.43 to 36.22)
MET + LIX		0.78 (0.02 to 39.81)	0.78 (0.02 to 37.43)	-0.02 (-0.83 to 5.21)
$\mathrm{MET}+\mathrm{PIO}$		0.81 (0.03 to 25.00)	0.82 (0.03 to 24.40)	-0.02 (-0.90 to 2.45)
MET + DAP	MET + CAN	0.93 (0.00 to 528.30)	0.93 (0.00 to 524.30)	-0.01 (-26.98 to 1.46)
MET + EMP		1.47 (0.00 to 981.00)	1.47 (0.00 to 944.50)	0.03 (-26.61 to 6.31)
MET + LIR		6.55 (0.00 to 39,360.00)	6.18 (0.00 to 12,160.00)	0.49 (-21.31 to 84.25)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + EXE		1.01 (0.00 to 1,181.00)	1.01 (0.00 to 1,161.00)	0.00 (-26.85 to 3.11)
MET + DUL		4.85 (0.01 to 9,122.00)	4.77 (0.01 to 6,527.00)	0.33 (-25.02 to 35.46)
MET + LIX		1.02 (0.00 to 802.90)	1.02 (0.00 to 755.10)	0.00 (-26.82 to 4.67)
MET + PIO		1.14 (0.00 to 785.40)	1.14 (0.00 to 772.30)	0.01 (-27.00 to 2.38)
MET + EMP	MET + DAP	1.47 (0.02 to 182.90)	1.47 (0.02 to 171.90)	0.04 (-1.45 to 6.68)
MET + LIR		7.63 (0.01 to 8,121.00)	7.49 (0.01 to 1684.00)	0.71 (-1.03 to 86.27)
MET + EXE		1.19 (0.01 to 96.14)	1.18 (0.01 to 93.36)	0.02 (-1.54 to 3.33)
MET + DUL		5.48 (0.08 to 864.70)	5.43 (0.08 to 604.50)	0.50 (-1.16 to 36.65)
MET + LIX		1.11 (0.01 to 116.30)	1.11 (0.01 to 110.60)	0.01 (-1.43 to 5.21)
MET + PIO		1.19 (0.02 to 81.00)	1.19 (0.02 to 79.19)	0.02 (-1.56 to 2.52)
MET + LIR	MET + EMP	4.30 (0.00 to 8,632.00)	4.22 (0.00 to 1739.00)	0.51 (-5.43 to 86.08)
MET + EXE		0.74 (0.00 to 75.21)	0.74 (0.00 to 73.36)	-0.03 (-6.61 to 3.29)
MET + DUL		3.36 (0.02 to 1,262.00)	3.33 (0.02 to 761.70)	0.35 (-5.66 to 36.45)
MET + LIX		0.76 (0.00 to 88.27)	0.76 (0.00 to 81.86)	-0.03 (-6.53 to 5.10)
MET + PIO		0.70 (0.01 to 70.18)	0.70 (0.01 to 68.99)	-0.04 (-6.65 to 2.45)
MET + EXE	MET + LIR	0.16 (0.00 to 167.40)	0.16 (0.00 to 163.40)	-0.61 (-85.76 to 2.33)
MET + DUL		0.81 (0.00 to 113.90)	0.83 (0.01 to 110.00)	-0.06 (-73.60 to 10.30)
MET + LIX		0.14 (0.00 to 131.90)	0.15 (0.00 to 126.80)	-0.61 (-85.27 to 3.47)
MET + PIO		0.17 (0.00 to 90.78)	0.17 (0.00 to 89.98)	-0.63 (-86.18 to 1.77)
MET + DUL	MET + EXE	4.65 (0.04 to 2,235.00)	4.60 (0.05 to 1539.00)	0.44 (-2.59 to 36.45)
MET + LIX		1.01 (0.01 to 157.50)	1.01 (0.01 to 147.30)	0.00 (-3.13 to 5.09)
MET + PIO		0.97 (0.02 to 83.92)	0.97 (0.02 to 82.63)	0.00 (-3.09 to 2.23)
MET + LIX	MET + DUL	0.20 (0.00 to 26.10)	0.20 (0.00 to 24.90)	-0.43 (-36.45 to 4.43)
$\mathrm{MET}+\mathrm{PIO}$		0.20 (0.00 to 19.97)	0.20 (0.00 to 19.63)	-0.46 (-36.47 to 1.93)
$\mathrm{MET}+\mathrm{PIO}$	MET + LIX	1.06 (0.01 to 117.10)	1.06 (0.01 to 114.50)	0.00 (-5.26 to 2.42)
Random-effects model	Residual deviance	22.29 vs. 55 data points		
	Deviance information criteria	154.4		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLI = glipizide; $G L M=$ glimepiride; LIR = liraglutide; LIX = lixisenatide; $M E T=$ metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SAX $=$ saxagliptin; SIT $=$ sitagliptin; VIL $=$ vildagliptin; vs. $=$ versus.

Figure 31: Consistency Plot for Fatal Stroke (Individual-Drug Case Analysis)

Glycated Hemoglobin (A1C)

Table 50: A1C: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + GLC		$-0.57(-0.92$ to -0.21$)$
MET + GLM		$-0.75(-0.90$ to -0.61$)$
MET + GLY		$-0.97(-1.35$ to -0.60$)$
MET + GLI		$-0.48(-0.76$ to -0.20$)$
MET + GLL		$-0.94(-1.36$ to -0.53$)$
MET + REP		$-1.08(-1.84$ to -0.29$)$
MET + MIT		$-0.30(-0.77$ to 0.17$)$
MET + NAT		$-0.46(-0.84$ to -0.07$)$
MET + SAX		$-0.40(-0.57$ to -0.24$)$
MET + ALO		$-0.63(-0.92$ to -0.34$)$
MET + LIN		$-0.60(-0.91$ to -0.29$)$
MET + SIT		$-0.58(-0.71$ to -0.46$)$
MET + VIL		$-0.70(-0.90$ to -0.51$)$
MET + GEM		$-0.58(-1.05$ to -0.10$)$
MET + CAN		$-0.67(-0.93$ to -0.41$)$
MET + DAP		$-0.60(-0.87$ to -0.33$)$
MET + EMP		$-0.78(-1.11$ to -0.46$)$
MET + LIR		$-0.96(-1.21$ to -0.70$)$
MET + EXE		$-0.85(-1.08$ to -0.63$)$
MET + DUL		$-1.13(-1.45$ to -0.82$)$
MET + LIX		$-0.56(-0.86$ to -0.26$)$

Treatment	Reference	MD (95\% Crl)
MET + ALB		-0.86 (-1.28 to -0.43)
MET + ACA		-0.47 (-1.17 to 0.24)
MET + ROS		-0.97 (-1.20 to -0.75)
MET + PIO		-0.68 (-0.86 to -0.51)
MET + IAS		-1.11 (-1.61 to -0.61)
MET + IGA		-0.87 (-1.17 to -0.55)
MET + IND		-0.72 (-3.00 to 1.61)
MET + DSP		-1.02 (-3.46 to 1.51)
MET + GLM	MET + GLC	-0.19 (-0.55 to 0.18)
MET + GLY		-0.41 (-0.89 to 0.08)
MET + GLI		0.09 (-0.36 to 0.53)
MET + GLL		-0.38 (-0.91 to 0.15)
MET + REP		-0.51 (-1.36 to 0.35)
MET + MIT		0.27 (-0.32 to 0.86)
MET + NAT		0.11 (-0.27 to 0.48)
MET + SAX		0.16 (-0.22 to 0.55)
MET + ALO		-0.06 (-0.52 to 0.39)
MET + LIN		-0.03 (-0.50 to 0.44)
MET + SIT		-0.02 (-0.38 to 0.35)
MET + VIL		-0.14 (-0.52 to 0.25)
MET + GEM		-0.01 (-0.59 to 0.58)
MET + CAN		-0.10 (-0.54 to 0.33)
MET + DAP		-0.03 (-0.48 to 0.41)
MET + EMP		-0.22 (-0.69 to 0.26)
MET + LIR		-0.39 (-0.82 to 0.04)
MET + EXE		-0.29 (-0.69 to 0.12)
MET + DUL		-0.57 (-1.04 to -0.09)
MET + LIX		0.01 (-0.44 to 0.46)
MET + ALB		-0.29 (-0.83 to 0.25)
MET + ACA		0.10 (-0.67 to 0.87)
MET + ROS		-0.41 (-0.79 to -0.02)
MET + PIO		-0.11 (-0.46 to 0.23)
MET + IAS		-0.54 (-1.14 to 0.05)
MET + IGA		-0.30 (-0.75 to 0.16)
MET + IND		-0.15 (-2.46 to 2.22)
MET + DSP		-0.45 (-2.93 to 2.12)
MET + GLY	MET + GLM	-0.22 (-0.61 to 0.17)
MET + GLI		0.27 (-0.03 to 0.58)
MET + GLL		-0.19 (-0.60 to 0.22)
MET + REP		-0.32 (-1.10 to 0.47)
MET + MIT		0.46 (-0.04 to 0.95)
MET + NAT		0.30 (-0.10 to 0.70)

Treatment	Reference	MD (95\% CrI)
MET + SAX		$0.35(0.15$ to 0.56$)$
MET + ALO		$0.12(-0.20$ to 0.45$)$
MET + LIN		$0.16(-0.16$ to 0.47$)$
MET + SIT		$0.17(0.01$ to 0.33$)$
MET + VIL		$0.05(-0.15$ to 0.25$)$
MET + GEM		$0.18(-0.31$ to 0.67$)$
MET + CAN		$0.09(-0.21$ to 0.38$)$
MET + DAP		$0.15(-0.16$ to 0.46$)$
MET + EMP		$-0.03(-0.35$ to 0.30$)$
MET + LIR		$-0.20(-0.47$ to 0.07$)$
MET + EXE		$-0.10(-0.34$ to 0.14$)$
MET + DUL		$-0.38(-0.72$ to -0.04$)$
MET + LIX		$0.20(-0.11$ to 0.51$)$
MET + ALB		$-0.11(-0.53$ to 0.32$)$
MET + ACA		$0.28(-0.42$ to 1.00$)$
MET + ROS		$-0.22(-0.47$ to 0.03$)$
MET + PIO		$0.07(-0.11$ to 0.25$)$
MET + IAS		$-0.35(-0.87$ to 0.15$)$
MET + IGA		$-0.11(-0.43$ to 0.22$)$
MET + IND		$0.03(-2.25$ to 2.36$)$
MET + DSP		$-0.27(-2.71$ to 2.27$)$
MET + GLI		$0.49(0.03$ to 0.95$)$
MET + GLL		$0.03(-0.52$ to 0.57$)$
MET + REP		$-0.10(-0.96$ to 0.76$)$
MET + MIT		$0.68(0.07$ to 1.28$)$
MET + NAT		$0.52(0.00$ to 1.03$)$
MET + SAX		$0.57(0.16$ to 0.97$)$
MET + ALO		$0.34(-0.13$ to 0.81$)$
MET + LIN		$0.38(-0.11$ to 0.85$)$
MET + SIT		$0.39(0.01$ to 0.77$)$
MET + VIL		$0.27(-0.14$ to 0.68$)$
MET + GEM		$0.40(-0.20$ to 0.99$)$
MET + CAN		$0.31(-0.15$ to 0.76$)$
MET + DAP		$0.37(-0.09$ to 0.84$)$
MET + EMP		$0.19(-0.30$ to 0.68$)$
MET + LIR		$0.02(-0.42$ to 0.45$)$
MET + EXE		$0.12(-0.30$ to 0.53$)$
MET + DUL		$0.16(-0.64$ to 0.32$)$
MET + LIX		$0.42(-0.05$ to 0.87$)$
MET + ALB		$0.11(-0.44$ to 0.67$)$
MET + ACA		$0.00(-0.10$ to 1.11$)$
MET + ROS		$0.32)$

Treatment	Reference	MD (95\% Crl)
MET + PIO		0.29 (-0.11 to 0.69)
MET + IAS		-0.13 (-0.59 to 0.32)
MET + IGA		0.11 (-0.33 to 0.54)
MET + IND		0.25 (-2.06 to 2.59)
MET + DSP		-0.05 (-2.51 to 2.50)
MET + GLL	MET + GLI	-0.46 (-0.96 to 0.02)
MET + REP		-0.59 (-1.42 to 0.23)
MET + MIT		0.19 (-0.37 to 0.73)
MET + NAT		0.02 (-0.45 to 0.50)
MET + SAX		0.08 (-0.21 to 0.36)
MET + ALO		-0.15 (-0.47 to 0.17)
MET + LIN		-0.12 (-0.54 to 0.30)
MET + SIT		-0.10 (-0.39 to 0.18)
MET + VIL		-0.22 (-0.55 to 0.10)
MET + GEM		-0.10 (-0.64 to 0.44)
MET + CAN		-0.19 (-0.57 to 0.19)
MET + DAP		-0.12 (-0.51 to 0.27)
MET + EMP		-0.30 (-0.72 to 0.12)
MET + LIR		-0.48 (-0.84 to -0.11)
MET + EXE		-0.37 (-0.72 to -0.02)
MET + DUL		-0.65 (-1.06 to -0.24)
MET + LIX		-0.08 (-0.47 to 0.32)
MET + ALB		$-0.38(-0.88$ to 0.13)
MET + ACA		0.01 (-0.74 to 0.77)
MET + ROS		-0.49 (-0.84 to -0.14)
MET + PIO		-0.20 (-0.52 to 0.12)
MET + IAS		-0.63 (-1.20 to -0.06)
MET + IGA		-0.38 (-0.79 to 0.02)
MET + IND		-0.24 (-2.53 to 2.10)
MET + DSP		-0.54 (-2.98 to 2.01)
MET + REP	MET + GLL	-0.13 (-1.00 to 0.75)
MET + MIT		0.65 (0.02 to 1.28)
MET + NAT		0.49 (-0.06 to 1.04)
MET + SAX		0.54 (0.10 to 0.98)
MET + ALO		0.31 (-0.18 to 0.81)
MET + LIN		0.35 (-0.15 to 0.85)
MET + SIT		0.36 (-0.05 to 0.77)
MET + VIL		0.24 (-0.12 to 0.60)
MET + GEM		0.37 (-0.24 to 0.99)
MET + CAN		0.28 (-0.20 to 0.75)
MET + DAP		0.34 (-0.15 to 0.83)
MET + EMP		0.16 (-0.35 to 0.68)

Treatment	Reference	MD (95\% Crl)
MET + LIR		-0.01 (-0.49 to 0.46)
MET + EXE		0.09 (-0.37 to 0.54)
MET + DUL		-0.19 (-0.70 to 0.32)
MET + LIX		0.39 (-0.10 to 0.89)
MET + ALB		0.08 (-0.50 to 0.67)
MET + ACA		0.47 (-0.34 to 1.28)
MET + ROS		-0.03 (-0.49 to 0.43)
MET + PIO		0.26 (-0.16 to 0.68)
MET + IAS		-0.16 (-0.81 to 0.47)
MET + IGA		0.08 (-0.42 to 0.58)
MET + IND		0.22 (-2.10 to 2.59)
MET + DSP		-0.08 (-2.56 to 2.50)
MET + MIT	MET + REP	0.78 (-0.13 to 1.69)
MET + NAT		0.62 (-0.24 to 1.48)
MET + SAX		0.67 (-0.13 to 1.45)
MET + ALO		0.44 (-0.39 to 1.27)
MET + LIN		0.48 (-0.36 to 1.31)
MET + SIT		0.49 (-0.30 to 1.27)
MET + VIL		0.37 (-0.43 to 1.16)
MET + GEM		0.50 (-0.41 to 1.40)
MET + CAN		0.41 (-0.42 to 1.21)
MET + DAP		0.47 (-0.35 to 1.29)
MET + EMP		0.29 (-0.55 to 1.12)
MET + LIR		0.12 (-0.70 to 0.93)
MET + EXE		0.22 (-0.58 to 1.02)
MET + DUL		-0.06 (-0.90 to 0.78)
MET + LIX		0.52 (-0.30 to 1.34)
MET + ALB		0.21 (-0.68 to 1.08)
MET + ACA		0.61 (-0.45 to 1.66)
MET + ROS		0.10 (-0.71 to 0.90)
MET + PIO		0.39 (-0.41 to 1.19)
MET + IAS		-0.03 (-0.97 to 0.89)
MET + IGA		0.21 (-0.63 to 1.04)
MET + IND		0.35 (-2.04 to 2.82)
MET + DSP		0.05 (-2.53 to 2.71)
MET + NAT	MET + MIT	-0.16 (-0.76 to 0.45)
MET + SAX		-0.11 (-0.61 to 0.40)
MET + ALO		-0.33 (-0.89 to 0.22)
MET + LIN		-0.30 (-0.87 to 0.27)
MET + SIT		-0.29 (-0.77 to 0.20)
MET + VIL		-0.41 (-0.92 to 0.11)
MET + GEM		-0.28 (-0.96 to 0.40)

Treatment	Reference	MD (95\% Crl)
MET + CAN		-0.37 (-0.91 to 0.16)
MET + DAP		-0.30 (-0.85 to 0.24)
MET + EMP		-0.49 (-1.06 to 0.10)
MET + LIR		-0.66 (-1.20 to -0.12)
MET + EXE		-0.56 (-1.08 to -0.03)
MET + DUL		-0.84 (-1.41 to -0.27)
MET + LIX		-0.26 (-0.82 to 0.30)
MET + ALB		-0.56 (-1.20 to 0.08)
MET + ACA		-0.17 (-1.02 to 0.68)
MET + ROS		-0.68 (-1.20 to -0.15)
MET + PIO		-0.38 (-0.89 to 0.12)
MET + IAS		-0.81 (-1.49 to -0.12)
MET + IGA		-0.57 (-1.13 to -0.01)
MET + IND		-0.42 (-2.74 to 1.94)
MET + DSP		-0.72 (-3.23 to 1.84)
MET + SAX	MET + NAT	0.05 (-0.36 to 0.46)
MET + ALO		-0.17 (-0.65 to 0.30)
MET + LIN		-0.14 (-0.63 to 0.35)
MET + SIT		-0.13 (-0.53 to 0.27)
MET + VIL		-0.24 (-0.67 to 0.17)
MET + GEM		-0.12 (-0.73 to 0.48)
MET + CAN		-0.21 (-0.67 to 0.25)
MET + DAP		-0.14 (-0.61 to 0.33)
MET + EMP		-0.33 (-0.83 to 0.17)
MET + LIR		-0.50 (-0.95 to -0.05)
MET + EXE		-0.39 (-0.84 to 0.04)
MET + DUL		-0.67 (-1.17 to -0.19)
MET + LIX		-0.10 (-0.58 to 0.38)
MET + ALB		-0.40 (-0.97 to 0.16)
MET + ACA		-0.01 (-0.80 to 0.78)
MET + ROS		-0.52 (-0.94 to -0.08)
MET + PIO		-0.22 (-0.62 to 0.17)
MET + IAS		-0.65 (-1.27 to -0.04)
MET + IGA		-0.41 (-0.89 to 0.07)
MET + IND		-0.26 (-2.58 to 2.10)
MET + DSP		-0.56 (-3.03 to 2.00)
MET + ALO	MET + SAX	-0.23 (-0.55 to 0.09)
MET + LIN		-0.19 (-0.55 to 0.15)
MET + SIT		-0.18 (-0.37 to 0.01)
MET + VIL		-0.30 (-0.54 to -0.06)
MET + GEM		-0.17 (-0.67 to 0.32)
MET + CAN		-0.27 (-0.58 to 0.04)

Treatment	Reference	MD (95\% Crl)
MET + DAP		-0.20 (-0.52 to 0.12)
MET + EMP		-0.38 (-0.74 to -0.02)
MET + LIR		$-0.55(-0.85$ to -0.26$)$
MET + EXE		-0.45 (-0.72 to -0.18)
MET + DUL		-0.73 (-1.08 to -0.38)
MET + LIX		-0.15 (-0.49 to 0.18)
MET + ALB		-0.46 (-0.90 to 0.00)
MET + ACA		-0.07 (-0.78 to 0.66)
MET + ROS		-0.57 (-0.84 to -0.29)
MET + PIO		-0.28 (-0.51 to -0.05)
MET + IAS		-0.70 (-1.23 to -0.18)
MET + IGA		-0.46 (-0.81 to -0.11)
MET + IND		-0.32 (-2.60 to 2.03)
MET + DSP		-0.62 (-3.07 to 1.91)
MET + LIN	MET + ALO	0.03 (-0.40 to 0.46)
MET + SIT		0.05 (-0.26 to 0.35)
MET + VIL		-0.07 (-0.42 to 0.27)
MET + GEM		0.05 (-0.50 to 0.61)
MET + CAN		-0.04 (-0.43 to 0.35)
MET + DAP		0.03 (-0.37 to 0.43)
MET + EMP		-0.15 (-0.59 to 0.28)
MET + LIR		-0.33 (-0.71 to 0.05)
MET + EXE		-0.22 (-0.59 to 0.14)
MET + DUL		-0.50 (-0.93 to -0.07)
MET + LIX		0.07 (-0.34 to 0.48)
MET + ALB		-0.23 (-0.74 to 0.28)
MET + ACA		0.16 (-0.60 to 0.92)
MET + ROS		-0.34 (-0.71 to 0.02)
MET + PIO		-0.05 (-0.39 to 0.28)
MET + IAS		-0.48 (-1.05 to 0.10)
MET + IGA		-0.24 (-0.66 to 0.18)
MET + IND		-0.09 (-2.39 to 2.28)
MET + DSP		-0.39 (-2.85 to 2.14)
MET + SIT	MET + LIN	0.01 (-0.31 to 0.34)
MET + VIL		-0.10 (-0.46 to 0.25)
MET + GEM		0.02 (-0.54 to 0.58)
MET + CAN		-0.07 (-0.48 to 0.33)
MET + DAP		0.00 (-0.42 to 0.42)
MET + EMP		-0.19 (-0.62 to 0.25)
MET + LIR		-0.36 (-0.75 to 0.04)
MET + EXE		-0.25 (-0.63 to 0.12)
MET + DUL		-0.53 (-0.98 to -0.09)

Treatment	Reference	MD (95\% CrI)
MET + LIX		$0.04(-0.39$ to 0.47$)$
MET + ALB		$-0.26(-0.78$ to 0.26$)$
MET + ACA		$0.13(-0.63$ to 0.90$)$
MET + ROS		$-0.38(-0.76$ to 0.01$)$
MET + PIO		$-0.08(-0.43$ to 0.26$)$
MET + IAS		$-0.51(-1.10$ to 0.08$)$
MET + IGA		$-0.27(-0.70$ to 0.17$)$
MET + IND		$-0.12(-2.41$ to 2.22$)$
MET + DSP		$-0.42(-2.88$ to 2.13$)$
MET + VIL		$-0.12(-0.31$ to 0.08$)$
MET + GEM		$0.01(-0.45$ to 0.47$)$
MET + CAN	$-0.08(-0.36$ to 0.19$)$	
MET + DAP		$-0.02(-0.31$ to 0.28$)$
MET + EMP		$-0.20(-0.54$ to 0.14$)$
MET + LIR		$-0.37(-0.62$ to -0.12$)$
MET + EXE		$-0.27(-0.50$ to -0.04$)$
MET + DUL		$-0.55(-0.87$ to -0.23$)$
MET + LIX		$0.03(-0.26$ to 0.32$)$
MET + ALB		$-0.28(-0.70$ to 0.15$)$
MET + ACA		$0.12(-0.59$ to 0.82$)$
MET + ROS		$-0.39(-0.63$ to -0.15$)$
MET + PIO		$-0.10(-0.28$ to 0.09$)$
MET + IAS		$-0.52(-1.03$ to -0.02$)$
MET + IGA		$-0.28(-0.59$ to 0.02$)$
MET + IND		$-0.14(-2.41$ to 2.19$)$
MET + DSP		$-0.44(-2.88$ to 2.09$)$
MET + GEM		$0.13(-0.37$ to 0.63$)$
MET + CAN		$0.03(-0.28$ to 0.35$)$
MET + DAP		$0.10(-0.23$ to 0.43$)$
MET + EMP		$-0.08(-0.45$ to 0.28$)$
MET + LIR		$-0.26(-0.56$ to 0.05$)$
MET + EXE		$-0.15(-0.43$ to 0.13$)$
MET + DUL		$-0.43(-0.79$ to -0.07$)$
MET + LIX		$0.14(-0.19$ to 0.49$)$
MET + ALB		$-0.16(-0.61$ to 0.29$)$
MET + ACA		$0.23(-0.50$ to 0.96$)$
MET + ROS		$-0.27(-0.56$ to 0.02$)$
MET + PIO		$0.02(-0.20$ to 0.24$)$
MET + IAS		$-0.41(-0.94$ to 0.12$)$
MET + IGA	$-0.16(-0.51$ to 0.19$)$	
MET + IND		$-0.02(-2.31$ to 2.32$)$
MET + DSP		-2.37 to 2.22$)$
		MET + VIL

Treatment	Reference MET + GEM	MD (95\% CrI)
MET + CAN		$-0.09(-0.62$ to 0.44$)$
MET + DAP		$-0.02(-0.57$ to 0.52$)$
MET + EMP		$-0.21(-0.78$ to 0.36$)$
MET + LIR		$-0.38(-0.91$ to 0.14$)$
MET + EXE		$-0.28(-0.79$ to 0.23$)$
MET + DUL		$-0.56(-1.12$ to 0.00$)$
MET + LIX		$0.02(-0.52$ to 0.56$)$
MET + ALB		$-0.28(-0.91$ to 0.34$)$
MET + ACA		$0.11(-0.73$ to 0.96$)$
MET + ROS		$-0.40(-0.92$ to 0.12$)$
MET + PIO		$-0.10(-0.60$ to 0.39$)$
MET + IAS		$-0.53(-1.22$ to 0.15$)$
MET + IGA		$-0.29(-0.84$ to 0.26$)$
MET + IND		$-0.14(-2.46$ to 2.23$)$
MET + DSP		$-0.44(-2.94$ to 2.13$)$
MET + DAP		$0.07(-0.31$ to 0.44$)$
MET + EMP		$-0.12(-0.53$ to 0.30$)$
MET + LIR		$-0.29(-0.64$ to 0.07$)$
MET + EXE		$-0.18(-0.52$ to 0.15$)$
MET + DUL		$-0.46(-0.87$ to -0.06$)$
MET + LIX		$0.11(-0.27$ to 0.50$)$
MET + ALB		$-0.19(-0.68$ to 0.30$)$
MET + ACA		$0.20(-0.54$ to 0.95$)$
MET + ROS		$-0.30(-0.65$ to 0.04$)$
MET + PIO		$-0.01(-0.32$ to 0.30$)$
MET + IAS		$-0.44(-1.01$ to 0.13$)$
MET + IGA		$-0.20(-0.59$ to 0.20$)$
MET + IND		$-0.05(-2.35$ to 2.29$)$
MET + DSP		$-0.35(-2.80$ to 2.20$)$
MET + EMP		$-0.18(-0.61$ to 0.24$)$
MET + LIR		$-0.36(-0.73$ to 0.01$)$
MET + EXE		$-0.25(-0.61$ to 0.11$)$
MET + DUL		$-0.53(-0.95$ to -0.12$)$
MET + LIX		$0.04(-0.36$ to 0.45$)$
MET + ALB		$-0.26(-0.76$ to 0.24$)$
MET + ACA		$0.13(-0.62$ to 0.89$)$
MET + ROS		$-0.37(-0.73$ to -0.02$)$
MET + PIO		$-0.08(-0.41$ to 0.24$)$
MET + IAS		$-0.51(-1.08$ to 0.06$)$
MET + IGA		$-0.27(-0.68$ to 0.15$)$
MET + IND		$-0.12(-2.42$ to 2.22$)$
MET + DSP		0.89 to 2.12$)$
		MET + DAP

Treatment	Reference	MD (95\% Crl)
MET + LIR	MET + EMP	-0.17 (-0.58 to 0.23)
MET + EXE		-0.07 (-0.45 to 0.32)
MET + DUL		-0.35 (-0.80 to 0.10)
MET + LIX		0.23 (-0.21 to 0.66)
MET + ALB		-0.08 (-0.60 to 0.45)
MET + ACA		0.31 (-0.45 to 1.09)
MET + ROS		-0.19 (-0.58 to 0.21)
MET + PIO		0.10 (-0.25 to 0.46)
MET + IAS		-0.32 (-0.92 to 0.27)
MET + IGA		-0.08 (-0.52 to 0.37)
MET + IND		0.06 (-2.23 to 2.40)
MET + DSP		-0.24 (-2.70 to 2.32)
MET + EXE	MET + LIR	0.11 (-0.21 to 0.42)
MET + DUL		-0.17 (-0.50 to 0.15)
MET + LIX		0.40 (0.09 to 0.72)
MET + ALB		0.10 (-0.39 to 0.58)
MET + ACA		0.49 (-0.25 to 1.24)
MET + ROS		-0.02 (-0.34 to 0.32)
MET + PIO		0.28 (-0.01 to 0.57)
MET + IAS		-0.15 (-0.70 to 0.40)
MET + IGA		0.09 (-0.29 to 0.47)
MET + IND		0.24 (-2.05 to 2.57)
MET + DSP		-0.06 (-2.51 to 2.47)
MET + DUL	MET + EXE	-0.28 (-0.66 to 0.10)
MET + LIX		0.29 (-0.01 to 0.60)
MET + ALB		-0.01 (-0.48 to 0.47)
MET + ACA		0.38 (-0.34 to 1.13)
MET + ROS		-0.12 (-0.43 to 0.19)
MET + PIO		0.17 (-0.08 to 0.43)
MET + IAS		-0.26 (-0.77 to 0.26)
MET + IGA		-0.01 (-0.31 to 0.29)
MET + IND		0.13 (-2.15 to 2.47)
MET + DSP		-0.17 (-2.61 to 2.36)
MET + LIX	MET + DUL	0.57 (0.18 to 0.98)
MET + ALB		0.27 (-0.25 to 0.79)
MET + ACA		0.66 (-0.11 to 1.43)
MET + ROS		0.16 (-0.22 to 0.54)
MET + PIO		0.45 (0.10 to 0.80)
MET + IAS		0.02 (-0.57 to 0.61)
MET + IGA		0.27 (-0.16 to 0.70)
MET + IND		0.41 (-1.89 to 2.75)
MET + DSP		0.11 (-2.35 to 2.67)

ACA = acarbose; ALB = albiglutide; ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DSP = insulin deludec/insulin aspart mix; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; IAS = insulin aspart; IGA = insulin glargine; IND = insulin degludec; GEM = gemigliptin; GLC = glicazide; GLI = glipizide; GLL = gliclazide; GLM = glimepiride; GLY = glyburide; LIN = linagliptin; LIR = liraglutide; LIX = lixisenatide; MD = mean difference; $\mathrm{MET}=\mathrm{metformin}$; MIT = mitiglinide; NAT = nateglinide; $\mathrm{PIO}=$ pioglitazone; REP = repaglinide; ROS = rosiglitazone; $\mathrm{SAX}=$ saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

HDL Cholesterol

Table 51: High-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + GLC	MET	-0.07 (-0.14 to 0.00)
MET + GLM		-0.02 (-0.06 to 0.01)
MET + GLL		-0.09 (-0.26 to 0.08)
MET + REP		-0.02 (-0.12 to 0.08)
MET + NAT		0.00 (-0.05 to 0.05)
MET + SAX		-0.03 (-0.15 to 0.08)
MET + ALO		0.00 (-0.06 to 0.06)
MET + LIN		0.01 (-0.06 to 0.08)
MET + SIT		0.00 (-0.03 to 0.02)
MET + VIL		-0.04 (-0.09 to 0.02)
MET + CAN		0.08 (0.04 to 0.12)
MET + DAP		0.04 (-0.04 to 0.13)
MET + EMP		0.04 (0.00 to 0.09)
MET + LIR		0.00 (-0.05 to 0.05)
MET + EXE		-0.02 (-0.06 to 0.02)
MET + DUL		-0.02 (-0.06 to 0.03)
MET + ROS		0.10 (0.05 to 0.14)
MET + PIO		0.10 (0.07 to 0.13)
MET + IGA		-0.01 (-0.08 to 0.06)
MET + GLM	MET + GLC	0.04 (-0.03 to 0.11)
MET + GLL		-0.02 (-0.20 to 0.16)
MET + REP		0.05 (-0.07 to 0.16)
MET + NAT		0.07 (-0.02 to 0.15)
MET + SAX		0.04 (-0.10 to 0.17)
MET + ALO		0.07 (-0.02 to 0.15)
MET + LIN		0.07 (-0.02 to 0.17)
MET + SIT		0.07 (0.00 to 0.14)
MET + VIL		0.03 (-0.04 to 0.11)
MET + CAN		0.15 (0.07 to 0.22)
MET + DAP		0.11 (0.01 to 0.22)
MET + EMP		0.11 (0.03 to 0.19)
MET + LIR		0.07 (-0.02 to 0.15)
MET + EXE		0.05 (-0.03 to 0.12)
MET + DUL		0.05 (-0.03 to 0.13)
MET + ROS		0.16 (0.09 to 0.25)
MET + PIO		0.17 (0.11 to 0.23)
MET + IGA		0.06 (-0.04 to 0.15)
MET + GLL	MET + GLM	-0.07 (-0.24 to 0.11)

Treatment		Reference
MET + REP		$0.00(-0.10$ to 0.11$)$
MET + NAT		$0.02(-0.04$ to 0.09$)$
MET + SAX		$-0.01(-0.13$ to 0.11$)$
MET + ALO		$0.02(-0.04$ to 0.10$)$
MET + LIN		$0.03(-0.03$ to 0.09$)$
MET + SIT		$0.02(-0.02$ to 0.06$)$
MET + VIL		$-0.02(-0.07$ to 0.05$)$
MET + CAN		$0.10(0.05$ to 0.16$)$
MET + DAP		$0.07(-0.02$ to 0.16$)$
MET + EMP		$0.07(0.01$ to 0.13$)$
MET + LIR		$0.02(-0.04$ to 0.09$)$
MET + EXE		$0.00(-0.05$ to 0.06$)$
MET + DUL		$0.01(-0.05$ to 0.07$)$
MET + ROS		$0.12(0.07$ to 0.18$)$
MET + PIO		$0.13(0.09$ to 0.16$)$
MET + IGA		$0.01(-0.06$ to 0.09$)$
MET + REP		$0.07(-0.13$ to 0.27$)$
MET + NAT		$0.09(-0.09$ to 0.27$)$
MET + SAX		$0.06(-0.15$ to 0.26$)$
MET + ALO		$0.09(-0.09$ to 0.27$)$
MET + LIN		$0.10(-0.09$ to 0.28$)$
MET + SIT		$0.09(-0.08$ to 0.26$)$
MET + VIL		$0.05(-0.11$ to 0.21$)$
MET + CAN		$0.17(0.00$ to 0.34$)$
MET + DAP		$0.13(-0.06$ to 0.33$)$
MET + EMP		$0.13(-0.04$ to 0.31$)$
MET + LIR		$0.09(-0.09$ to 0.26$)$
MET + EXE		$0.07(-0.10$ to 0.24$)$
MET + DUL		$0.07(-0.10$ to 0.25$)$
MET + ROS		$0.19(0.01$ to 0.36$)$
MET + PIO		$0.19(0.02$ to 0.36$)$
MET + IGA		$0.08(-0.11$ to 0.26$)$
MET + NAT		$0.02(-0.09$ to 0.13$)$
MET + SAX		$-0.01(-0.16$ to 0.14$)$
MET + ALO		$0.02(-0.09$ to 0.14$)$
MET + LIN		$0.03(-0.09$ to 0.15$)$
MET + SIT		$0.02(-0.08$ to 0.12$)$
MET + VIL		$-0.02(-0.13$ to 0.09$)$
MET + CAN		$0.10(0.00$ to 0.20$)$
MET + DAP		$0.07(-0.06$ to 0.19$)$
MET + EMP		$0.02(-0.04$ to 0.17$)$
MET + LIR		0.09 to 0.13$)$
		MET + REP

Treatment	Reference	MD (95\% Crl)
MET + EXE		0.00 (-0.10 to 0.11)
MET + DUL		0.00 (-0.10 to 0.11)
MET + ROS		0.12 (0.01 to 0.22)
MET + PIO		0.12 (0.02 to 0.22)
MET + IGA		0.01 (-0.11 to 0.13)
MET + SAX	MET + NAT	-0.03 (-0.16 to 0.10)
MET + ALO		0.00 (-0.08 to 0.08)
MET + LIN		0.01 (-0.08 to 0.09)
MET + SIT		0.00 (-0.06 to 0.06)
MET + VIL		-0.04 (-0.11 to 0.04)
MET + CAN		0.08 (0.01 to 0.15)
MET + DAP		0.04 (-0.05 to 0.14)
MET + EMP		0.04 (-0.03 to 0.11)
MET + LIR		0.00 (-0.08 to 0.08)
MET + EXE		-0.02 (-0.09 to 0.05)
MET + DUL		-0.02 (-0.09 to 0.06)
MET + ROS		0.10 (0.03 to 0.17)
MET + PIO		0.10 (0.04 to 0.17)
MET + IGA		-0.01 (-0.10 to 0.08)
MET + ALO	MET + SAX	0.03 (-0.10 to 0.16)
MET + LIN		0.04 (-0.09 to 0.17)
MET + SIT		0.03 (-0.09 to 0.15)
MET + VIL		-0.01 (-0.13 to 0.12)
MET + CAN		0.11 (-0.01 to 0.23)
MET + DAP		0.08 (0.00 to 0.16)
MET + EMP		0.08 (-0.05 to 0.20)
MET + LIR		0.03 (-0.09 to 0.16)
MET + EXE		0.01 (-0.11 to 0.13)
MET + DUL		0.02 (-0.11 to 0.14)
MET + ROS		0.13 (0.00 to 0.25)
MET + PIO		0.13 (0.01 to 0.25)
MET + IGA		0.02 (-0.11 to 0.15)
MET + LIN	MET + ALO	0.01 (-0.09 to 0.10)
MET + SIT		0.00 (-0.07 to 0.06)
MET + VIL		-0.04 (-0.11 to 0.04)
MET + CAN		0.08 (0.00 to 0.15)
MET + DAP		0.05 (-0.06 to 0.15)
MET + EMP		0.04 (-0.03 to 0.12)
MET + LIR		0.00 (-0.08 to 0.08)
MET + EXE		-0.02 (-0.09 to 0.05)
MET + DUL		-0.01 (-0.09 to 0.06)
MET + ROS		0.10 (0.02 to 0.17)

Treatment	Reference	MD (95\% Crl)
MET + PIO		$0.10(0.04$ to 0.16$)$
MET + IGA		$-0.01(-0.11$ to 0.08$)$
MET + SIT		$-0.01(-0.08$ to 0.06$)$
MET + VIL		$-0.05(-0.12$ to 0.04$)$
MET + CAN		$0.07(-0.01$ to 0.15$)$
MET + DAP		$0.04(-0.07$ to 0.15$)$
MET + EMP		$0.04(-0.05$ to 0.12$)$
MET + LIR		$-0.01(-0.09$ to 0.08$)$
MET + EXE		$-0.03(-0.10$ to 0.05$)$
MET + DUL		$-0.02(-0.11$ to 0.06$)$
MET + ROS		$0.09(0.01$ to 0.17$)$
MET + PIO		$0.10(0.03$ to 0.17$)$
MET + IGA		$-0.02(-0.12$ to 0.08$)$
MET + VIL		$-0.04(-0.09$ to 0.02$)$
MET + CAN		$0.08(0.04$ to 0.12$)$
MET + DAP		$0.05(-0.04$ to 0.13$)$
MET + EMP		$0.05(-0.01$ to 0.10$)$
MET + LIR		$0.00(-0.05$ to to.05)
MET + EXE		$-0.02(-0.06$ to 0.02$)$
MET + DUL		$-0.01(-0.06$ to 0.03$)$
MET + ROS		$0.10(0.05$ to 0.15$)$
MET + PIO		$0.10(0.07$ to 0.14$)$
MET + IGA		$-0.01(-0.08$ to 0.05$)$
MET + CAN		$0.12(0.05$ to 0.18$)$
MET + DAP		$0.09(-0.02$ to 0.18$)$
MET + EMP		$0.09(0.01$ to 0.15$)$
MET + LIR		$0.04(-0.04$ to 0.10$)$
MET + EXE		$0.02(-0.05$ to 0.08$)$
MET + DUL		$0.03(-0.05$ to 0.09$)$
MET + ROS		$0.14(0.07$ to 0.20$)$
MET + PIO		$0.14(0.09$ to 0.18$)$
MET + IGA		$0.03(-0.06$ to 0.11$)$
MET + DAP		$-0.03(-0.13$ to 0.06$)$
MET + EMP		$-0.04(-0.10$ to 0.02$)$
MET + LIR		$-0.08(-0.14$ to -0.02$)$
MET + EXE		$-0.10(-0.15$ to -0.04$)$
MET + DUL		$-0.09(-0.15$ to -0.04$)$
MET + ROS		$0.02(-0.04$ to 0.08$)$
MET + PIO		$0.02(-0.03$ to 0.07$)$
MET + IGA		$-0.09(-0.17$ to -0.02$)$
MET + EMP		$0.00(-0.09$ to 0.09$)$
MET + LIR		$-0.05(-0.14$ to 0.05$)$
		MET + DAP

Treatment	Reference	MD (95\% Crl)
MET + EXE		-0.07 (-0.16 to 0.03)
MET + DUL		-0.06 (-0.15 to 0.04)
MET + ROS		0.05 (-0.04 to 0.14)
MET + PIO		0.06 (-0.03 to 0.15)
MET + IGA		-0.06 (-0.16 to 0.05)
MET + LIR	MET + EMP	-0.04 (-0.11 to 0.03)
MET + EXE		-0.06 (-0.12 to 0.00)
MET + DUL		-0.06 (-0.12 to 0.01)
MET + ROS		0.05 (-0.01 to 0.12)
MET + PIO		0.06 (0.01 to 0.11)
MET + IGA		-0.06 (-0.14 to 0.03)
MET + EXE	MET + LIR	-0.02 (-0.08 to 0.04)
MET + DUL		-0.01 (-0.06 to 0.03)
MET + ROS		0.10 (0.03 to 0.17)
MET + PIO		0.10 (0.04 to 0.16)
MET + IGA		-0.01 (-0.09 to 0.07)
MET + DUL	MET + EXE	0.01 (-0.06 to 0.06)
MET + ROS		0.12 (0.06 to 0.18)
MET + PIO		0.12 (0.08 to 0.17)
MET + IGA		0.01 (-0.07 to 0.08)
MET + ROS	MET + DUL	0.11 (0.05 to 0.18)
MET + PIO		0.12 (0.06 to 0.17)
MET + IGA		0.00 (-0.08 to 0.08)
MET + PIO	MET + ROS	0.01 (-0.05 to 0.06)
MET + IGA		-0.11 (-0.19 to -0.03)
MET + IGA	MET + PIO	-0.11 (-0.19 to -0.04)
Random-effects model Residual deviance 89.57 vs. 76 data points Deviance information criteria -315.915		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; $\mathrm{DUL}=$ dulaglutide; $\mathrm{EMP}=$ empagliflozin; $\mathrm{EXE}=$ exenatide; $\mathrm{GLC}=$ glicazide; $\mathrm{GLL}=$ gliclazide; $\mathrm{GLM}=$ glimepiride; $\mathrm{LIN}=$ linagliptin; $\mathrm{LIR}=$ liraglutide; $\mathrm{MD}=$ mean difference; $\mathrm{MET}=$ metformin; $\mathrm{NAT}=$ nateglinide; $\mathrm{PIO}=$ pioglitazone; REP = repaglinide; ROS = rosiglitazone; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 32: Consistency Plot for High-Density Lipoprotein Cholesterol (Individual-Drug Case Analysis)

LDL Cholesterol

Table 52: Low-Density Lipoprotein Cholesterol: Mean Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	MD (95\% CrI)
MET + GLC		$-0.13(-0.43$ to 0.15$)$
MET + GLM		$0.09(-0.09$ to 0.25$)$
MET + REP		$0.01(-0.37$ to 0.40$)$
MET + NAT		$0.10(-0.26$ to 0.45$)$
MET + SAX		$0.11(-0.32$ to 0.56$)$
MET + ALO		$0.02(-0.23$ to 0.28$)$
MET + LIN		$0.03(-0.28$ to 0.32$)$
MET + SIT		$-0.01(-0.11$ to 0.09$)$
MET + VIL		$-0.28(-0.49$ to -0.07$)$
MET + CAN		$0.17(0.02$ to 0.32$)$
MET + DAP		$0.17(-0.16$ to 0.49$)$
MET + EMP		$0.13(-0.05$ to 0.31$)$
MET + LIR	$-0.12(-0.35$ to 0.10$)$	
MET + EXE	$0.08(-0.09$ to 0.24$)$	

Treatment	Reference	MD (95\% Crl)
MET + DUL		-0.23 (-0.44 to -0.02)
MET + ROS		0.35 (0.18 to 0.52)
MET + PIO		0.14 (0.00 to 0.27)
MET + IGA		-0.09 (-0.33 to 0.15)
MET + GLM	MET + GLC	0.22 (-0.09 to 0.52)
MET + REP		0.15 (-0.34 to 0.63)
MET + NAT		0.23 (-0.23 to 0.70)
MET + SAX		0.25 (-0.28 to 0.79)
MET + ALO		0.16 (-0.20 to 0.52)
MET + LIN		0.16 (-0.23 to 0.54)
MET + SIT		0.12 (-0.17 to 0.42)
MET + VIL		-0.15 (-0.48 to 0.20)
MET + CAN		0.30 (-0.02 to 0.63)
MET + DAP		0.30 (-0.13 to 0.75)
MET + EMP		0.26 (-0.08 to 0.61)
MET + LIR		0.02 (-0.34 to 0.37)
MET + EXE		0.21 (-0.11 to 0.53)
MET + DUL		-0.09 (-0.44 to 0.26)
MET + ROS		0.48 (0.15 to 0.82)
MET + PIO		0.27 (0.01 to 0.53)
MET + IGA		0.04 (-0.32 to 0.41)
MET + REP	MET + GLM	-0.07 (-0.49 to 0.36)
MET + NAT		0.01 (-0.38 to 0.42)
MET + SAX		0.03 (-0.43 to 0.51)
MET + ALO		-0.06 (-0.35 to 0.24)
MET + LIN		-0.06 (-0.30 to 0.19)
MET + SIT		-0.10 (-0.27 to 0.08)
MET + VIL		-0.37 (-0.62 to -0.11)
MET + CAN		0.08 (-0.14 to 0.31)
MET + DAP		0.08 (-0.28 to 0.46)
MET + EMP		0.04 (-0.20 to 0.30)
MET + LIR		-0.21 (-0.47 to 0.06)
MET + EXE		-0.01 (-0.23 to 0.22)
MET + DUL		-0.31 (-0.56 to -0.05)
MET + ROS		0.26 (0.03 to 0.51)
MET + PIO		0.05 (-0.11 to 0.21)
MET + IGA		-0.18 (-0.45 to 0.11)
MET + NAT	MET + REP	0.08 (-0.45 to 0.61)
MET + SAX		0.10 (-0.48 to 0.70)
MET + ALO		0.01 (-0.45 to 0.47)
MET + LIN		0.01 (-0.48 to 0.50)
MET + SIT		-0.02 (-0.42 to 0.38)

Treatment	Reference	MD (95\% Crl)
MET + VIL		-0.30 (-0.74 to 0.15)
MET + CAN		0.16 (-0.26 to 0.58)
MET + DAP		0.15 (-0.35 to 0.67)
MET + EMP		0.12 (-0.31 to 0.55)
MET + LIR		-0.13 (-0.58 to 0.31)
MET + EXE		0.07 (-0.35 to 0.49)
MET + DUL		-0.24 (-0.67 to 0.20)
MET + ROS		0.33 (-0.09 to 0.76)
MET + PIO		0.12 (-0.28 to 0.53)
MET + IGA		-0.11 (-0.56 to 0.36)
MET + SAX	MET + NAT	0.02 (-0.54 to 0.59)
MET + ALO		-0.07 (-0.52 to 0.37)
MET + LIN		-0.07 (-0.54 to 0.39)
MET + SIT		-0.11 (-0.48 to 0.26)
MET + VIL		-0.38 (-0.79 to 0.03)
MET + CAN		0.07 (-0.32 to 0.46)
MET + DAP		0.07 (-0.40 to 0.55)
MET + EMP		0.03 (-0.37 to 0.43)
MET + LIR		-0.22 (-0.64 to 0.21)
MET + EXE		-0.02 (-0.42 to 0.37)
MET + DUL		-0.32 (-0.74 to 0.09)
MET + ROS		0.25 (-0.14 to 0.65)
MET + PIO		0.04 (-0.35 to 0.42)
MET + IGA		-0.19 (-0.62 to 0.24)
MET + ALO	MET + SAX	-0.09 (-0.61 to 0.42)
MET + LIN		-0.09 (-0.63 to 0.43)
MET + SIT		-0.12 (-0.59 to 0.32)
MET + VIL		-0.40 (-0.89 to 0.10)
MET + CAN		0.06 (-0.41 to 0.52)
MET + DAP		0.05 (-0.25 to 0.35)
MET + EMP		0.02 (-0.46 to 0.49)
MET + LIR		-0.23 (-0.73 to 0.25)
MET + EXE		-0.03 (-0.51 to 0.43)
MET + DUL		-0.34 (-0.83 to 0.14)
MET + ROS		0.23 (-0.24 to 0.70)
$\mathrm{MET}+\mathrm{PIO}$		0.02 (-0.45 to 0.47)
MET + IGA		-0.21 (-0.71 to 0.30)
MET + LIN	MET + ALO	0.00 (-0.38 to 0.37)
MET + SIT		-0.03 (-0.31 to 0.23)
MET + VIL		-0.31 (-0.63 to 0.01)
MET + CAN		0.15 (-0.15 to 0.44)
MET + DAP		0.14 (-0.27 to 0.56)

Treatment	Reference	MD (95\% Crl)
MET + EMP		0.11 (-0.21 to 0.42)
MET + LIR		-0.14 (-0.48 to 0.19)
MET + EXE		0.05 (-0.24 to 0.35)
MET + DUL		-0.25 (-0.58 to 0.07)
MET + ROS		0.32 (0.02 to 0.63)
MET + PIO		0.11 (-0.14 to 0.36)
MET + IGA		-0.12 (-0.46 to 0.23)
MET + SIT	MET + LIN	-0.04 (-0.33 to 0.27)
MET + VIL		-0.31 (-0.65 to 0.05)
MET + CAN		0.14 (-0.18 to 0.48)
MET + DAP		0.14 (-0.30 to 0.60)
MET + EMP		0.10 (-0.24 to 0.46)
MET + LIR		-0.15 (-0.50 to 0.23)
MET + EXE		0.05 (-0.28 to 0.38)
MET + DUL		-0.25 (-0.61 to 0.10)
MET + ROS		0.32 (-0.01 to 0.67)
MET + PIO		0.11 (-0.18 to 0.40)
MET + IGA		-0.12 (-0.48 to 0.26)
MET + VIL	MET + SIT	-0.27 (-0.48 to -0.06)
MET + CAN		0.18 (0.02 to 0.34)
MET + DAP		0.18 (-0.16 to 0.52)
MET + EMP		0.14 (-0.06 to 0.35)
MET + LIR		-0.11 (-0.32 to 0.10)
MET + EXE		0.09 (-0.08 to 0.26)
MET + DUL		-0.22 (-0.41 to -0.01)
MET + ROS		0.36 (0.18 to 0.55)
MET + PIO		0.15 (0.01 to 0.29)
MET + IGA		-0.08 (-0.30 to 0.15)
MET + CAN	MET + VIL	0.45 (0.20 to 0.71)
MET + DAP		0.45 (0.06 to 0.83)
MET + EMP		0.41 (0.14 to 0.69)
MET + LIR		0.16 (-0.13 to 0.46)
MET + EXE		0.36 (0.10 to 0.61)
MET + DUL		0.06 (-0.23 to 0.34)
MET + ROS		0.63 (0.37 to 0.90)
MET + PIO		0.42 (0.20 to 0.64)
MET + IGA		0.19 (-0.12 to 0.50)
MET + DAP	MET + CAN	0.00 (-0.36 to 0.36)
MET + EMP		-0.04 (-0.28 to 0.20)
MET + LIR		-0.29 (-0.55 to -0.04)
MET + EXE		-0.09 (-0.31 to 0.12)
MET + DUL		-0.40 (-0.65 to -0.15)

Treatment	Reference	MD (95\% Crl)
MET + ROS		0.18 (-0.04 to 0.41)
MET + PIO		-0.03 (-0.24 to 0.16)
MET + IGA		-0.26 (-0.53 to 0.01)
MET + EMP	MET + DAP	-0.04 (-0.41 to 0.34)
MET + LIR		-0.29 (-0.68 to 0.10)
MET + EXE		-0.09 (-0.46 to 0.27)
MET + DUL		-0.39 (-0.78 to -0.01)
MET + ROS		0.18 (-0.18 to 0.55)
MET + PIO		-0.03 (-0.39 to 0.31)
MET + IGA		-0.26 (-0.67 to 0.15)
MET + LIR	MET + EMP	-0.25 (-0.54 to 0.04)
MET + EXE		-0.05 (-0.31 to 0.19)
MET + DUL		-0.36 (-0.63 to -0.09)
MET + ROS		0.22 (-0.03 to 0.47)
MET + PIO		0.01 (-0.22 to 0.23)
MET + IGA		-0.22 (-0.52 to 0.08)
MET + EXE	MET + LIR	0.20 (-0.07 to 0.46)
MET + DUL		-0.11 (-0.32 to 0.10)
MET + ROS		0.47 (0.20 to 0.75)
MET + PIO		0.26 (0.01 to 0.50)
MET + IGA		0.03 (-0.28 to 0.34)
MET + DUL	MET + EXE	-0.31 (-0.56 to -0.05)
MET + ROS		0.27 (0.04 to 0.51)
MET + PIO		0.06 (-0.13 to 0.24)
MET + IGA		-0.17 (-0.42 to 0.09)
MET + ROS	MET + DUL	0.57 (0.32 to 0.84)
MET + PIO		0.36 (0.13 to 0.59)
MET + IGA		0.13 (-0.16 to 0.44)
MET + PIO	MET + ROS	-0.21 (-0.43 to -0.01)
MET + IGA		-0.44 (-0.73 to -0.15)
MET + IGA	$\mathrm{MET}+\mathrm{PIO}$	-0.23 (-0.48 to 0.04)
Random-effects model Residual deviance 76.19 vs. 70 data points Deviance information criteria -124.736		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLC = glicazide; GLM = glimepiride; LIN = linagliptin; LIR = liraglutide; $M D=$ mean difference; $M E T=$ metformin; $N A T=$ nateglinide; $P I O=$ pioglitazone; REP $=$ repaglinide; ROS = rosiglitazone; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 33: Consistency Plot for Low-Density Lipoprotein Cholesterol (Individual-Drug Case Analysis)

Nonfatal Myocardial Infarction (Nonfatal MI)

Table 53: Nonfatal Myocardial Infarction: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + GLC	MET	$0.30(0.00$ to 144.70$)$	$0.30(0.00$ to 127.00$)$	$-0.07(-0.61$ to 11.85$)$
MET + GLM		$2.28(0.14$ to 121.20$)$	$2.28(0.14$ to 113.60$)$	$0.19(-0.41$ to 6.70$)$
MET + GLI		$0.64(0.01$ to 17.64$)$	$0.64(0.01$ to 17.32$)$	$-0.04(-0.53$ to 2.05$)$
MET + NAT		$0.03(0.00$ to 23.99$)$	$0.03(0.00$ to 23.50$)$	$-0.13(-0.66$ to 2.03$)$
MET + SAX		$1.96(0.16$ to 32.40$)$	$1.96(0.16$ to 31.59$)$	$0.13(-0.36$ to 3.10$)$
MET + ALO		$0.63(0.01$ to 18.06$)$	$0.63(0.01$ to 17.70$)$	$-0.04(-0.53$ to 2.10$)$
MET + LIN		$1.44(0.09$ to 69.01$)$	$1.44(0.09$ to 66.58$)$	$0.06(-0.47$ to 3.89$)$
MET + SIT		$0.12(0.00$ to 14.27$)$	$0.12(0.00$ to 13.97$)$	$-0.11(-0.62$ to 1.89$)$
MET + DAP		$8.31(0.13$ to 131.00$)$	$3.29(0.13$ to 116.80$)$	$0.33(-0.37$ to 11.06$)$
MET + LIR		$1.46(0.00$ to 931.10$)$	$1.46(0.00$ to 521.40$)$	$0.06(-0.55$ to 40.66$)$
MET + DUL		$1.16(0.01$ to 242.40$)$	$1.16(0.01$ to 201.50$)$	$0.02(-0.53$ to 16.58$)$
MET + PIO				

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET + GLC	8.95 (0.01 to 12130.00)	8.87 (0.01 to 11800.00)	0.25 (-11.64 to 6.64)
MET + GLI		2.20 (0.00 to 1732.00)	2.20 (0.00 to 1719.00)	0.02 (-11.41 to 1.88)
MET + NAT		0.11 (0.00 to 2.32)	0.12 (0.00 to 2.30)	-0.03 (-9.46 to 0.11)
MET + SAX		7.41 (0.01 to 4933.00)	7.38 (0.01 to 4868.00)	0.19 (-11.60 to 3.11)
MET + ALO		2.25 (0.00 to 1779.00)	2.25 (0.00 to 1771.00)	0.02 (-11.42 to 1.92)
MET + LIN		5.67 (0.01 to 7275.00)	5.64 (0.01 to 7071.00)	0.14 (-11.75 to 3.88)
MET + SIT		0.39 (0.00 to 828.70)	0.39 (0.00 to 818.60)	-0.01 (-11.55 to 1.75)
MET + DAP		12.55 (0.01 to 12970.00)	12.39 (0.01 to 12230.00)	0.36 (-11.31 to 10.89)
MET + LIR		37.27 (0.03 to 95410.00)	35.23 (0.03 to 58600.00)	1.21 (-10.32 to 55.96)
MET + DUL		4.81 (0.00 to 35430.00)	4.76 (0.00 to 22010.00)	0.09 (-11.39 to 40.44)
MET + PIO		3.35 (0.13 to 633.00)	3.30 (0.14 to 623.70)	0.06 (-3.96 to 9.90)
MET + GLI	MET + GLM	0.26 (0.00 to 21.44)	0.26 (0.00 to 21.07)	-0.22 (-6.69 to 1.94)
MET + NAT		0.01 (0.00 to 15.97)	0.01 (0.00 to 15.64)	-0.34 (-6.77 to 1.82)
MET + SAX		0.85 (0.01 to 41.26)	0.85 (0.01 to 40.10)	-0.04 (-6.61 to 3.02)
MET + ALO		0.26 (0.00 to 21.26)	0.26 (0.00 to 20.89)	-0.22 (-6.70 to 1.97)
MET + LIN		0.62 (0.17 to 2.25)	0.63 (0.18 to 2.24)	-0.10 (-3.56 to 0.52)
MET + SIT		0.05 (0.00 to 14.70)	0.05 (0.00 to 14.39)	-0.31 (-6.75 to 1.76)
MET + DAP		1.41 (0.01 to 121.40)	1.41 (0.01 to 108.20)	0.11 (-6.47 to 10.88)
MET + LIR		3.69 (0.11 to 302.50)	3.57 (0.11 to 176.10)	0.87 (-1.84 to 53.43)
MET + DUL		0.61 (0.00 to 163.30)	0.61 (0.00 to 100.70)	-0.07 (-4.36 to 38.24)
MET + PIO		0.46 (0.00 to 167.20)	0.46 (0.00 to 136.60)	-0.14 (-6.62 to 16.26)
MET + NAT	MET + GLI	0.04 (0.00 to 64.98)	0.04 (0.00 to 62.65)	-0.07 (-2.16 to 1.95)
MET + SAX		3.01 (0.19 to 108.90)	2.99 (0.19 to 107.60)	0.14 (-1.26 to 2.74)
MET + ALO		0.98 (0.19 to 4.94)	0.98 (0.19 to 4.91)	0.00 (-0.85 to 0.96)
MET + LIN		2.36 (0.03 to 571.20)	2.36 (0.03 to 552.60)	0.10 (-2.05 to 3.92)
MET + SIT		0.22 (0.00 to 6.58)	0.22 (0.00 to 6.46)	-0.04 (-1.62 to 1.21)
MET + DAP		5.33 (0.10 to 401.80)	5.29 (0.10 to 378.40)	0.34 (-1.49 to 10.89)
MET + LIR		14.59 (0.09 to 12,480.00)	14.26 (0.09 to 6,420.00)	1.26 (-1.52 to 56.16)
MET + DUL		2.23 (0.00 to 5,636.00)	2.22 (0.00 to 3,194.00)	0.08 (-1.95 to 40.64)
MET + PIO		1.79 (0.01 to 698.70)	1.78 (0.01 to 584.90)	0.04 (-1.62 to 16.40)
MET + SAX	MET + NAT	74.49 (0.07 to 135,900.00)	74.04 (0.07 to 134,100.00)	0.28 (-1.74 to 3.23)
MET + ALO		22.87 (0.01 to 54,790.00)	22.79 (0.01 to 54,210.00)	0.07 (-1.94 to 2.22)
MET + LIN		62.74 (0.04 to 140,300.00)	62.45 (0.04 to 138,000.00)	0.21 (-1.95 to 3.96)
MET + SIT		4.02 (0.00 to 19,180.00)	4.01 (0.00 to 18,940.00)	0.01 (-2.06 to 2.02)
MET + DAP		130.50 (0.09 to 340,800.00)	128.90 (0.09 to 323,100.00)	0.48 (-1.57 to 11.05)
MET + LIR		401.30 (0.16 to 1,946,000.00)	378.50 (0.16 to 1,315,000.00)	1.40 (-1.26 to 56.11)
MET + DUL		56.19 (0.00 to 737,900.00)	55.00 (0.00 to 477,900.00)	0.19 (-1.76 to 40.66)
$\mathrm{MET}+\mathrm{PIO}$		36.71 (0.39 to 31,330.00)	35.97 (0.40 to 30,570.00)	0.14 (-0.25 to 14.30)
MET + ALO	MET + SAX	0.31 (0.01 to 6.92)	0.32 (0.01 to 6.80)	-0.14 (-2.85 to 1.47)
MET + LIN		0.74 (0.02 to 69.90)	0.74 (0.02 to 67.22)	-0.06 (-3.12 to 3.85)
MET + SIT		0.06 (0.00 to 6.12)	0.06 (0.00 to 6.01)	-0.23 (-3.11 to 1.33)
MET + DAP		1.61 (0.09 to 50.45)	1.60 (0.09 to 46.34)	0.12 (-1.87 to 10.08)

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% Crl)
MET + LIR		4.24 (0.04 to 2005.00)	4.17 (0.04 to 925.60)	0.97 (-2.52 to 56.04)
MET + DUL		0.67 (0.00 to 873.10)	0.67 (0.00 to 478.80)	-0.06 (-2.95 to 40.52)
MET + PIO		0.53 (0.00 to 181.00)	0.54 (0.00 to 151.70)	-0.08 (-2.90 to 16.29)
MET + LIN	MET + ALO	2.37 (0.03 to 609.20)	2.36 (0.03 to 593.10)	0.10 (-2.08 to 3.92)
MET + SIT		0.22 (0.00 to 10.09)	0.22 (0.00 to 9.89)	-0.04 (-1.78 to 1.31)
MET + DAP		5.36 (0.08 to 571.20)	5.31 (0.08 to 520.80)	0.34 (-1.56 to 10.92)
MET + LIR		14.82 (0.08 to 13,980.00)	14.47 (0.08 to 7,446.00)	1.25 (-1.57 to 56.16)
MET + DUL		2.16 (0.00 to 5,843.00)	2.16 (0.00 to 3,342.00)	0.08 (-1.96 to 40.65)
$\mathrm{MET}+\mathrm{PIO}$		1.78 (0.01 to 689.50)	1.78 (0.01 to 588.30)	0.04 (-1.61 to 16.27)
MET + SIT	MET + LIN	0.07 (0.00 to 23.43)	0.07 (0.00 to 22.92)	-0.18 (-3.96 to 1.89)
MET + DAP		2.22 (0.02 to 183.90)	2.21 (0.02 to 164.30)	0.22 (-3.72 to 11.01)
MET + LIR		6.21 (0.16 to 480.10)	5.99 (0.16 to 278.00)	1.07 (-0.92 to 54.42)
MET + DUL		0.98 (0.00 to 274.40)	0.98 (0.00 to 166.70)	0.00 (-2.35 to 39.39)
$\mathrm{MET}+\mathrm{PIO}$		0.73 (0.00 to 272.90)	0.73 (0.00 to 227.10)	-0.04 (-3.85 to 16.45)
MET + DAP	MET + SIT	30.16 (0.15 to 17,610.00)	29.75 (0.16 to 16,780.00)	0.42 (-1.25 to 11.03)
MET + LIR		90.34 (0.16 to 183,800.00)	86.79 (0.16 to 112,800.00)	1.35 (-1.19 to 56.16)
MET + DUL		11.83 (0.00 to 75,370.00)	11.74 (0.00 to 46,380.00)	0.16 (-1.73 to 40.68)
MET + PIO		10.40 (0.02 to 19,760.00)	10.34 (0.02 to 16,230.00)	0.11 (-1.51 to 16.46)
MET + LIR	MET + DAP	2.74 (0.01 to 1,718.00)	2.70 (0.01 to 826.40)	0.68 (-10.26 to 55.96)
MET + DUL		0.39 (0.00 to 715.60)	0.40 (0.00 to 423.30)	-0.16 (-10.83 to 40.37)
MET + PIO		0.32 (0.00 to 156.00)	0.32 (0.00 to 128.80)	-0.22 (-10.75 to 16.13)
MET + DUL	MET + LIR	0.17 (0.00 to 5.77)	0.18 (0.00 to 4.79)	-0.70 (-32.34 to 11.90)
MET + PIO		0.11 (0.00 to 71.51)	0.11 (0.00 to 59.48)	-1.03 (-55.79 to 15.30)
$\mathrm{MET}+\mathrm{PIO}$	MET + DUL	0.83 (0.00 to 7,560.00)	0.83 (0.00 to 6,448.00)	-0.01 (-40.35 to 16.06)
Random-effects model	Residual deviance	18.76 vs. 28 data points		
	Deviance information criteria	103.709		

$\mathrm{ALO}=$ alogliptin; $\mathrm{CrI}=$ credible interval; $\mathrm{DAP}=$ dapagliflozin; $\mathrm{DUL}=$ dulaglutide; GLC = glicazide; GLI = glipizide; GLM = glimepiride; LIN = linagliptin; LIR = liraglutide; $\mathrm{MET}=$ metformin; NAT = nateglinide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin;
SIT = sitagliptin; vs. $=$ versus.

Figure 34: Consistency Plot for Nonfatal Myocardial Infarction (Individual-Drug Case Analysis)

Nonfatal Stroke

Table 54: Nonfatal Stroke: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + GLM	MET	$11.59(0.23$ to 1460.00$)$	$11.16(0.23$ to 350.60$)$	$2.86(-0.35$ to 78.72$)$
MET + GLI		$0.47(0.00$ to 50.53$)$	$0.47(0.00$ to 45.78$)$	$-0.12(-0.75$ to 9.02$)$
MET + SAX		$0.37(0.00$ to 156.00$)$	$0.37(0.00$ to 106.50$)$	$-0.13(-0.76$ to 26.75$)$
MET + ALO		$0.27(0.00$ to 17.17$)$	$0.27(0.00$ to 16.68$)$	$-0.17(-0.79$ to 2.79$)$
MET + LIN		$2.76(0.04$ to 403.20$)$	$2.74(0.04$ to 192.70$)$	$0.46(-0.58$ to 51.83$)$
MET + SIT		$1.58(0.24$ to 12.89$)$	$1.58(0.25$ to 12.71$)$	$0.16(-0.51$ to 1.72$)$
MET + VIL		$0.20(0.00$ to 13.74$)$	$0.21(0.00$ to 13.39$)$	$-0.18(-0.80$ to 2.78$)$
MET + EXE		$1.48(0.19$ to 13.53$)$	$1.48(0.19$ to 13.29$)$	$0.13(-0.55$ to 1.93$)$
MET + PIO		$0.04(0.00$ to 16.12$)$	$0.04(0.00$ to 14.81$)$	$-2.56(-78.47$ to 6.08$)$
MET + GLI		$0.03(0.00$ to 31.38$)$	$0.03(0.00$ to 23.15$)$	$-2.34(-77.91$ to 20.01$)$
MET + SAX		$0.02(0.00$ to 6.55$)$	$0.02(0.00$ to 6.42$)$	$-2.87(-78.87$ to 1.45$)$
MET + ALO		$0.24(0.04$ to 1.06$)$	$0.28(0.05$ to 1.04$)$	$-1.97(-38.80$ to 0.06$)$
MET + LIN		$0.14(0.00$ to 6.66$)$	$0.28(0.01$ to 6.58$)$	$-2.02(-76.44$ to 1.47$)$
MET + SIT		$0.02(0.00$ to 8.69$)$	$0.15(0.00$ to 8.62$)$	$-2.62(-78.56$ to 1.07$)$
MET + VIL		$0.14(0.00$ to 6.73$)$	$0.02(0.00$ to 2.64$)$	$-2.86(-78.31$ to 0.53$)$
MET + EXE		$0.87(0.02$ to 34.24$)$	$0.14(0.00$ to 6.67$)$	$-2.59(-78.38$ to 0.90$)$
MET + PIO		$0.57(0.05$ to 4.46$)$	$0.58(0.06$ to 4.45$)$	$-0.02(-6.96$ to 0.50$)$
MET + SAX		$7.00(0.01$ to $24,700.00)$	$6.82(0.01$ to $16,090.00)$	$0.40(-7.75$ to 51.66$)$
MET + ALO		$6.07(0.06$ to $7,344.00)$	$6.01(0.06$ to $7,124.00)$	$0.50(-8.12$ to 5.43$)$
MET + LIN				
MET + SIT				

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
MET + VIL		3.40 (0.03 to 4,471.00)	3.39 (0.04 to 4,446.00)	0.24 (-8.80 to 1.79)
MET + EXE		0.42 (0.00 to 1,443.00)	0.42 (0.00 to 1,420.00)	-0.03 (-9.05 to 2.65)
MET + PIO		2.93 (0.04 to 2,994.00)	2.92 (0.04 to 2,968.00)	0.19 (-8.53 to 1.84)
MET + ALO	MET + SAX	0.66 (0.01 to 41.87)	0.66 (0.01 to 41.64)	-0.01 (-25.28 to 1.26)
MET + LIN		7.60 (0.01 to 5,3010.00)	7.38 (0.01 to 3,3400.00)	0.36 (-24.31 to 51.32)
MET + SIT		7.65 (0.02 to 17,020.00)	7.55 (0.03 to 16,410.00)	0.50 (-25.66 to 5.36)
MET + VIL		4.44 (0.01 to 9,044.00)	4.42 (0.01 to 8,974.00)	0.25 (-26.48 to 1.80)
MET + EXE		0.46 (0.00 to 2,383.00)	0.47 (0.00 to 2,337.00)	-0.02 (-26.62 to 2.65)
MET + PIO		3.80 (0.01 to 7,138.00)	3.79 (0.01 to 7,081.00)	0.21 (-26.33 to 1.85)
MET + LIN	MET + ALO	11.71 (0.03 to 32,160.00)	11.39 (0.03 to 22,690.00)	0.54 (-2.26 to 51.97)
MET + SIT		10.48 (0.15 to 10,850.00)	10.36 (0.16 to 10,640.00)	0.61 (-2.20 to 5.66)
MET + VIL		5.92 (0.10 to 6,662.00)	5.89 (0.10 to 6,598.00)	0.31 (-2.62 to 1.87)
MET + EXE		0.73 (0.00 to 2,142.00)	0.73 (0.00 to 2,107.00)	-0.01 (-2.79 to 2.83)
MET + PIO		5.01 (0.12 to 4,916.00)	4.98 (0.12 to 4,868.00)	0.26 (-2.39 to 1.93)
MET + SIT	MET + LIN	1.13 (0.01 to 42.17)	1.13 (0.02 to 41.69)	0.05 (-49.43 to 3.09)
MET + VIL		0.59 (0.00 to 48.30)	0.60 (0.01 to 47.67)	-0.27 (-51.70 to 1.51)
MET + EXE		0.06 (0.00 to 14.49)	0.06 (0.00 to 14.27)	-0.54 (-51.48 to 1.58)
$\mathrm{MET}+\mathrm{PIO}$		0.58 (0.00 to 36.20)	0.58 (0.01 to 35.87)	-0.27 (-51.42 to 1.47)
MET + VIL	MET + SIT	0.57 (0.04 to 7.34)	0.57 (0.04 to 7.24)	-0.32 (-5.51 to 1.48)
MET + EXE		0.08 (0.00 to 2.94)	0.08 (0.00 to 2.88)	-0.61 (-5.24 to 1.38)
MET + PIO		0.54 (0.04 to 4.79)	0.54 (0.05 to 4.73)	-0.32 (-5.24 to 1.24)
MET + EXE	MET + VIL	0.13 (0.00 to 9.55)	0.13 (0.00 to 9.31)	-0.32 (-1.87 to 2.60)
MET + PIO		0.95 (0.11 to 7.36)	0.95 (0.11 to 7.25)	-0.02 (-1.54 to 1.69)
$\mathrm{MET}+\mathrm{PIO}$	MET + EXE	6.91 (0.12 to 11,100.00)	6.87 (0.13 to 10,990.00)	0.28 (-2.40 to 1.91)
Random-effects model	Residual deviance	17.29 vs. 22 data points		
	Deviance information criteria	86.698		

$\mathrm{ALO}=$ alogliptin; $\mathrm{CrI}=$ credible interval; $\mathrm{EXE}=$ exenatide; $\mathrm{GLI}=$ glipizide; $\mathrm{GLL}=$ gliclazide; $\mathrm{GLM}=$ glimepiride; $\mathrm{LIN}=$ linagliptin; $\mathrm{MET}=\mathrm{metformin} ; \mathrm{OR}=$ odds ratio;
$\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 35: Consistency Plot for Nonfatal Stroke (Individual-Drug Case Analysis)

Pancreatic Cancer

Table 55: Pancreatic Cancer: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SAX	MET + GLM	3.31 (0.09 to 262.00)	3.30 (0.09 to 245.00)	0.17 (-0.17 to 7.04)
MET + LIN		0.98 (0.03 to 25.62)	0.98 (0.03 to 25.42)	0.00 (-0.21 to 1.05)
MET + SIT		2.70 (0.07 to 212.20)	2.70 (0.07 to 200.50)	0.11 (-0.19 to 5.45)
MET + LIR		10.37 (0.08 to 5771.00)	10.29 (0.08 to 1433.00)	0.65 (-0.16 to 74.48)
MET + DUL		7.34 (0.01 to 10410.00)	7.30 (0.01 to 1958.00)	0.46 (-0.19 to 86.32)
MET + LIN	MET + SAX	0.27 (0.00 to 31.66)	0.28 (0.00 to 31.44)	-0.15 (-7.04 to 0.96)
MET + SIT		0.74 (0.00 to 239.10)	0.74 (0.00 to 228.50)	-0.05 (-6.86 to 5.39)
MET + LIR		3.21 (0.00 to 3922.00)	3.14 (0.00 to 1367.00)	0.39 (-5.72 to 74.06)
MET + DUL		2.22 (0.00 to 8462.00)	2.20 (0.00 to 1668.00)	0.19 (-5.42 to 85.34)
MET + SIT	MET + LIN	3.02 (0.02 to 614.30)	3.02 (0.02 to 578.10)	0.10 (-1.00 to 5.45)
MET + LIR		11.60 (0.03 to 15490.00)	11.42 (0.03 to 4086.00)	0.60 (-0.72 to 74.11)
MET + DUL		8.46 (0.00 to 21870.00)	8.33 (0.00 to 5689.00)	0.42 (-0.72 to 86.25)
MET + LIR	MET + SIT	3.05 (0.11 to 1409.00)	3.00 (0.11 to 372.20)	0.34 (-1.39 to 72.80)
MET + DUL		2.90 (0.00 to 3010.00)	2.84 (0.00 to 640.50)	0.24 (-2.42 to 85.09)
MET + DUL	MET + LIR	0.70 (0.00 to 113.80)	0.75 (0.00 to 61.96)	-0.02 (-38.80 to 61.89)
Random-effects model	Residual deviance	4.888 vs. 10 data points		
	Deviance information criteria	36.722		

[^14] $R D=$ risk difference; $R R=$ relative risk; $S A X=$ saxagliptin; SIT = sitagliptin; vs. = versus.

Systolic Blood Pressure (SBP)

Table 56: Systolic Blood Pressure: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + GLM	MET	0.54 (-1.17 to 2.16)
MET + SAX		0.95 (-1.73 to 3.60)
MET + SIT		-0.86 (-2.30 to 0.34)
MET + VIL		-3.67 (-7.81 to 0.50)
MET + CAN		-3.73 (-5.49 to -2.31)
MET + DAP		-2.72 (-4.58 to -0.83)
MET + EMP		-4.81 (-6.59 to -3.03)
MET + LIR		-1.17 (-3.89 to 1.28)
MET + EXE		-4.27 (-6.32 to -2.40)
MET + DUL		-1.54 (-3.84 to 0.55)
MET + LIX		-4.68 (-8.28 to -1.25)
MET + PIO		-3.27 (-5.22 to -1.42)
MET + IAS		1.92 (-3.32 to 6.99)
MET + IGA		1.08 (-2.81 to 4.71)
MET + IND		-1.89 (-8.06 to 3.96)
MET + SAX	MET + GLM	0.42 (-2.68 to 3.56)
MET + SIT		-1.40 (-3.30 to 0.36)
MET + VIL		-4.21 (-8.62 to 0.16)
MET + CAN		-4.27 (-6.52 to -2.23)
MET + DAP		$-3.25(-5.73$ to -0.71$)$
MET + EMP		-5.35 (-7.15 to -3.42)
MET + LIR		-1.71 (-4.71 to 1.13)
MET + EXE		-4.81 (-7.21 to -2.43)
MET + DUL		-2.08 (-4.74 to 0.45)
MET + LIX		-5.22 (-9.02 to -1.50)
MET + PIO		-3.81 (-5.66 to -2.00)
MET + IAS		1.38 (-3.93 to 6.66)
MET + IGA		0.54 (-3.47 to 4.41)
MET + IND		-2.42 (-8.69 to 3.63)
MET + SIT	MET + SAX	-1.82 (-4.85 to 1.03)
MET + VIL		-4.62 (-9.64 to 0.26)
MET + CAN		-4.68 (-7.90 to -1.73)
MET + DAP		-3.67 (-6.21 to -1.10)
MET + EMP		-5.76 (-8.97 to -2.55)
MET + LIR		-2.13 (-5.89 to 1.46)
MET + EXE		-5.23 (-8.56 to -1.95)
MET + DUL		-2.49 (-6.03 to 0.87)
MET + LIX		-5.64 (-10.11 to -1.31)
MET + PIO		-4.22 (-7.56 to -1.00)
MET + IAS		0.96 (-4.81 to 6.65)
MET + IGA		0.12 (-4.53 to 4.61)
MET + IND		-2.84 (-9.62 to 3.56)

Treatment	Reference	MD (95\% Crl)
MET + VIL	MET + SIT	-2.81 (-6.87 to 1.35)
MET + CAN		-2.87 (-4.38 to -1.44)
MET + DAP		-1.85 (-4.01 to 0.48)
MET + EMP		-3.95 (-5.92 to -1.75)
MET + LIR		-0.31 (-2.67 to 1.99)
MET + EXE		-3.41 (-5.43 to -1.20)
MET + DUL		-0.68 (-2.70 to 1.40)
MET + LIX		-3.82 (-7.39 to -0.18)
MET + PIO		-2.41 (-4.36 to -0.39)
MET + IAS		2.78 (-2.13 to 7.76)
MET + IGA		1.94 (-1.56 to 5.41)
MET + IND		-1.02 (-6.96 to 4.67)
MET + CAN	MET + VIL	-0.06 (-4.37 to 4.20)
MET + DAP		0.96 (-3.55 to 5.52)
MET + EMP		-1.14 (-5.61 to 3.31)
MET + LIR		2.50 (-2.25 to 7.17)
MET + EXE		-0.60 (-5.07 to 3.90)
MET + DUL		2.13 (-2.45 to 6.62)
MET + LIX		-1.01 (-6.43 to 4.37)
MET + PIO		0.40 (-4.13 to 4.86)
MET + IAS		5.59 (-0.80 to 12.09)
MET + IGA		4.75 (-0.69 to 10.16)
MET + IND		1.79 (-5.50 to 8.92)
MET + DAP	MET + CAN	1.02 (-1.32 to 3.59)
MET + EMP		-1.08 (-3.25 to 1.38)
MET + LIR		2.56 (-0.14 to 5.27)
MET + EXE		-0.54 (-2.81 to 1.97)
MET + DUL		2.19 (-0.18 to 4.70)
MET + LIX		-0.95 (-4.67 to 2.86)
MET + PIO		0.46 (-1.75 to 2.83)
MET + IAS		5.65 (0.45 to 10.76)
MET + IGA		4.81 (1.02 to 8.56)
MET + IND		1.84 (-4.24 to 7.72)
MET + EMP	MET + DAP	-2.10 (-4.71 to 0.46)
MET + LIR		1.54 (-1.74 to 4.59)
MET + EXE		-1.56 (-4.31 to 1.03)
MET + DUL		1.17 (-1.71 to 3.90)
MET + LIX		-1.97 (-6.01 to 1.90)
MET + PIO		-0.56 (-3.27 to 2.04)
MET + IAS		4.63 (-0.89 to 9.96)
MET + IGA		3.79 (-0.55 to 7.82)
MET + IND		0.83 (-5.65 to 6.99)
MET + LIR	MET + EMP	3.64 (0.44 to 6.59)
MET + EXE		0.54 (-2.11 to 3.06)
MET + DUL		3.27 (0.44 to 5.94)
MET + LIX		0.13 (-3.84 to 3.94)

Treatment	Reference	MD (95\% Crl)
MET + PIO		1.54 (-0.83 to 3.80)
MET + IAS		6.73 (1.30 to 12.03)
MET + IGA		5.89 (1.70 to 9.83)
MET + IND		2.93 (-3.48 to 8.98)
MET + EXE	MET + LIR	-3.10 (-6.09 to 0.11)
MET + DUL		-0.37 (-2.64 to 1.97)
MET + LIX		-3.51 (-7.67 to 0.80)
MET + PIO		-2.10 (-5.05 to 0.98)
MET + IAS		3.09 (-2.31 to 8.60)
MET + IGA		2.25 (-1.90 to 6.40)
MET + IND		-0.71 (-7.20 to 5.51)
MET + DUL	MET + EXE	2.73 (-0.14 to 5.45)
MET + LIX		-0.41 (-3.33 to 2.52)
MET + PIO		1.00 (-1.39 to 3.37)
MET + IAS		6.19 (0.79 to 11.46)
MET + IGA		5.35 (1.20 to 9.32)
MET + IND		2.39 (-4.05 to 8.44)
MET + LIX	MET + DUL	-3.14 (-7.16 to 0.95)
MET + PIO		-1.73 (-4.39 to 1.04)
MET + IAS		3.46 (-1.86 to 8.81)
MET + IGA		2.62 (-1.43 to 6.63)
MET + IND		-0.34 (-6.69 to 5.75)
MET + PIO	MET + LIX	1.41 (-2.32 to 5.17)
MET + IAS		6.60 (0.46 to 12.52)
MET + IGA		5.76 (0.76 to 10.60)
MET + IND		2.80 (-4.25 to 9.38)
MET + IAS	$\mathrm{MET}+\mathrm{PIO}$	5.19 (-0.20 to 10.55)
MET + IGA		4.35 (0.28 to 8.32)
MET + IND		1.39 (-4.96 to 7.44)
MET + IGA	MET + IAS	-0.84 (-4.36 to 2.68)
MET + IND		-3.80 (-9.77 to 2.17)
MET + IND	MET + IGA	-2.96 (-7.75 to 1.67)
Random-effects model Residual deviance 58.72 vs. 64 data points Deviance information criteria 215.917		

CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; IAS = insulin aspart; IGA = insulin glargine; IND = insulin degludec; GLM = glimepiride; LIR = liraglutide; LIX = lixisenatide; $M D=$ mean difference; $M E T=$ metformin; $\mathrm{PIO}=$ pioglitazone; $\mathrm{SAX}=$ saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 36: Consistency Plot for Systolic Blood Pressure (Individual-Drug Case Analysis)

Transient Ischemic Attack (TIA)

Table 57: Transient Ischemic Attack: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% CrI)
MET + GLM	MET	$4.53(0.10$ to 269.00$)$	$4.49(0.10$ to 211.80$)$	$0.70(-0.42$ to 21.19$)$
MET + GLI		$0.43(0.00$ to 76.47$)$	$0.43(0.00$ to 68.09$)$	$-0.07(-0.59$ to 9.67$)$
MET + MIT		$4.22(0.15$ to 583.30$)$	$4.18(0.15$ to 335.40$)$	$0.65(-0.33$ to 37.45$)$
MET + SAX		$1.78(0.07$ to 76.68$)$	$1.78(0.07$ to 70.46$)$	$0.14(-0.46$ to 8.60$)$
MET + ALO		$3.26(0.01$ to $1,592.00)$	$3.25(0.01$ to 437.50$)$	$0.42(-0.47$ to 72.77$)$
MET + LIN		$0.60(0.00$ to 64.92$)$	$0.60(0.00$ to 60.69$)$	$-0.06(-0.60$ to 6.48$)$
MET + SIT		$0.21(0.00$ to 6.19$)$	$0.21(0.00$ to 6.12$)$	$-0.12(-0.58$ to 0.95$)$
MET + VIL		$0.92(0.00$ to 285.90$)$	$0.92(0.00$ to 222.90$)$	$-0.01(-0.58$ to 21.48$)$
MET + CAN		$0.75(0.08$ to 5.66$)$	$0.75(0.08$ to 5.63$)$	$-0.04(-0.48$ to 0.72$)$
MET + DAP		$0.55(0.05$ to 468.90$)$	$4.51(0.05$ to 311.70$)$	$0.69(-0.45$ to 33.52$)$
MET + EMP		$0.11(0.00$ to 237.40$)$	$0.80(0.00$ to 145.80$)$	$-0.03(-0.50$ to 35.03$)$
MET + PIO		$0.97(0.00$ to 354.50$)$	$0.97(0.00$ to 7.57$)$	$-0.56(-18.97$ to 5.00$)$
MET + GLI		$0.44(0.01$ to 7.89$)$	$0.44(0.01$ to 7.57$)$	$-0.34(-17.68$ to 3.70$)$
MET + MIT				
MET + SAX				

CADTH

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + ALO		0.80 (0.00 to 258.90)	0.80 (0.00 to 108.70)	-0.04 (-15.48 to 66.59)
MET + LIN		0.15 (0.00 to 1.28)	0.15 (0.01 to 1.26)	-0.65 (-16.48 to 0.16)
MET + SIT		0.37 (0.00 to 20.43)	0.37 (0.00 to 19.69)	-0.39 (-19.28 to 4.51)
MET + VIL		0.04 (0.00 to 8.22)	0.05 (0.00 to 8.14)	-0.82 (-21.26 to 0.76)
MET + CAN		0.20 (0.00 to 86.07)	0.21 (0.00 to 69.72)	-0.45 (-20.24 to 19.92)
MET + DAP		0.16 (0.00 to 6.09)	0.17 (0.00 to 6.06)	-0.71 (-21.17 to 0.47)
MET + EMP		0.96 (0.09 to 10.95)	0.96 (0.10 to 9.14)	-0.01 (-7.22 to 19.12)
MET + PIO		0.18 (0.00 to 165.50)	0.19 (0.00 to 105.70)	-0.47 (-20.78 to 33.53)
MET + MIT	MET + GLI	11.62 (0.02 to 10850.00)	11.38 (0.02 to 7341.00)	0.60 (-8.66 to 37.38)
MET + SAX		3.65 (0.14 to 438.00)	3.62 (0.15 to 425.30)	0.13 (-5.58 to 5.50)
MET + ALO		6.74 (0.42 to 577.70)	6.28 (0.42 to 330.50)	0.43 (-0.20 to 63.31)
MET + LIN		1.27 (0.01 to 673.40)	1.27 (0.01 to 642.80)	0.01 (-8.33 to 5.37)
MET + SIT		3.66 (0.01 to 1,871.00)	3.63 (0.01 to 1,765.00)	0.14 (-8.45 to 6.97)
MET + VIL		0.44 (0.00 to 364.70)	0.44 (0.00 to 359.30)	-0.03 (-9.80 to 1.06)
MET + CAN		2.22 (0.00 to 3,606.00)	2.21 (0.00 to 2,968.00)	0.05 (-8.91 to 20.90)
MET + DAP		1.73 (0.01 to 382.20)	1.73 (0.01 to 380.60)	0.03 (-9.55 to 0.74)
MET + EMP		9.32 (0.07 to 4,996.00)	8.96 (0.07 to 4,021.00)	0.55 (-5.28 to 31.40)
$\mathrm{MET}+\mathrm{PIO}$		1.91 (0.00 to 6,331.00)	1.91 (0.00 to 3,471.00)	0.03 (-9.21 to 34.71)
MET + SAX	MET + MIT	0.39 (0.00 to 56.62)	0.39 (0.00 to 52.89)	-0.38 (-36.77 to 7.57)
MET + ALO		0.70 (0.00 to 1,027.00)	0.71 (0.00 to 335.30)	-0.10 (-34.91 to 70.61)
MET + LIN		0.13 (0.00 to 42.44)	0.14 (0.00 to 39.54)	-0.59 (-37.13 to 5.50)
MET + SIT		0.31 (0.00 to 74.73)	0.32 (0.00 to 70.42)	-0.44 (-37.24 to 7.47)
MET + VIL		0.04 (0.00 to 6.13)	0.04 (0.00 to 6.05)	-0.76 (-37.51 to 0.66)
MET + CAN		0.19 (0.00 to 158.90)	0.20 (0.00 to 118.50)	-0.45 (-37.04 to 20.43)
MET + DAP		0.17 (0.00 to 9.19)	0.17 (0.00 to 9.14)	-0.68 (-37.50 to 0.60)
MET + EMP		1.05 (0.00 to 299.70)	1.04 (0.00 to 218.60)	0.02 (-35.55 to 31.92)
MET + PIO		0.16 (0.00 to 152.70)	0.16 (0.00 to 92.88)	-0.46 (-36.86 to 33.51)
MET + ALO	MET + SAX	1.95 (0.01 to 336.30)	1.92 (0.01 to 135.60)	0.18 (-3.36 to 68.12)
MET + LIN		0.32 (0.00 to 24.88)	0.33 (0.00 to 23.86)	-0.14 (-6.79 to 4.34)
MET + SIT		0.89 (0.01 to 80.76)	0.89 (0.01 to 77.23)	-0.02 (-7.38 to 6.58)
MET + VIL		0.11 (0.00 to 14.45)	0.11 (0.00 to 14.31)	-0.26 (-8.69 to 0.90)
MET + CAN		0.52 (0.00 to 261.90)	0.52 (0.00 to 201.10)	-0.08 (-7.99 to 20.86)
MET + DAP		0.42 (0.01 to 8.45)	0.42 (0.01 to 8.42)	-0.16 (-8.44 to 0.47)
MET + EMP		2.41 (0.05 to 172.90)	2.38 (0.05 to 135.30)	0.34 (-4.32 to 30.80)
MET + PIO		0.44 (0.00 to 346.30)	0.44 (0.00 to 212.80)	-0.09 (-8.20 to 34.55)
MET + LIN	$\mathrm{MET}+\mathrm{ALO}$	0.16 (0.00 to 188.70)	0.17 (0.00 to 177.60)	-0.37 (-71.85 to 4.19)
MET + SIT		0.43 (0.00 to 451.00)	0.43 (0.00 to 427.90)	-0.23 (-71.50 to 5.94)
MET + VIL		0.05 (0.00 to 96.32)	0.06 (0.00 to 95.25)	-0.54 (-72.90 to 0.76)
MET + CAN		0.27 (0.00 to 741.20)	0.27 (0.00 to 636.60)	-0.24 (-71.63 to 18.79)
MET + DAP		0.23 (0.00 to 73.02)	0.23 (0.00 to 72.77)	-0.44 (-72.76 to 0.54)
MET + EMP		1.22 (0.00 to 1204.00)	1.21 (0.01 to 952.10)	0.03 (-66.51 to 25.93)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO		0.22 (0.00 to 1710.00)	0.23 (0.00 to 930.50)	-0.23 (-71.65 to 32.05)
MET + SIT	MET + LIN	2.65 (0.02 to 420.00)	2.63 (0.02 to 407.90)	0.12 (-5.36 to 6.99)
MET + VIL		0.31 (0.00 to 163.40)	0.31 (0.00 to 161.60)	-0.06 (-6.56 to 1.08)
MET + CAN		1.63 (0.00 to 1148.00)	1.62 (0.00 to 937.40)	0.03 (-5.82 to 20.95)
MET + DAP		1.23 (0.01 to 162.70)	1.22 (0.01 to 161.90)	0.02 (-6.44 to 0.82)
MET + EMP		7.22 (0.28 to 377.40)	6.94 (0.29 to 337.30)	0.59 (-0.98 to 29.49)
MET + PIO		1.40 (0.00 to 3,307.00)	1.40 (0.00 to 1,905.00)	0.02 (-6.16 to 34.97)
MET + VIL	MET + SIT	0.12 (0.00 to 41.71)	0.12 (0.00 to 41.29)	-0.23 (-8.01 to 0.98)
MET + CAN		0.64 (0.00 to 161.00)	0.64 (0.00 to 136.50)	-0.05 (-5.42 to 18.78)
MET + DAP		0.49 (0.01 to 43.15)	0.49 (0.01 to 42.85)	-0.13 (-7.98 to 0.80)
MET + EMP		2.78 (0.03 to 487.80)	2.73 (0.03 to 385.40)	0.39 (-4.94 to 31.57)
MET + PIO		0.51 (0.00 to 761.90)	0.51 (0.00 to 442.30)	-0.07 (-7.68 to 34.72)
MET + CAN	MET + VIL	5.03 (0.00 to 10,470.00)	5.01 (0.00 to 8,547.00)	0.11 (-1.01 to 21.51)
MET + DAP		3.76 (0.06 to 916.30)	3.75 (0.06 to 912.50)	0.08 (-1.04 to 0.91)
MET + EMP		22.06 (0.08 to 26,750.00)	21.58 (0.08 to 20,820.00)	0.79 (-0.73 to 33.62)
MET + PIO		3.70 (0.14 to 357.40)	3.68 (0.14 to 235.20)	0.08 (-0.19 to 34.34)
MET + DAP	MET + CAN	0.74 (0.00 to 714.40)	0.74 (0.00 to 710.80)	-0.04 (-21.50 to 0.87)
MET + EMP		4.71 (0.01 to 10,060.00)	4.60 (0.01 to 8,408.00)	0.42 (-18.86 to 31.96)
MET + PIO		0.95 (0.00 to 6,736.00)	0.95 (0.00 to 4,132.00)	0.00 (-20.95 to 33.90)
MET + EMP	MET + DAP	5.99 (0.07 to 725.60)	5.92 (0.07 to 496.30)	0.70 (-0.53 to 33.49)
MET + PIO		1.06 (0.00 to 519.40)	1.06 (0.00 to 301.00)	0.01 (-0.78 to 35.18)
$\mathrm{MET}+\mathrm{PIO}$	MET + EMP	0.19 (0.00 to 233.60)	0.19 (0.00 to 146.20)	-0.43 (-32.61 to 32.25)
Random-effects model	Residual deviance	17.67 vs. 28 data points		
	Deviance information criteria	100.279		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; EMP = empagliflozin; GLI = glipizide; GLM = glimepiride; LIN = linagliptin; MET = metformin; MIT = mitiglinide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{SAX}=$ saxagliptin; SIT $=$ sitagliptin; VIL $=$ vildagliptin; vs. $=$ versus.

Figure 37: Consistency Plot for Transient Ischemic Attack (Individual-Drug Case Analysis)

Total Adverse Events (Total AE)
Table 58: Total Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET + GLC	MET	$1.13(0.64$ to 1.96$)$	$1.06(0.77$ to 1.35$)$	$2.94(-10.72$ to 16.46$)$
MET + GLM		$1.12(0.92$ to 1.34$)$	$1.06(0.96$ to 1.16$)$	$2.78(-1.94$ to 7.22$)$
MET + GLY		$1.87(0.90$ to 3.84$)$	$1.33(0.94$ to 1.66$)$	$15.37(-2.63$ to 30.34$)$
MET + GLI		$1.04(0.75$ to 1.45$)$	$1.02(0.85$ to 1.20$)$	$1.08(-7.20$ to 9.32$)$
MET + GLL		$0.91(0.61$ to 1.38$)$	$0.95(0.75$ to 1.17$)$	$-2.26(-11.92$ to 8.07$)$
MET + MIT		$0.93(0.43$ to 1.99$)$	$0.96(0.59$ to 1.36$)$	$-1.73(-19.47$ to 16.79$)$
MET + NAT		$1.19(0.72$ to 1.98$)$	$1.09(0.83$ to 1.36$)$	$4.32(-7.96$ to 16.72$)$
MET + SAX		$1.04(0.88$ to 1.23$)$	$1.02(0.93$ to 1.11$)$	$0.94(-3.16$ to 5.10$)$
MET + ALO		$1.02(0.70$ to 1.46$)$	$1.01(0.81$ to 1.20$)$	$0.53(-8.83$ to 9.34$)$
MET + LIN		$0.82(0.63$ to 1.08$)$	$0.90(0.76$ to 1.04$)$	$-4.85(-11.28$ to 1.83$)$
MET + SIT		$0.94(0.76$ to 1.08$)$	$0.95(0.87$ to 1.04$)$	$-2.27(-6.22$ to 1.84$)$
MET + VIL		$1.19(0.96$ to 1.67$)$	$1.09(0.92$ to 1.27$)$	$4.33(-3.81$ to 12.69$)$
MET + CAN		$1.04(0.81$ to 1.35$)$	$1.02(0.89$ to 1.16$)$	$1.01(-5.23$ to 7.53$)$
MET + DAP		$0.94(0.71$ to 1.22$)$	$0.97(0.82$ to 1.11$)$	$-1.60(-8.26$ to 5.03$)$
MET + EMP		$1.46(1.06$ to 2.04$)$	$1.20(1.03$ to 1.38$)$	$9.42(1.47$ to 17.35$)$
MET + LIR		$1.41(0.83$ to 2.34$)$	$1.18(0.90$ to 1.44$)$	$8.61(-4.54$ to 20.50$)$
MET + EXE		$1.36(0.99$ to 1.90$)$	$1.16(1.00$ to 1.34$)$	$7.70(-0.16$ to 15.80$)$
MET + DUL				

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + LIX		1.23 (0.90 to 1.66)	1.11 (0.95 to 1.27)	5.20 (-2.51 to 12.54)
MET + ROS		1.21 (0.87 to 1.66)	1.10 (0.93 to 1.27)	4.68 (-3.33 to 12.53)
MET + PIO		1.01 (0.69 to 1.49)	1.01 (0.81 to 1.21)	0.29 (-9.13 to 9.88)
MET + IAS		2.74 (1.35 to 5.60)	1.51 (1.16 to 1.79)	23.84 (7.39 to 36.38)
MET + IGA		2.43 (1.52 to 3.84)	1.45 (1.22 to 1.66)	21.23 (10.43 to 30.40)
MET + GLM	MET + GLC	1.00 (0.56 to 1.76)	1.00 (0.77 to 1.37)	-0.11 (-14.24 to 13.77)
MET + GLY		1.67 (0.67 to 4.03)	1.25 (0.83 to 1.82)	12.32 (-9.57 to 32.19)
MET + GLI		0.93 (0.48 to 1.76)	0.96 (0.71 to 1.37)	-1.82 (-17.92 to 13.82)
MET + GLL		0.82 (0.43 to 1.56)	0.90 (0.65 to 1.28)	-5.00 (-20.52 to 10.77)
MET + MIT		0.83 (0.32 to 2.15)	0.91 (0.53 to 1.46)	-4.64 (-26.70 to 18.66)
MET + NAT		1.06 (0.50 to 2.27)	1.03 (0.71 to 1.52)	1.45 (-16.86 to 19.98)
MET + SAX		0.92 (0.52 to 1.65)	0.96 (0.74 to 1.33)	-1.95 (-15.98 to 12.17)
MET + ALO		0.91 (0.46 to 1.77)	0.95 (0.68 to 1.36)	-2.37 (-19.12 to 13.89)
MET + LIN		0.73 (0.40 to 1.37)	0.84 (0.63 to 1.20)	-7.74 (-22.39 to 7.55)
MET + SIT		0.81 (0.46 to 1.44)	0.90 (0.69 to 1.24)	-5.16 (-19.18 to 8.78)
MET + VIL		0.83 (0.49 to 1.44)	0.91 (0.72 to 1.24)	-4.53 (-17.50 to 8.81)
MET + CAN		1.06 (0.55 to 2.02)	1.03 (0.76 to 1.46)	1.52 (-14.56 to 17.23)
MET + DAP		0.93 (0.50 to 1.73)	0.96 (0.73 to 1.36)	-1.89 (-16.75 to 13.38)
MET + EMP		0.83 (0.46 to 1.53)	0.91 (0.69 to 1.28)	-4.52 (-19.20 to 10.26)
MET + LIR		1.31 (0.69 to 2.46)	1.13 (0.85 to 1.59)	6.65 (-9.17 to 22.02)
MET + EXE		1.25 (0.59 to 2.67)	1.11 (0.78 to 1.62)	5.57 (-12.81 to 23.72)
MET + DUL		1.22 (0.64 to 2.29)	1.10 (0.82 to 1.54)	5.00 (-10.94 to 20.33)
MET + LIX		1.10 (0.58 to 2.05)	1.05 (0.79 to 1.47)	2.31 (-13.21 to 17.54)
MET + ROS		1.08 (0.56 to 2.03)	1.04 (0.77 to 1.46)	1.83 (-14.00 to 17.26)
MET + PIO		0.90 (0.61 to 1.35)	0.95 (0.79 to 1.19)	-2.57 (-12.28 to 7.26)
MET + IAS		2.43 (0.98 to 6.20)	1.41 (0.99 to 2.04)	20.62 (-0.38 to 39.91)
MET + IGA		2.18 (1.05 to 4.40)	1.37 (1.02 to 1.92)	18.38 (1.13 to 34.48)
MET + GLY	MET + GLM	1.68 (0.79 to 3.48)	1.26 (0.89 to 1.59)	12.63 (-5.81 to 28.01)
MET + GLI		0.93 (0.65 to 1.35)	0.97 (0.79 to 1.16)	-1.70 (-10.67 to 7.49)
MET + GLL		0.82 (0.55 to 1.27)	0.90 (0.71 to 1.12)	-5.04 (-14.72 to 5.87)
MET + MIT		0.83 (0.38 to 1.85)	0.91 (0.56 to 1.31)	-4.60 (-22.37 to 14.99)
MET + NAT		1.06 (0.63 to 1.84)	1.03 (0.78 to 1.31)	1.42 (-11.30 to 14.97)
MET + SAX		0.93 (0.75 to 1.16)	0.96 (0.87 to 1.08)	-1.84 (-7.01 to 3.76)
MET + ALO		0.91 (0.61 to 1.35)	0.95 (0.76 to 1.16)	-2.24 (-12.16 to 7.46)
MET + LIN		0.73 (0.57 to 0.97)	0.85 (0.73 to 0.99)	-7.67 (-13.91 to -0.70)
MET + SIT		0.82 (0.67 to 1.01)	0.90 (0.81 to 1.01)	-5.06 (-9.99 to 0.36)
MET + VIL		0.84 (0.67 to 1.07)	0.91 (0.81 to 1.04)	-4.45 (-9.92 to 1.66)
MET + CAN		1.07 (0.74 to 1.56)	1.03 (0.85 to 1.23)	1.56 (-7.53 to 11.00)
MET + DAP		0.93 (0.69 to 1.29)	0.96 (0.82 to 1.14)	-1.75 (-9.25 to 6.33)
MET + EMP		0.84 (0.64 to 1.11)	0.91 (0.78 to 1.05)	-4.35 (-11.12 to 2.50)
MET + LIR		1.31 (0.93 to 1.89)	1.13 (0.96 to 1.33)	6.62 (-1.87 to 15.61)
MET + EXE		1.26 (0.74 to 2.18)	1.12 (0.85 to 1.39)	5.78 (-7.62 to 18.71)

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% Crl)
MET + DUL		1.22 (0.87 to 1.77)	1.10 (0.93 to 1.30)	4.96 (-3.57 to 14.04)
MET + LIX		1.10 (0.78 to 1.56)	1.05 (0.88 to 1.23)	2.35 (-6.23 to 10.96)
MET + ROS		1.08 (0.75 to 1.55)	1.04 (0.86 to 1.23)	1.87 (-7.06 to 10.89)
MET + PIO		0.90 (0.61 to 1.38)	0.95 (0.76 to 1.17)	-2.53 (-12.23 to 7.98)
MET + IAS		2.45 (1.18 to 5.12)	1.42 (1.08 to 1.73)	21.04 (4.17 to 34.29)
MET + IGA		2.18 (1.36 to 3.52)	1.37 (1.15 to 1.61)	18.50 (7.55 to 28.31)
MET + GLI	MET + GLY	0.56 (0.25 to 1.24)	0.77 (0.58 to 1.11)	-14.11 (-31.22 to 5.22)
MET + GLL		0.49 (0.22 to 1.14)	0.72 (0.52 to 1.07)	-17.45 (-35.08 to 3.26)
MET + MIT		0.50 (0.17 to 1.40)	0.73 (0.42 to 1.16)	-16.94 (-41.07 to 8.07)
MET + NAT		0.64 (0.27 to 1.54)	0.82 (0.58 to 1.23)	-10.98 (-30.04 to 10.52)
MET + SAX		0.56 (0.27 to 1.17)	0.77 (0.61 to 1.09)	-14.33 (-29.75 to 3.85)
MET + ALO		0.55 (0.24 to 1.23)	0.77 (0.56 to 1.11)	-14.65 (-32.69 to 5.11)
MET + LIN		0.44 (0.20 to 0.96)	0.68 (0.51 to 0.98)	-20.09 (-36.47 to -0.94)
MET + SIT		0.49 (0.24 to 1.01)	0.72 (0.57 to 1.00)	-17.57 (-32.40 to 0.13)
$\mathrm{MET}+\mathrm{VIL}$		0.50 (0.24 to 1.07)	0.73 (0.57 to 1.04)	-16.98 (-32.62 to 1.76)
MET + CAN		0.63 (0.29 to 1.41)	0.82 (0.63 to 1.19)	-11.04 (-27.60 to 8.51)
MET + DAP		0.56 (0.26 to 1.20)	0.77 (0.60 to 1.10)	-14.35 (-30.59 to 4.60)
MET + EMP		0.50 (0.24 to 1.11)	0.73 (0.56 to 1.06)	-16.92 (-33.02 to 2.52)
MET + LIR		0.78 (0.36 to 1.73)	0.91 (0.69 to 1.30)	-5.91 (-22.83 to 13.51)
MET + EXE		0.76 (0.32 to 1.79)	0.89 (0.64 to 1.30)	-6.65 (-26.01 to 14.11)
MET + DUL		0.73 (0.34 to 1.63)	0.88 (0.67 to 1.26)	-7.48 (-24.16 to 12.06)
MET + LIX		0.66 (0.30 to 1.45)	0.84 (0.64 to 1.20)	-10.12 (-26.72 to 9.13)
MET + ROS		0.64 (0.32 to 1.31)	0.83 (0.66 to 1.14)	-10.65 (-25.43 to 6.64)
MET + PIO		0.54 (0.25 to 1.22)	0.76 (0.56 to 1.11)	-14.98 (-32.33 to 4.98)
MET + IAS		1.47 (0.83 to 2.57)	1.13 (0.94 to 1.42)	8.30 (-4.09 to 20.63)
MET + IGA		1.30 (0.63 to 2.60)	1.10 (0.87 to 1.48)	5.93 (-9.76 to 22.31)
MET + GLL	MET + GLI	0.87 (0.53 to 1.50)	0.93 (0.70 to 1.24)	-3.32 (-15.72 to 10.04)
MET + MIT		0.89 (0.39 to 2.03)	0.94 (0.57 to 1.39)	-2.76 (-22.30 to 17.31)
MET + NAT		1.14 (0.63 to 2.11)	1.07 (0.78 to 1.43)	3.14 (-11.35 to 18.27)
MET + SAX		0.99 (0.70 to 1.43)	1.00 (0.84 to 1.22)	-0.14 (-8.97 to 8.85)
MET + ALO		0.98 (0.71 to 1.31)	0.99 (0.83 to 1.15)	-0.50 (-8.53 to 6.64)
MET + LIN		0.79 (0.52 to 1.20)	0.88 (0.70 to 1.11)	-5.89 (-16.05 to 4.52)
MET + SIT		0.88 (0.64 to 1.20)	0.93 (0.80 to 1.11)	-3.30 (-11.16 to 4.52)
MET + VIL		0.90 (0.61 to 1.33)	0.94 (0.78 to 1.17)	-2.70 (-12.15 to 7.04)
MET + CAN		1.14 (0.72 to 1.82)	1.07 (0.85 to 1.36)	3.23 (-8.01 to 14.74)
MET + DAP		1.00 (0.65 to 1.53)	1.00 (0.81 to 1.25)	-0.02 (-10.49 to 10.52)
MET + EMP		0.90 (0.59 to 1.37)	0.94 (0.76 to 1.19)	-2.68 (-13.00 to 7.82)
MET + LIR		1.40 (0.90 to 2.19)	1.17 (0.95 to 1.46)	8.32 (-2.51 to 19.26)
MET + EXE		1.35 (0.73 to 2.48)	1.15 (0.85 to 1.51)	7.45 (-7.70 to 22.07)
MET + DUL		1.31 (0.85 to 2.04)	1.14 (0.92 to 1.42)	6.66 (-4.13 to 17.50)
MET + LIX		1.18 (0.76 to 1.82)	1.09 (0.87 to 1.36)	4.07 (-6.78 to 14.74)
MET + ROS		1.16 (0.73 to 1.84)	1.08 (0.86 to 1.36)	3.66 (-7.76 to 15.07)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO		0.97 (0.58 to 1.62)	0.98 (0.75 to 1.28)	-0.74 (-13.22 to 11.89)
MET + IAS		2.63 (1.20 to 5.76)	1.47 (1.09 to 1.89)	22.65 (4.40 to 37.68)
MET + IGA		2.32 (1.35 to 4.02)	1.42 (1.14 to 1.77)	20.06 (7.37 to 32.00)
MET + MIT	MET + GLL	1.01 (0.43 to 2.40)	1.01 (0.60 to 1.54)	0.34 (-19.73 to 21.29)
MET + NAT		1.30 (0.68 to 2.50)	1.14 (0.81 to 1.59)	6.38 (-9.59 to 22.40)
MET + SAX		1.14 (0.73 to 1.76)	1.07 (0.85 to 1.38)	3.19 (-7.83 to 13.64)
MET + ALO		1.12 (0.63 to 1.89)	1.06 (0.78 to 1.42)	2.80 (-11.45 to 15.52)
MET + LIN		0.90 (0.56 to 1.46)	0.94 (0.73 to 1.25)	-2.67 (-14.46 to 9.15)
MET + SIT		1.00 (0.64 to 1.53)	1.00 (0.80 to 1.28)	-0.02 (-10.98 to 10.13)
MET + VIL		1.02 (0.72 to 1.45)	1.01 (0.85 to 1.25)	0.59 (-8.19 to 8.93)
MET + CAN		1.30 (0.77 to 2.21)	1.15 (0.88 to 1.53)	6.48 (-6.52 to 19.36)
MET + DAP		1.14 (0.70 to 1.86)	1.07 (0.83 to 1.42)	3.23 (-8.83 to 15.11)
MET + EMP		1.03 (0.62 to 1.64)	1.02 (0.78 to 1.33)	0.69 (-11.69 to 12.00)
MET + LIR		1.60 (0.95 to 2.69)	1.26 (0.97 to 1.66)	11.62 (-1.36 to 24.12)
MET + EXE		1.54 (0.80 to 2.97)	1.24 (0.89 to 1.69)	10.68 (-5.55 to 26.33)
MET + DUL		1.50 (0.88 to 2.51)	1.22 (0.94 to 1.62)	9.96 (-3.05 to 22.54)
MET + LIX		1.35 (0.81 to 2.20)	1.16 (0.90 to 1.53)	7.36 (-5.29 to 19.28)
MET + ROS		1.32 (0.78 to 2.20)	1.15 (0.88 to 1.53)	6.87 (-6.32 to 19.34)
MET + PIO		1.10 (0.67 to 1.83)	1.06 (0.81 to 1.39)	2.45 (-9.96 to 14.81)
MET + IAS		3.01 (1.31 to 6.80)	1.58 (1.13 to 2.13)	25.93 (6.66 to 41.78)
MET + IGA		2.66 (1.43 to 4.86)	1.52 (1.17 to 2.01)	23.47 (8.66 to 36.62)
MET + NAT	MET + MIT	1.28 (0.52 to 3.20)	1.13 (0.73 to 1.93)	6.04 (-16.14 to 27.62)
MET + SAX		1.12 (0.51 to 2.44)	1.06 (0.74 to 1.74)	2.74 (-16.41 to 20.74)
MET + ALO		1.09 (0.47 to 2.55)	1.05 (0.69 to 1.76)	2.20 (-18.70 to 22.05)
MET + LIN		0.89 (0.39 to 1.98)	0.93 (0.63 to 1.54)	-2.98 (-22.91 to 15.54)
MET + SIT		0.98 (0.45 to 2.13)	0.99 (0.69 to 1.62)	-0.47 (-19.54 to 17.20)
MET + VIL		1.01 (0.45 to 2.24)	1.00 (0.69 to 1.66)	0.19 (-19.47 to 18.49)
MET + CAN		1.28 (0.57 to 3.03)	1.13 (0.78 to 1.90)	6.02 (-13.83 to 26.19)
MET + DAP		1.12 (0.50 to 2.55)	1.06 (0.73 to 1.78)	2.80 (-16.78 to 21.85)
MET + EMP		1.01 (0.45 to 2.29)	1.01 (0.68 to 1.67)	0.22 (-19.65 to 19.17)
MET + LIR		1.57 (0.69 to 3.66)	1.25 (0.86 to 2.08)	11.14 (-9.05 to 30.71)
MET + EXE		1.52 (0.60 to 3.84)	1.23 (0.79 to 2.10)	10.31 (-12.47 to 31.98)
MET + DUL		1.47 (0.64 to 3.43)	1.21 (0.83 to 2.02)	9.46 (-10.70 to 29.13)
MET + LIX		1.32 (0.58 to 3.02)	1.15 (0.79 to 1.92)	6.93 (-13.13 to 26.04)
MET + ROS		1.30 (0.56 to 2.96)	1.14 (0.77 to 1.89)	6.40 (-14.05 to 25.60)
MET + PIO		1.09 (0.46 to 2.58)	1.05 (0.68 to 1.77)	2.08 (-19.08 to 22.22)
MET + IAS		2.93 (1.04 to 8.68)	1.55 (1.02 to 2.64)	25.09 (0.99 to 47.89)
MET + IGA		2.61 (1.07 to 6.30)	1.51 (1.03 to 2.50)	22.83 (1.62 to 42.56)
MET + SAX	MET + NAT	0.88 (0.50 to 1.48)	0.94 (0.73 to 1.24)	-3.29 (-16.91 to 9.56)
MET + ALO		0.86 (0.45 to 1.56)	0.93 (0.68 to 1.27)	-3.64 (-19.67 to 11.00)
MET + LIN		0.69 (0.39 to 1.22)	0.82 (0.62 to 1.12)	-9.06 (-23.16 to 4.73)
MET + SIT		0.77 (0.45 to 1.30)	0.87 (0.69 to 1.16)	-6.43 (-19.83 to 6.35)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + VIL		0.79 (0.45 to 1.36)	0.88 (0.69 to 1.19)	-5.93 (-19.53 to 7.49)
MET + CAN		1.00 (0.55 to 1.82)	1.00 (0.76 to 1.36)	0.06 (-14.66 to 14.79)
MET + DAP		0.88 (0.49 to 1.55)	0.94 (0.72 to 1.27)	-3.26 (-17.63 to 10.67)
MET + EMP		0.79 (0.44 to 1.39)	0.89 (0.68 to 1.20)	-5.86 (-20.00 to 7.97)
MET + LIR		1.23 (0.68 to 2.24)	1.10 (0.85 to 1.49)	5.17 (-9.46 to 19.72)
MET + EXE		1.19 (0.56 to 2.43)	1.08 (0.76 to 1.52)	4.26 (-13.97 to 21.43)
MET + DUL		1.15 (0.63 to 2.09)	1.07 (0.81 to 1.45)	3.50 (-11.32 to 18.07)
MET + LIX		1.04 (0.57 to 1.86)	1.02 (0.77 to 1.38)	0.89 (-13.90 to 15.20)
MET + ROS		1.02 (0.55 to 1.85)	1.01 (0.76 to 1.38)	0.36 (-14.58 to 15.18)
MET + PIO		0.85 (0.44 to 1.61)	0.92 (0.67 to 1.29)	-3.92 (-20.04 to 11.79)
MET + IAS		2.31 (0.93 to 5.51)	1.37 (0.97 to 1.91)	19.25 (-1.69 to 37.14)
MET + IGA		2.05 (1.02 to 4.00)	1.33 (1.01 to 1.80)	16.92 (0.43 to 32.24)
MET + ALO	MET + SAX	0.98 (0.65 to 1.44)	0.99 (0.79 to 1.20)	-0.42 (-10.44 to 9.06)
MET + LIN		0.79 (0.58 to 1.08)	0.88 (0.74 to 1.04)	-5.82 (-13.13 to 1.83)
MET + SIT		0.88 (0.72 to 1.08)	0.93 (0.84 to 1.04)	-3.21 (-8.23 to 1.93)
MET + VIL		0.90 (0.69 to 1.17)	0.95 (0.82 to 1.09)	-2.56 (-9.05 to 3.98)
MET + CAN		1.15 (0.80 to 1.65)	1.07 (0.89 to 1.27)	3.39 (-5.67 to 12.39)
MET + DAP		1.00 (0.75 to 1.34)	1.00 (0.86 to 1.16)	0.06 (-7.01 to 7.37)
MET + EMP		0.90 (0.66 to 1.22)	0.95 (0.80 to 1.11)	-2.49 (-10.21 to 5.03)
MET + LIR		1.41 (0.99 to 2.03)	1.18 (1.00 to 1.38)	8.46 (-0.19 to 17.24)
MET + EXE		1.36 (0.79 to 2.32)	1.16 (0.88 to 1.44)	7.65 (-5.86 to 20.25)
MET + DUL		1.31 (0.93 to 1.89)	1.14 (0.96 to 1.34)	6.76 (-1.87 to 15.67)
MET + LIX		1.18 (0.84 to 1.66)	1.09 (0.91 to 1.27)	4.20 (-4.46 to 12.52)
MET + ROS		1.16 (0.81 to 1.66)	1.08 (0.89 to 1.27)	3.75 (-5.31 to 12.49)
MET + PIO		0.97 (0.64 to 1.47)	0.99 (0.78 to 1.21)	-0.65 (-11.04 to 9.60)
MET + IAS		2.63 (1.27 to 5.47)	1.47 (1.12 to 1.79)	22.79 (5.96 to 35.89)
MET + IGA		2.34 (1.44 to 3.74)	1.42 (1.18 to 1.66)	20.31 (9.07 to 29.95)
MET + LIN	MET + ALO	0.80 (0.52 to 1.29)	0.89 (0.70 to 1.16)	-5.36 (-16.05 to 6.17)
MET + SIT		0.89 (0.63 to 1.32)	0.94 (0.79 to 1.17)	-2.77 (-11.57 to 6.73)
MET + VIL		0.92 (0.61 to 1.42)	0.96 (0.78 to 1.22)	-2.14 (-12.06 to 8.65)
MET + CAN		1.16 (0.72 to 1.93)	1.08 (0.85 to 1.40)	3.76 (-8.04 to 16.09)
MET + DAP		1.02 (0.66 to 1.63)	1.01 (0.81 to 1.31)	0.54 (-10.34 to 12.08)
MET + EMP		0.92 (0.59 to 1.46)	0.95 (0.76 to 1.23)	-2.18 (-12.91 to 9.27)
MET + LIR		1.43 (0.91 to 2.36)	1.19 (0.96 to 1.53)	8.82 (-2.45 to 20.99)
MET + EXE		1.38 (0.74 to 2.65)	1.17 (0.86 to 1.57)	8.04 (-7.45 to 23.53)
MET + DUL		1.33 (0.84 to 2.21)	1.15 (0.92 to 1.49)	7.15 (-4.23 to 19.46)
MET + LIX		1.20 (0.76 to 1.94)	1.10 (0.87 to 1.41)	4.59 (-6.73 to 16.34)
MET + ROS		1.18 (0.73 to 1.94)	1.09 (0.86 to 1.41)	4.13 (-7.70 to 16.34)
MET + PIO		0.99 (0.58 to 1.70)	1.00 (0.75 to 1.33)	-0.23 (-13.39 to 13.09)
MET + IAS		2.68 (1.21 to 6.18)	1.48 (1.09 to 1.97)	23.14 (4.68 to 39.38)
MET + IGA		2.38 (1.36 to 4.30)	1.43 (1.14 to 1.85)	20.67 (7.41 to 33.68)
MET + SIT	MET + LIN	1.11 (0.82 to 1.50)	1.06 (0.90 to 1.27)	2.64 (-4.86 to 9.86)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + VIL		1.14 (0.82 to 1.58)	1.08 (0.90 to 1.30)	3.24 (-4.91 to 11.17)
MET + CAN		1.45 (0.95 to 2.22)	1.22 (0.97 to 1.52)	9.16 (-1.20 to 19.55)
MET + DAP		1.27 (0.88 to 1.85)	1.14 (0.93 to 1.41)	5.86 (-3.23 to 15.10)
MET + EMP		1.15 (0.79 to 1.63)	1.08 (0.87 to 1.32)	3.33 (-5.88 to 11.93)
MET + LIR		1.78 (1.17 to 2.70)	1.34 (1.09 to 1.65)	14.29 (3.94 to 24.21)
MET + EXE		1.72 (0.95 to 3.06)	1.32 (0.97 to 1.70)	13.38 (-1.27 to 27.03)
MET + DUL		1.66 (1.09 to 2.52)	1.30 (1.04 to 1.60)	12.59 (2.03 to 22.60)
MET + LIX		1.50 (1.00 to 2.22)	1.24 (1.00 to 1.53)	10.03 (-0.08 to 19.56)
MET + ROS		1.46 (0.97 to 2.24)	1.22 (0.98 to 1.53)	9.41 (-0.74 to 19.80)
MET + PIO		1.24 (0.77 to 1.94)	1.12 (0.86 to 1.43)	5.22 (-6.44 to 16.35)
MET + IAS		3.33 (1.52 to 7.20)	1.68 (1.23 to 2.14)	28.53 (10.44 to 42.79)
MET + IGA		2.96 (1.75 to 4.97)	1.62 (1.30 to 2.00)	26.09 (13.75 to 37.03)
MET + VIL	MET + SIT	1.03 (0.80 to 1.33)	1.02 (0.88 to 1.17)	0.67 (-5.51 to 6.98)
MET + CAN		1.30 (0.92 to 1.87)	1.15 (0.95 to 1.36)	6.60 (-2.10 to 15.43)
MET + DAP		1.14 (0.85 to 1.56)	1.07 (0.91 to 1.26)	3.27 (-4.01 to 10.98)
MET + EMP		1.03 (0.75 to 1.38)	1.02 (0.85 to 1.19)	0.68 (-6.87 to 8.05)
MET + LIR		1.60 (1.18 to 2.19)	1.26 (1.09 to 1.44)	11.69 (4.12 to 19.22)
MET + EXE		1.55 (0.90 to 2.62)	1.24 (0.95 to 1.54)	10.83 (-2.48 to 23.30)
MET + DUL		1.50 (1.10 to 2.05)	1.22 (1.05 to 1.41)	10.01 (2.32 to 17.67)
MET + LIX		1.35 (0.97 to 1.85)	1.17 (0.99 to 1.36)	7.44 (-0.67 to 15.25)
MET + ROS		1.32 (0.93 to 1.86)	1.16 (0.96 to 1.36)	6.98 (-1.89 to 15.39)
MET + PIO		1.11 (0.73 to 1.68)	1.06 (0.84 to 1.30)	2.49 (-7.52 to 12.93)
MET + IAS		3.01 (1.49 to 6.04)	1.58 (1.22 to 1.90)	26.06 (9.84 to 38.47)
MET + IGA		2.66 (1.72 to 4.08)	1.52 (1.30 to 1.75)	23.50 (13.41 to 32.11)
MET + CAN	MET + VIL	1.27 (0.86 to 1.89)	1.13 (0.92 to 1.38)	6.01 (-3.81 to 15.73)
MET + DAP		1.11 (0.80 to 1.56)	1.06 (0.88 to 1.27)	2.64 (-5.63 to 11.09)
MET + EMP		1.00 (0.71 to 1.38)	1.00 (0.83 to 1.19)	0.09 (-8.26 to 7.90)
MET + LIR		1.56 (1.06 to 2.30)	1.24 (1.03 to 1.49)	11.03 (1.44 to 20.44)
MET + EXE		1.51 (0.86 to 2.64)	1.23 (0.92 to 1.55)	10.21 (-3.81 to 23.46)
MET + DUL		1.46 (1.00 to 2.13)	1.21 (1.00 to 1.44)	9.40 (-0.04 to 18.59)
MET + LIX		1.31 (0.91 to 1.88)	1.15 (0.95 to 1.37)	6.76 (-2.45 to 15.60)
MET + ROS		1.29 (0.87 to 1.88)	1.14 (0.93 to 1.37)	6.31 (-3.34 to 15.59)
$\mathrm{MET}+\mathrm{PIO}$		1.08 (0.75 to 1.55)	1.04 (0.85 to 1.25)	1.85 (-6.91 to 10.83)
MET + IAS		2.93 (1.38 to 6.22)	1.56 (1.17 to 1.93)	25.38 (8.04 to 39.18)
MET + IGA		2.59 (1.56 to 4.23)	1.50 (1.23 to 1.80)	22.86 (10.92 to 33.05)
MET + DAP	MET + CAN	0.88 (0.57 to 1.34)	0.94 (0.76 to 1.16)	-3.30 (-13.92 to 7.21)
MET + EMP		0.79 (0.51 to 1.21)	0.88 (0.71 to 1.10)	-5.91 (-16.63 to 4.63)
MET + LIR		1.23 (0.77 to 1.94)	1.10 (0.89 to 1.36)	5.06 (-6.27 to 16.27)
MET + EXE		1.19 (0.63 to 2.16)	1.08 (0.80 to 1.40)	4.27 (-11.24 to 18.64)
MET + DUL		1.15 (0.72 to 1.81)	1.07 (0.86 to 1.32)	3.42 (-8.02 to 14.63)
MET + LIX		1.03 (0.66 to 1.60)	1.02 (0.82 to 1.26)	0.83 (-10.14 to 11.60)
MET + ROS		1.01 (0.64 to 1.59)	1.01 (0.81 to 1.25)	0.30 (-11.10 to 11.46)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO		0.85 (0.51 to 1.43)	0.92 (0.71 to 1.19)	-4.13 (-16.54 to 8.86)
MET + IAS		2.30 (1.05 to 5.00)	1.38 (1.02 to 1.75)	19.37 (1.24 to 34.31)
MET + IGA		2.04 (1.18 to 3.51)	1.33 (1.07 to 1.64)	16.83 (4.07 to 28.66)
MET + EMP	MET + DAP	0.90 (0.61 to 1.30)	0.95 (0.77 to 1.15)	-2.58 (-12.00 to 6.54)
MET + LIR		1.40 (0.93 to 2.12)	1.17 (0.96 to 1.42)	8.39 (-1.91 to 18.33)
MET + EXE		1.36 (0.74 to 2.38)	1.16 (0.86 to 1.47)	7.59 (-7.34 to 20.93)
MET + DUL		1.31 (0.86 to 1.97)	1.14 (0.93 to 1.38)	6.71 (-3.69 to 16.67)
MET + LIX		1.18 (0.78 to 1.74)	1.09 (0.88 to 1.32)	4.17 (-6.05 to 13.66)
MET + ROS		1.16 (0.75 to 1.74)	1.08 (0.86 to 1.32)	3.77 (-7.10 to 13.68)
MET + PIO		0.97 (0.60 to 1.56)	0.98 (0.76 to 1.25)	-0.75 (-12.50 to 11.07)
MET + IAS		2.62 (1.24 to 5.62)	1.47 (1.10 to 1.84)	22.60 (5.25 to 36.93)
MET + IGA		2.33 (1.37 to 3.88)	1.42 (1.15 to 1.72)	20.21 (7.80 to 31.05)
MET + LIR	MET + EMP	1.56 (1.03 to 2.38)	1.24 (1.01 to 1.53)	10.97 (0.69 to 21.21)
MET + EXE		1.50 (0.85 to 2.69)	1.22 (0.91 to 1.58)	10.09 (-4.10 to 23.96)
MET + DUL		1.45 (0.98 to 2.23)	1.21 (0.99 to 1.49)	9.30 (-0.60 to 19.72)
MET + LIX		1.31 (0.88 to 1.97)	1.15 (0.93 to 1.41)	6.72 (-3.29 to 16.73)
MET + ROS		1.29 (0.85 to 1.93)	1.14 (0.92 to 1.40)	6.28 (-4.14 to 16.24)
MET + PIO		1.08 (0.69 to 1.71)	1.04 (0.81 to 1.32)	1.92 (-9.08 to 13.21)
MET + IAS		2.92 (1.35 to 6.25)	1.56 (1.16 to 1.97)	25.31 (7.51 to 39.47)
MET + IGA		2.59 (1.55 to 4.38)	1.50 (1.22 to 1.84)	22.76 (10.75 to 33.93)
MET + EXE	MET + LIR	0.97 (0.52 to 1.75)	0.99 (0.73 to 1.26)	-0.79 (-16.09 to 13.32)
MET + DUL		0.94 (0.67 to 1.29)	0.97 (0.84 to 1.12)	-1.62 (-9.63 to 6.29)
MET + LIX		0.84 (0.54 to 1.29)	0.92 (0.75 to 1.13)	-4.24 (-15.13 to 6.37)
MET + ROS		0.83 (0.52 to 1.29)	0.92 (0.74 to 1.13)	-4.74 (-16.10 to 6.25)
MET + PIO		0.69 (0.42 to 1.14)	0.84 (0.65 to 1.06)	-9.17 (-21.34 to 3.26)
MET + IAS		1.87 (0.86 to 4.11)	1.25 (0.94 to 1.57)	14.24 (-3.69 to 29.19)
MET + IGA		1.66 (0.96 to 2.83)	1.21 (0.99 to 1.47)	11.79 (-0.85 to 23.44)
MET + DUL	MET + EXE	0.96 (0.54 to 1.79)	0.98 (0.77 to 1.33)	-0.88 (-14.96 to 14.36)
MET + LIX		0.88 (0.57 to 1.32)	0.94 (0.79 to 1.16)	-3.30 (-13.42 to 6.92)
MET + ROS		0.86 (0.47 to 1.57)	0.93 (0.72 to 1.25)	-3.86 (-18.26 to 11.15)
MET + PIO		0.72 (0.38 to 1.37)	0.85 (0.63 to 1.18)	-8.23 (-23.62 to 7.84)
MET + IAS		1.93 (0.83 to 4.68)	1.27 (0.93 to 1.74)	15.03 (-4.32 to 33.21)
MET + IGA		1.72 (0.89 to 3.43)	1.23 (0.96 to 1.65)	12.60 (-2.77 to 28.43)
MET + LIX	MET + DUL	0.90 (0.58 to 1.38)	0.95 (0.78 to 1.17)	-2.62 (-13.27 to 8.04)
MET + ROS		0.88 (0.56 to 1.37)	0.94 (0.76 to 1.16)	-3.10 (-14.19 to 7.78)
MET + PIO		0.74 (0.45 to 1.23)	0.86 (0.67 to 1.10)	-7.52 (-19.63 to 5.05)
MET + IAS		2.01 (0.93 to 4.31)	1.29 (0.97 to 1.62)	15.97 (-1.69 to 30.64)
MET + IGA		1.78 (1.03 to 3.03)	1.24 (1.01 to 1.52)	13.40 (0.81 to 25.05)
MET + ROS	MET + LIX	0.98 (0.63 to 1.51)	0.99 (0.80 to 1.22)	-0.40 (-11.59 to 10.25)
MET + PIO		0.82 (0.50 to 1.33)	0.91 (0.70 to 1.15)	-4.84 (-16.83 to 7.09)
MET + IAS		2.22 (1.05 to 4.86)	1.35 (1.02 to 1.71)	18.48 (1.11 to 33.37)
MET + IGA		1.97 (1.16 to 3.38)	1.31 (1.07 to 1.60)	15.98 (3.68 to 27.70)

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% Crl)
MET + PIO	MET + ROS	0.83 (0.52 to 1.38)	0.91 (0.71 to 1.18)	-4.50 (-16.32 to 8.08)
MET + IAS		2.27 (1.10 to 4.71)	1.37 (1.05 to 1.70)	18.98 (2.40 to 32.84)
MET + IGA		2.02 (1.19 to 3.39)	1.32 (1.08 to 1.62)	16.61 (4.18 to 27.92)
MET + IAS	MET + PIO	2.69 (1.20 to 6.21)	1.49 (1.09 to 2.00)	23.16 (4.48 to 39.74)
MET + IGA		2.41 (1.31 to 4.32)	1.44 (1.12 to 1.87)	20.98 (6.61 to 33.85)
MET + IGA	MET + IAS	0.89 (0.45 to 1.68)	0.97 (0.81 to 1.21)	-2.37 (-15.19 to 11.84)
Random-effects model	Residual deviance	120.5 vs. 121 data points		
	Deviance information criteria	855.301		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLC = glicazide; $\mathrm{GLI}=$ glipizide; GLL = gliclazide; GLM = glimepiride; GLY = glyburide; $\mathrm{IAS}=$ insulin aspart; IGA = insulin glargine; LIN = linagliptin; LIR = liraglutide; LIX = lixisenatide; MET = metformin; MIT = mitiglinide; $\mathrm{NAT}=$ nateglinide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk;
SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.
Figure 38: Consistency Plot for Total Adverse Events (Individual-Drug Case Analysis)

Total Cholesterol

Table 59: Total Cholesterol: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% CrI)
MET + GLM	MET	$0.00(-0.16$ to 0.15$)$
MET + REP		$0.00(-0.41$ to 0.40$)$
MET + NAT		$0.00(-0.35$ to 0.35$)$
MET + ALO		$-0.05(-0.32$ to 0.21$)$

Treatment	Reference	MD (95\% Crl)
MET + LIN		0.00 (-0.29 to 0.28)
MET + SIT		-0.04 (-0.14 to 0.06)
MET + CAN		0.27 (-0.14 to 0.69)
MET + EMP		0.15 (-0.04 to 0.33)
MET + LIR		-0.17 (-0.45 to 0.11)
MET + EXE		-0.01 (-0.20 to 0.15)
MET + DUL		-0.33 (-0.58 to -0.07)
MET + ROS		0.46 (0.29 to 0.65)
MET + PIO		0.15 (0.00 to 0.30)
MET + IGA		-0.17 (-0.42 to 0.11)
MET + REP	MET + GLM	0.00 (-0.44 to 0.44)
MET + NAT		0.00 (-0.38 to 0.38)
MET + ALO		-0.05 (-0.33 to 0.23)
MET + LIN		0.00 (-0.23 to 0.24)
MET + SIT		-0.04 (-0.20 to 0.13)
MET + CAN		0.27 (-0.16 to 0.71)
MET + EMP		0.14 (-0.09 to 0.39)
MET + LIR		-0.17 (-0.47 to 0.14)
MET + EXE		-0.01 (-0.23 to 0.19)
MET + DUL		-0.33 (-0.61 to -0.03)
MET + ROS		0.46 (0.24 to 0.70)
MET + PIO		0.15 (0.01 to 0.31)
MET + IGA		-0.17 (-0.45 to 0.15)
MET + NAT	MET + REP	0.00 (-0.53 to 0.53)
MET + ALO		-0.05 (-0.54 to 0.44)
MET + LIN		0.01 (-0.49 to 0.50)
MET + SIT		-0.04 (-0.46 to 0.38)
MET + CAN		0.27 (-0.31 to 0.86)
MET + EMP		0.15 (-0.30 to 0.59)
MET + LIR		-0.17 (-0.66 to 0.32)
MET + EXE		-0.01 (-0.46 to 0.43)
MET + DUL		-0.32 (-0.80 to 0.16)
MET + ROS		0.47 (0.02 to 0.91)
MET + PIO		0.15 (-0.28 to 0.59)
MET + IGA		-0.17 (-0.65 to 0.32)
MET + ALO	MET + NAT	-0.05 (-0.49 to 0.38)
MET + LIN		0.00 (-0.44 to 0.45)
MET + SIT		-0.04 (-0.40 to 0.33)
MET + CAN		0.27 (-0.27 to 0.82)
MET + EMP		0.15 (-0.25 to 0.54)
MET + LIR		-0.17 (-0.61 to 0.28)
MET + EXE		-0.01 (-0.40 to 0.37)

Treatment	Reference	MD (95\% Crl)
MET + DUL		-0.32 (-0.75 to 0.11)
MET + ROS		0.47 (0.08 to 0.86)
MET + PIO		0.15 (-0.22 to 0.53)
MET + IGA		-0.17 (-0.60 to 0.28)
MET + LIN	MET + ALO	0.05 (-0.31 to 0.41)
MET + SIT		0.01 (-0.26 to 0.29)
MET + CAN		0.32 (-0.16 to 0.81)
MET + EMP		0.20 (-0.12 to 0.52)
MET + LIR		-0.12 (-0.50 to 0.26)
MET + EXE		0.04 (-0.27 to 0.33)
MET + DUL		-0.27 (-0.64 to 0.09)
MET + ROS		0.52 (0.20 to 0.84)
MET + PIO		0.20 (-0.05 to 0.46)
MET + IGA		-0.12 (-0.47 to 0.27)
MET + SIT	MET + LIN	-0.04 (-0.32 to 0.25)
MET + CAN		0.27 (-0.22 to 0.77)
MET + EMP		0.14 (-0.19 to 0.49)
MET + LIR		-0.17 (-0.55 to 0.22)
MET + EXE		-0.01 (-0.33 to 0.29)
MET + DUL		-0.33 (-0.69 to 0.05)
MET + ROS		0.46 (0.14 to 0.80)
MET + PIO		0.15 (-0.12 to 0.44)
MET + IGA		-0.17 (-0.53 to 0.23)
MET + CAN	MET + SIT	0.31 (-0.09 to 0.72)
MET + EMP		0.19 (-0.03 to 0.40)
MET + LIR		-0.13 (-0.39 to 0.13)
MET + EXE		0.03 (-0.17 to 0.20)
MET + DUL		-0.28 (-0.54 to -0.03)
MET + ROS		0.51 (0.31 to 0.70)
MET + PIO		0.19 (0.04 to 0.35)
MET + IGA		-0.13 (-0.37 to 0.14)
MET + EMP	MET + CAN	-0.13 (-0.58 to 0.33)
MET + LIR		-0.44 (-0.92 to 0.04)
MET + EXE		-0.28 (-0.73 to 0.16)
MET + DUL		-0.60 (-1.08 to -0.12)
MET + ROS		0.19 (-0.25 to 0.64)
MET + PIO		-0.12 (-0.55 to 0.31)
MET + IGA		-0.44 (-0.91 to 0.04)
MET + LIR	MET + EMP	-0.32 (-0.65 to 0.02)
MET + EXE		-0.15 (-0.42 to 0.08)
MET + DUL		-0.47 (-0.78 to -0.16)
MET + ROS		0.32 (0.06 to 0.58)

$\mathrm{ALO}=$ alogliptin; $\mathrm{CAN}=$ canagliflozin; $\mathrm{CrI}=$ credible interval; $\mathrm{DUL}=$ dulaglutide; $\mathrm{EMP}=$ empagliflozin; $\mathrm{EXE}=$ exenatide; $\mathrm{GLM}=$ glimepiride; $\mathrm{IGA}=$ insulin glargine; LIN = linagliptin; LIR = liraglutide; MD = mean difference; MET = metformin; NAT = nateglinide; PIO = pioglitazone; REP = repaglinide; ROS = rosiglitazone; SIT = sitagliptin; vs. = versus.

Figure 39: Consistency Plot for Total Cholesterol (Individual-Drug Case Analysis)

Unstable Angina

Table 60: Unstable Angina: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLM	MET	0.12 (0.00 to 2.72)	0.12 (0.00 to 2.71)	-0.26 (-0.72 to 0.43)
MET + GLI		0.75 (0.04 to 15.88)	0.75 (0.04 to 15.35)	-0.07 (-0.59 to 3.73)
MET + SAX		0.19 (0.00 to 5.62)	0.19 (0.00 to 5.54)	-0.23 (-0.70 to 1.21)
MET + ALO		0.61 (0.04 to 10.16)	0.61 (0.04 to 9.93)	-0.11 (-0.60 to 2.11)
MET + LIN		0.11 (0.00 to 10.66)	0.11 (0.00 to 10.36)	-0.24 (-0.71 to 2.73)
MET + SIT		1.71 (0.42 to 8.86)	1.70 (0.42 to 8.75)	0.22 (-0.34 to 1.46)
MET + VIL		0.21 (0.00 to 6.38)	0.21 (0.00 to 6.29)	-0.21 (-0.68 to 1.51)
MET + CAN		0.31 (0.00 to 10.69)	0.31 (0.00 to 10.43)	-0.19 (-0.69 to 2.40)
MET + DAP		0.94 (0.03 to 25.75)	0.94 (0.03 to 23.97)	-0.02 (-0.57 to 6.40)
MET + EMP		0.12 (0.00 to 4.35)	0.12 (0.00 to 4.32)	-0.25 (-0.72 to 0.86)
MET + EXE		0.40 (0.00 to 51.72)	0.40 (0.00 to 45.74)	-0.15 (-0.70 to 11.18)
MET + ROS		0.22 (0.00 to 13.87)	0.22 (0.00 to 13.47)	-0.21 (-0.67 to 3.14)
MET + PIO		3.40 (0.18 to 109.90)	3.37 (0.18 to 90.96)	0.76 (-0.45 to 17.53)
MET + IGA		12.22 (0.43 to 1198.00)	11.74 (0.43 to 272.20)	3.37 (-0.24 to 78.82)
MET + GLI	MET + GLM	6.96 (0.20 to 377.30)	6.92 (0.20 to 370.10)	0.17 (-0.34 to 3.87)
MET + SAX		1.57 (0.09 to 51.98)	1.57 (0.09 to 51.53)	0.01 (-0.42 to 1.27)
MET + ALO		5.57 (0.15 to 307.50)	5.55 (0.15 to 305.20)	0.13 (-0.44 to 2.26)
MET + LIN		0.96 (0.03 to 34.67)	0.96 (0.03 to 33.61)	0.00 (-0.38 to 2.70)
MET + SIT		13.54 (0.63 to 1,186.00)	13.46 (0.63 to 1,176.00)	0.48 (-0.21 to 1.65)
MET + VIL		1.58 (0.00 to 467.10)	1.58 (0.00 to 459.20)	0.01 (-0.65 to 1.80)
MET + CAN		2.25 (0.00 to 834.10)	2.24 (0.00 to 811.60)	0.04 (-0.60 to 2.66)
MET + DAP		7.93 (0.08 to 1,346.00)	7.89 (0.08 to 1,283.00)	0.23 (-0.46 to 6.66)
MET + EMP		1.02 (0.19 to 5.60)	1.02 (0.19 to 5.55)	0.00 (-0.25 to 0.67)
MET + EXE		3.32 (0.00 to 1,614.00)	3.31 (0.00 to 1,469.00)	0.06 (-0.55 to 11.38)
MET + ROS		1.68 (0.00 to 667.70)	1.68 (0.00 to 630.50)	0.01 (-0.62 to 3.44)
MET + PIO		30.13 (0.50 to 4,977.00)	29.54 (0.50 to 4,214.00)	1.01 (-0.17 to 17.65)
MET + IGA		114.10 (1.13 to 43,210.00)	104.40 (1.12 to 16,870.00)	3.61 (0.02 to 78.95)
MET + SAX	MET + GLI	0.26 (0.01 to 3.16)	0.26 (0.01 to 3.12)	-0.13 (-3.31 to 0.50)
MET + ALO		0.82 (0.15 to 3.95)	0.82 (0.15 to 3.94)	-0.02 (-2.48 to 0.64)
MET + LIN		0.14 (0.00 to 17.77)	0.14 (0.00 to 17.19)	-0.14 (-3.65 to 2.40)
MET + SIT		2.28 (0.09 to 63.70)	2.27 (0.09 to 62.90)	0.27 (-3.53 to 1.54)
MET + VIL		0.25 (0.00 to 25.95)	0.25 (0.00 to 25.56)	-0.13 (-3.92 to 1.51)
MET + CAN		0.35 (0.00 to 46.58)	0.35 (0.00 to 45.36)	-0.10 (-3.87 to 2.45)
MET + DAP		1.17 (0.01 to 108.60)	1.16 (0.01 to 102.30)	0.03 (-3.65 to 6.31)
MET + EMP		0.15 (0.00 to 6.69)	0.15 (0.00 to 6.64)	-0.16 (-3.80 to 0.66)
MET + EXE		0.47 (0.00 to 143.00)	0.47 (0.00 to 127.60)	-0.06 (-3.60 to 10.79)
MET + ROS		0.25 (0.00 to 44.30)	0.25 (0.00 to 42.47)	-0.11 (-3.87 to 3.14)
MET + PIO		4.53 (0.10 to 335.90)	4.46 (0.10 to 281.90)	0.71 (-2.78 to 17.04)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + IGA		16.17 (0.19 to 3,592.00)	15.11 (0.19 to 1,224.00)	3.19 (-1.81 to 78.56)
MET + ALO	MET + SAX	3.25 (0.17 to 110.90)	3.24 (0.18 to 110.20)	0.09 (-0.89 to 1.95)
MET + LIN		0.60 (0.01 to 51.06)	0.60 (0.01 to 49.46)	-0.01 (-1.18 to 2.72)
MET + SIT		9.27 (0.26 to 603.70)	9.21 (0.26 to 599.30)	0.45 (-1.02 to 1.65)
MET + VIL		0.96 (0.00 to 239.60)	0.96 (0.00 to 235.70)	0.00 (-1.44 to 1.75)
MET + CAN		1.45 (0.00 to 328.20)	1.45 (0.00 to 322.10)	0.02 (-1.40 to 2.60)
MET + DAP		4.98 (0.04 to 763.10)	4.96 (0.04 to 718.40)	0.18 (-1.15 to 6.57)
MET + EMP		0.64 (0.01 to 16.83)	0.64 (0.01 to 16.73)	-0.01 (-1.22 to 0.80)
MET + EXE		1.94 (0.00 to 887.40)	1.94 (0.00 to 800.60)	0.04 (-1.17 to 11.27)
MET + ROS		0.91 (0.00 to 412.00)	0.91 (0.00 to 395.90)	0.00 (-1.36 to 3.36)
$\mathrm{MET}+\mathrm{PIO}$		18.78 (0.29 to 2,403.00)	18.39 (0.29 to 2,006.00)	0.95 (-0.63 to 17.54)
MET + IGA		70.06 (0.56 to 23,460.00)	64.30 (0.57 to 8,273.00)	3.52 (-0.22 to 78.91)
MET + LIN	MET + ALO	0.17 (0.00 to 21.95)	0.17 (0.00 to 21.14)	-0.11 (-2.15 to 2.61)
MET + SIT		2.82 (0.14 to 63.96)	2.81 (0.15 to 63.33)	0.32 (-1.95 to 1.59)
MET + VIL		0.32 (0.00 to 25.98)	0.32 (0.00 to 25.51)	-0.10 (-2.25 to 1.56)
MET + CAN		0.45 (0.00 to 48.56)	0.45 (0.00 to 47.28)	-0.07 (-2.28 to 2.54)
MET + DAP		1.45 (0.02 to 122.20)	1.44 (0.02 to 114.50)	0.06 (-2.06 to 6.45)
MET + EMP		0.18 (0.00 to 8.45)	0.19 (0.00 to 8.39)	-0.12 (-2.22 to 0.82)
MET + EXE		0.60 (0.00 to 166.60)	0.60 (0.00 to 145.10)	-0.04 (-2.12 to 11.14)
MET + ROS		0.31 (0.00 to 54.18)	0.31 (0.00 to 51.44)	-0.09 (-2.27 to 3.24)
MET + PIO		5.54 (0.15 to 365.40)	5.45 (0.15 to 310.30)	0.80 (-1.30 to 17.27)
MET + IGA		19.82 (0.30 to 4,234.00)	18.65 (0.30 to 1,293.00)	3.34 (-0.76 to 78.64)
MET + SIT	MET + LIN	15.45 (0.15 to 2,950.00)	15.36 (0.16 to 2,927.00)	0.46 (-2.41 to 1.63)
MET + VIL		1.69 (0.00 to 964.80)	1.69 (0.00 to 953.70)	0.01 (-2.94 to 1.76)
MET + CAN		2.16 (0.00 to 1,502.00)	2.16 (0.00 to 1,478.00)	0.03 (-2.82 to 2.62)
MET + DAP		8.24 (0.03 to 3,182.00)	8.20 (0.03 to 3,044.00)	0.19 (-2.54 to 6.56)
MET + EMP		1.05 (0.02 to 49.59)	1.05 (0.02 to 49.42)	0.00 (-2.66 to 0.73)
MET + EXE		3.15 (0.00 to 3,460.00)	3.14 (0.00 to 3,151.00)	0.05 (-2.59 to 11.26)
MET + ROS		1.55 (0.00 to 1,208.00)	1.55 (0.00 to 1,180.00)	0.01 (-2.82 to 3.36)
MET + PIO		32.27 (0.13 to 12,360.00)	31.58 (0.14 to 10,500.00)	0.95 (-2.05 to 17.55)
MET + IGA		119.70 (0.40 to 107,400.00)	107.20 (0.41 to 45,930.00)	3.49 (-0.64 to 78.78)
MET + VIL	MET + SIT	0.11 (0.00 to 4.85)	0.11 (0.00 to 4.78)	-0.44 (-1.65 to 1.35)
MET + CAN		0.18 (0.00 to 5.32)	0.18 (0.00 to 5.22)	-0.38 (-1.54 to 2.01)
MET + DAP		0.54 (0.01 to 20.16)	0.54 (0.01 to 18.92)	-0.22 (-1.53 to 6.27)
MET + EMP		0.07 (0.00 to 2.38)	0.07 (0.00 to 2.36)	-0.47 (-1.64 to 0.58)
MET + EXE		0.24 (0.00 to 22.01)	0.24 (0.00 to 19.63)	-0.31 (-1.45 to 10.73)
MET + ROS		0.13 (0.00 to 7.62)	0.13 (0.00 to 7.41)	-0.40 (-1.58 to 2.86)
MET + PIO		1.93 (0.12 to 53.85)	1.92 (0.13 to 44.96)	0.48 (-1.05 to 17.18)
MET + IGA		6.71 (0.36 to 585.00)	6.46 (0.36 to 137.10)	3.07 (-0.40 to 78.22)
MET + CAN	MET + VIL	1.47 (0.00 to 1,100.00)	1.47 (0.00 to 1,084.00)	0.01 (-1.64 to 2.57)
MET + DAP		4.88 (0.04 to 2,804.00)	4.86 (0.04 to 2,721.00)	0.18 (-1.53 to 6.59)
MET + EMP		0.65 (0.00 to 288.50)	0.65 (0.00 to 286.40)	-0.01 (-1.78 to 1.05)

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + EXE		1.87 (0.00 to 2,586.00)	1.87 (0.00 to 2,408.00)	0.03 (-1.58 to 11.36)
MET + ROS		1.05 (0.00 to 916.30)	1.05 (0.00 to 864.00)	0.00 (-1.68 to 3.35)
MET + PIO		17.40 (0.19 to 10,840.00)	17.05 (0.19 to 9,103.00)	0.93 (-1.02 to 17.65)
MET + IGA		72.64 (0.50 to 68,820.00)	65.85 (0.50 to 30,490.00)	3.50 (-0.38 to 78.83)
MET + DAP	MET + CAN	3.59 (0.02 to 6,950.00)	3.58 (0.02 to 6,630.00)	0.15 (-2.36 to 6.49)
MET + EMP		0.47 (0.00 to 1,070.00)	0.47 (0.00 to 1,062.00)	-0.03 (-2.64 to 0.98)
MET + EXE		1.64 (0.00 to 2,906.00)	1.63 (0.00 to 2,703.00)	0.02 (-2.36 to 11.20)
MET + ROS		0.79 (0.00 to 2,376.00)	0.79 (0.00 to 2,305.00)	-0.01 (-2.56 to 3.27)
$\mathrm{MET}+\mathrm{PIO}$		13.76 (0.13 to 19,390.00)	13.45 (0.14 to 18,470.00)	0.87 (-1.67 to 17.53)
MET + IGA		48.78 (0.39 to 131,700.00)	43.72 (0.40 to 60,990.00)	3.39 (-0.76 to 78.78)
MET + EMP	MET + DAP	0.13 (0.00 to 16.92)	0.13 (0.00 to 16.69)	-0.21 (-6.62 to 0.83)
MET + EXE		0.41 (0.00 to 150.30)	0.41 (0.00 to 136.40)	-0.09 (-6.37 to 11.00)
MET + ROS		0.19 (0.00 to 55.84)	0.20 (0.00 to 53.84)	-0.16 (-6.47 to 3.10)
MET + PIO		3.97 (0.04 to 410.70)	3.91 (0.04 to 344.70)	0.64 (-5.60 to 17.20)
MET + IGA		14.90 (0.12 to 4126.00)	13.79 (0.12 to 1,388.00)	3.09 (-3.76 to 78.11)
MET + EXE	MET + EMP	3.26 (0.00 to 1,933.00)	3.25 (0.00 to 1,781.00)	0.06 (-0.88 to 11.32)
MET + ROS		1.61 (0.00 to 876.40)	1.61 (0.00 to 824.30)	0.01 (-0.99 to 3.40)
MET + PIO		30.50 (0.36 to 6,798.00)	29.86 (0.36 to 5,822.00)	0.99 (-0.42 to 17.62)
MET + IGA		115.70 (0.85 to 49,270.00)	105.20 (0.85 to 20,900.00)	3.57 (-0.04 to 78.87)
MET + ROS	MET + EXE	0.51 (0.00 to 1,980.00)	0.51 (0.00 to 1,897.00)	-0.02 (-11.29 to 3.05)
MET + PIO		8.32 (0.12 to 18,080.00)	8.09 (0.13 to 17,040.00)	0.64 (-7.18 to 15.58)
MET + IGA		35.44 (0.14 to 124,800.00)	30.92 (0.15 to 65,620.00)	3.05 (-5.91 to 77.12)
MET + PIO	MET + ROS	18.38 (0.09 to 44,280.00)	17.94 (0.10 to 41,320.00)	0.89 (-2.38 to 17.47)
MET + IGA		68.25 (0.27 to 347,500.00)	60.84 (0.28 to 160,500.00)	3.40 (-1.32 to 78.83)
MET + IGA	$\mathrm{MET}+\mathrm{PIO}$	3.61 (0.04 to 626.20)	3.44 (0.05 to 188.80)	2.04 (-12.84 to 76.52)
Random-effects model	Residual deviance	25.52 vs. 35 data points		
	Deviance information criteria	128.376		

ALO = alogliptin; CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; EMP = empagliflozin; EXE = exenatide; IGA = insulin glargine; GLI = glipizide; $\mathrm{GLM}=$ glimepiride; $\mathrm{LIN}=$ linagliptin; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone; $\mathrm{RD}=$ risk difference; $\mathrm{ROS}=$ rosiglitazone; $\mathrm{RR}=$ relative risk; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 40: Consistency Plot for Unstable Angina (Individual-Drug Case Analysis)

Weight

Table 61: Weight: Mean Difference for All Treatment Comparisons — Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + GLC	MET	1.59 (-1.31 to 4.44)
MET + GLM		2.21 (1.70 to 2.73)
MET + GLY		2.33 (-8.40 to 13.82)
MET + GLI		2.56 (1.68 to 3.45)
MET + GLL		1.65 (-0.02 to 3.34)
MET + REP		3.27 (1.46 to 5.07)
MET + NAT		0.90 (-0.37 to 2.19)
MET + MIT		0.39 (-0.89 to 1.68)
MET + SAX		0.30 (-0.34 to 0.95)
MET + ALO		0.28 (-0.52 to 1.06)
MET + LIN		-0.42 (-1.71 to 0.88)
MET + SIT		0.23 (-0.22 to 0.67)
MET + VIL		0.10 (-0.56 to 0.73)
MET + CAN		-2.21 (-2.95 to -1.45)
MET + DAP		-2.16 (-2.90 to -1.42)
MET + EMP		-2.17 (-2.92 to -1.42)
MET + LIR		-1.47 (-2.37 to -0.53)
MET + EXE		-2.13 (-2.91 to -1.36)
MET + DUL		-0.82 (-1.90 to 0.29)
MET + LIX		-0.89 (-1.57 to -0.20)
MET + PIO		2.93 (2.29 to 3.58)

Treatment	Reference	MD (95\% Cri)
MET + ROS		$2.31(1.26$ to 3.39$)$
MET + IAS		$4.03(-7.85$ to 16.19$)$
MET + IGA		$2.31(1.29$ to 3.39$)$
MET + IND		$2.89(1.20$ to 4.63$)$
MET + DSP		$2.34(0.58$ to 4.17$)$
MET + GLM		$0.62(-2.26$ to 3.54$)$
MET + GLY		$0.74(-10.31$ to 12.62$)$
MET + GLI		$0.98(-2.00$ to 3.97$)$
MET + GLL		$0.06(-3.21$ to 3.29$)$
MET + REP		$1.68(-1.67$ to 5.10$)$
MET + NAT		$-0.69(-3.84$ to 2.46$)$
MET + MIT		$-1.19(-4.33$ to 1.96$)$
MET + SAX		$-1.29(-4.19$ to 1.67$)$
MET + ALO		$-1.31(-4.25$ to 1.64$)$
MET + LIN		$-2.01(-5.16$ to 1.16$)$
MET + SIT		$-1.36(-4.24$ to 1.54$)$
MET + VIL		$-1.49(-4.40$ to 1.43$)$
MET + CAN		$-3.80(-6.71$ to -0.83$)$
MET + DAP		$-3.75(-6.70$ to -0.77$)$
MET + EMP		$-3.76(-6.69$ to -0.79$)$
MET + LIR		$-3.06(-6.06$ to -0.04$)$
MET + EXE		$-3.72(-6.66$ to -0.78$)$
MET + DUL		$-2.41(-5.46$ to 0.66$)$
MET + LIX		$-2.48(-5.38$ to 0.45$)$
MET + PIO		$1.34(-1.47$ to 4.15$)$
MET + ROS		$0.73(-2.33$ to 3.80$)$
MET + IAS		$2.44(-9.94$ to 14.69$)$
MET + IGA		$0.72(-2.29$ to 3.76$)$
MET + IND		$1.30(-2.02$ to 4.68$)$
MET + DSP		$0.75(-2.56$ to 4.14$)$
MET + GLY		$0.12(-10.59$ to 11.62$)$
MET + GLI		$0.35(-0.61$ to 1.31$)$
MET + GLL		$-0.56(-2.26$ to 1.13$)$
MET + REP		$1.06(-0.81$ to 2.93$)$
MET + NAT		$-1.31(-2.68$ to 0.07$)$
MET + MIT		$-1.82(-3.20$ to -0.45$)$
MET + SAX		$-1.91(-2.62$ to -1.20$)$
MET + ALO		$-1.93(-2.85$ to -1.04$)$
MET + LIN		$-2.63(-3.80$ to -1.41$)$
MET + SIT		$-1.98(-2.54$ to -1.43$)$
MET + VIL		$-2.11(-2.83$ to -1.42$)$
MET + CAN		-5.29 to -3.54$)$
		MET + GLM

Treatment	Reference	MD (95\% Crl)
MET + DAP		-4.37 (-5.25 to -3.51)
MET + EMP		-4.38 (-5.18 to -3.59)
MET + LIR		-3.68 (-4.63 to -2.74)
MET + EXE		-4.34 (-5.19 to -3.50)
MET + DUL		-3.03 (-4.16 to -1.90)
MET + LIX		-3.10 (-3.91 to -2.32)
MET + PIO		0.72 (0.01 to 1.42)
MET + ROS		0.10 (-1.04 to 1.28)
MET + IAS		1.82 (-10.13 to 13.97)
MET + IGA		0.10 (-0.96 to 1.22)
MET + IND		0.68 (-1.05 to 2.44)
MET + DSP		0.13 (-1.68 to 1.99)
MET + GLI	MET + GLY	0.23 (-11.21 to 10.96)
MET + GLL		-0.68 (-12.24 to 10.09)
MET + REP		0.94 (-10.69 to 11.70)
MET + NAT		-1.43 (-13.02 to 9.32)
MET + MIT		-1.93 (-13.44 to 8.89)
MET + SAX		-2.03 (-13.55 to 8.72)
MET + ALO		-2.05 (-13.50 to 8.68)
MET + LIN		-2.75 (-14.32 to 7.96)
MET + SIT		-2.10 (-13.56 to 8.58)
MET + VIL		-2.23 (-13.73 to 8.41)
MET + CAN		-4.54 (-16.02 to 6.18)
MET + DAP		-4.49 (-15.97 to 6.27)
MET + EMP		-4.50 (-16.02 to 6.22)
MET + LIR		-3.80 (-15.28 to 6.93)
MET + EXE		-4.46 (-15.96 to 6.26)
MET + DUL		-3.15 (-14.64 to 7.57)
MET + LIX		-3.22 (-14.62 to 7.49)
$\mathrm{MET}+\mathrm{PIO}$		0.60 (-10.89 to 11.31)
MET + ROS		-0.02 (-11.48 to 10.61)
MET + IAS		1.70 (-14.91 to 18.73)
MET + IGA		-0.02 (-11.42 to 10.77)
MET + IND		0.56 (-11.04 to 11.43)
MET + DSP		0.01 (-11.54 to 10.82)
MET + GLL	MET + GLI	-0.92 (-2.78 to 0.95)
MET + REP		0.71 (-1.29 to 2.72)
MET + NAT		-1.66 (-3.21 to -0.10)
MET + MIT		-2.17 (-3.74 to -0.60)
MET + SAX		-2.26 (-3.15 to -1.38)
MET + ALO		-2.29 (-3.20 to -1.40)
MET + LIN		-2.98 (-4.50 to -1.44)

Treatment	Reference	MD (95\% Crl)
MET + SIT		-2.34 (-3.22 to -1.45)
MET + VIL		-2.46 (-3.56 to -1.42)
MET + CAN		-4.77 (-5.89 to -3.63)
MET + DAP		-4.72 (-5.84 to -3.63)
MET + EMP		-4.73 (-5.86 to -3.58)
MET + LIR		-4.04 (-5.23 to -2.81)
MET + EXE		-4.70 (-5.83 to -3.58)
MET + DUL		-3.39 (-4.73 to -2.02)
MET + LIX		-3.46 (-4.53 to -2.38)
MET + PIO		0.37 (-0.65 to 1.39)
MET + ROS		-0.25 (-1.61 to 1.13)
MET + IAS		1.47 (-10.38 to 13.63)
MET + IGA		-0.25 (-1.55 to 1.10)
MET + IND		0.33 (-1.54 to 2.24)
MET + DSP		-0.22 (-2.16 to 1.77)
MET + REP	MET + GLL	1.62 (-0.81 to 4.10)
MET + NAT		-0.75 (-2.81 to 1.37)
MET + MIT		-1.25 (-3.37 to 0.86)
MET + SAX		-1.35 (-3.13 to 0.43)
MET + ALO		-1.37 (-3.21 to 0.46)
MET + LIN		-2.07 (-4.12 to 0.02)
MET + SIT		-1.42 (-3.15 to 0.29)
MET + VIL		-1.55 (-3.11 to -0.01)
MET + CAN		-3.86 (-5.70 to -2.02)
MET + DAP		-3.81 (-5.66 to -2.00)
MET + EMP		-3.82 (-5.64 to -2.00)
MET + LIR		-3.12 (-4.98 to -1.24)
MET + EXE		-3.78 (-5.61 to -1.95)
MET + DUL		-2.47 (-4.46 to -0.49)
MET + LIX		-2.54 (-4.33 to -0.74)
$\mathrm{MET}+\mathrm{PIO}$		1.28 (-0.44 to 3.02)
MET + ROS		0.67 (-1.34 to 2.68)
MET + IAS		2.38 (-9.70 to 14.69)
MET + IGA		0.66 (-1.31 to 2.66)
MET + IND		1.24 (-1.11 to 3.68)
MET + DSP		0.69 (-1.72 to 3.17)
MET + NAT	MET + REP	-2.37 (-4.58 to -0.16)
MET + MIT		-2.88 (-5.09 to -0.65)
MET + SAX		-2.97 (-4.88 to -1.05)
MET + ALO		-2.99 (-4.96 to -1.01)
MET + LIN		-3.69 (-5.88 to -1.47)
MET + SIT		-3.04 (-4.90 to -1.19)

Treatment	Reference	MD (95\% Crl)
MET + VIL		$-3.17(-5.09$ to -1.28$)$
MET + CAN		$-5.48(-7.42$ to -3.52$)$
MET + DAP		$-5.43(-7.38$ to -3.48$)$
MET + EMP		$-5.44(-7.39$ to -3.47$)$
MET + LIR		$-4.74(-6.75$ to -2.70$)$
MET + EXE		$-5.41(-7.37$ to -3.44$)$
MET + DUL		$-4.09(-6.19$ to -2.00$)$
MET + LIX		$-4.16(-6.11$ to -2.22$)$
MET + PIO		$-0.34(-2.23$ to 1.58$)$
MET + ROS		$-0.96(-3.05$ to 1.15$)$
MET + IAS		$0.76(-11.34$ to 13.00$)$
MET + IGA		$-0.96(-3.05$ to 1.14$)$
MET + IND		$-0.38(-2.88$ to 2.11$)$
MET + DSP		$-0.93(-3.44$ to 1.63$)$
MET + MIT		$-0.51(-2.32$ to 1.31$)$
MET + SAX		$-0.60(-2.04$ to 0.84$)$
MET + ALO		$-0.63(-2.14$ to 0.84$)$
MET + LIN		$-1.32(-3.13$ to 0.52$)$
MET + SIT		$-0.68(-2.03$ to 0.67$)$
MET + VIL		$-0.80(-2.25$ to 0.60$)$
MET + CAN		$-3.11(-4.58$ to -1.65$)$
MET + DAP		$-3.06(-4.55$ to -1.59$)$
MET + EMP		$-3.07(-4.55$ to -1.61$)$
MET + LIR		$-2.37(-3.93$ to -0.79$)$
MET + EXE		$-3.04(-4.54$ to -1.55$)$
MET + DUL		$-1.73(-3.39$ to -0.04$)$
MET + LIX		$-1.80(-3.24$ to -0.34$)$
MET + PIO		$2.03(0.59$ to 3.45$)$
MET + ROS		$1.41(-0.24$ to 3.07$)$
MET + IAS		$3.13(-8.92$ to 15.30$)$
MET + IGA		$1.41(-0.21$ to 3.09$)$
MET + IND		$1.99(-0.14$ to 4.16$)$
MET + DSP		$1.44(-0.74$ to 3.70$)$
MET + SAX		$-0.09(-1.52$ to 1.34$)$
MET + ALO		$-0.12(-1.65$ to 1.40$)$
MET + LIN		$-0.81(-2.62$ to 1.01$)$
MET + SIT		$-0.17(-1.52$ to 1.18$)$
MET + VIL		$-0.30(-1.75$ to 1.12$)$
MET + CAN		$-2.60(-4.08$ to -1.11$)$
MET + DAP		$-2.55(-4.04$ to -1.07)
MET + EMP		$-2.56(-4.03$ to -1.08$)$
MET + LIR		$-1.87(-3.43$ to -0.28$)$
		MET + MIT

Treatment	Reference	MD (95\% Crl)
MET + EXE		-2.53 (-4.02 to -1.02)
MET + DUL		-1.22 (-2.88 to 0.49)
MET + LIX		-1.29 (-2.74 to 0.18)
MET + PIO		2.53 (1.11 to 3.97)
MET + ROS		1.92 (0.26 to 3.62)
MET + IAS		3.64 (-8.35 to 15.91)
MET + IGA		1.92 (0.27 to 3.59)
MET + IND		2.50 (0.36 to 4.65)
MET + DSP		1.95 (-0.23 to 4.21)
MET + ALO	MET + SAX	-0.03 (-0.98 to 0.90)
MET + LIN		-0.72 (-2.12 to 0.67)
MET + SIT		-0.08 (-0.75 to 0.60)
MET + VIL		-0.20 (-1.11 to 0.64)
MET + CAN		-2.51 (-3.47 to -1.55)
MET + DAP		-2.46 (-3.32 to -1.62)
MET + EMP		-2.47 (-3.42 to -1.52)
MET + LIR		-1.78 (-2.83 to -0.70)
MET + EXE		-2.44 (-3.40 to -1.48)
MET + DUL		-1.13 (-2.33 to 0.09)
MET + LIX		-1.20 (-2.10 to -0.29)
$\mathrm{MET}+\mathrm{PIO}$		2.63 (1.76 to 3.47)
MET + ROS		2.01 (0.79 to 3.25)
MET + IAS		3.73 (-8.16 to 15.88)
MET + IGA		2.01 (0.86 to 3.22)
MET + IND		2.59 (0.80 to 4.40)
MET + DSP		2.04 (0.18 to 3.96)
MET + LIN	MET + ALO	-0.69 (-2.18 to 0.81)
MET + SIT		-0.05 (-0.90 to 0.83)
MET + VIL		-0.18 (-1.18 to 0.81)
MET + CAN		-2.48 (-3.55 to -1.39)
MET + DAP		-2.43 (-3.51 to -1.37)
MET + EMP		-2.45 (-3.53 to -1.35)
MET + LIR		-1.75 (-2.90 to -0.53)
MET + EXE		-2.41 (-3.48 to -1.34)
MET + DUL		-1.10 (-2.40 to 0.25)
MET + LIX		-1.17 (-2.20 to -0.13)
$\mathrm{MET}+\mathrm{PIO}$		2.65 (1.75 to 3.57)
MET + ROS		2.04 (0.71 to 3.40)
MET + IAS		3.75 (-8.13 to 15.92)
MET + IGA		2.04 (0.78 to 3.36)
MET + IND		2.61 (0.78 to 4.52)
MET + DSP		2.07 (0.15 to 4.05)

Treatment	Reference	MD (95\% Crl)
MET + SIT	MET + LIN	0.64 (-0.68 to 1.95)
MET + VIL		0.52 (-0.90 to 1.88)
MET + CAN		-1.79 (-3.29 to -0.32)
MET + DAP		-1.74 (-3.24 to -0.27)
MET + EMP		-1.75 (-3.21 to -0.33)
MET + LIR		-1.05 (-2.56 to 0.45)
MET + EXE		-1.72 (-3.18 to -0.28)
MET + DUL		-0.41 (-2.06 to 1.21)
MET + LIX		-0.47 (-1.90 to 0.96)
$\mathrm{MET}+\mathrm{PIO}$		3.35 (1.97 to 4.72)
MET + ROS		2.73 (1.07 to 4.41)
MET + IAS		4.45 (-7.56 to 16.64)
MET + IGA		2.73 (1.15 to 4.35)
MET + IND		3.31 (1.21 to 5.41)
MET + DSP		2.76 (0.58 to 4.97)
MET + VIL	MET + SIT	-0.13 (-0.88 to 0.60)
MET + CAN		-2.43 (-3.22 to -1.66)
MET + DAP		-2.38 (-3.24 to -1.55)
MET + EMP		-2.40 (-3.24 to -1.55)
MET + LIR		-1.70 (-2.54 to -0.83)
MET + EXE		-2.36 (-3.14 to -1.59)
MET + DUL		-1.05 (-2.06 to -0.01)
MET + LIX		-1.12 (-1.82 to -0.41)
MET + PIO		2.70 (2.00 to 3.40)
MET + ROS		2.09 (1.03 to 3.18)
MET + IAS		3.80 (-8.14 to 15.93)
MET + IGA		2.09 (1.11 to 3.11)
MET + IND		2.66 (1.01 to 4.34)
MET + DSP		2.12 (0.38 to 3.90)
MET + CAN	MET + VIL	-2.31 (-3.27 to -1.32)
MET + DAP		-2.26 (-3.22 to -1.29)
MET + EMP		-2.27 (-3.20 to -1.30)
MET + LIR		-1.57 (-2.62 to -0.46)
MET + EXE		-2.23 (-3.17 to -1.25)
MET + DUL		-0.92 (-2.14 to 0.33)
MET + LIX		-0.99 (-1.89 to -0.06)
$\mathrm{MET}+\mathrm{PIO}$		2.83 (2.06 to 3.63)
MET + ROS		2.21 (0.99 to 3.48)
MET + IAS		3.93 (-8.00 to 16.06)
MET + IGA		2.21 (1.04 to 3.46)
MET + IND		2.79 (1.03 to 4.64)
MET + DSP		2.24 (0.39 to 4.15)

Treatment	Reference	MD (95\% Crl)
MET + DAP	MET + CAN	0.05 (-1.00 to 1.09)
MET + EMP		0.04 (-1.01 to 1.09)
MET + LIR		0.74 (-0.40 to 1.89)
MET + EXE		0.07 (-0.97 to 1.10)
MET + DUL		1.38 (0.11 to 2.65)
MET + LIX		1.32 (0.34 to 2.28)
$\mathrm{MET}+\mathrm{PIO}$		5.14 (4.16 to 6.09)
MET + ROS		4.52 (3.24 to 5.82)
MET + IAS		6.24 (-5.73 to 18.44)
MET + IGA		4.52 (3.31 to 5.77)
MET + IND		5.10 (3.30 to 6.95)
MET + DSP		4.55 (2.67 to 6.49)
MET + EMP	MET + DAP	-0.01 (-1.04 to 1.03)
MET + LIR		0.69 (-0.46 to 1.87)
MET + EXE		0.02 (-1.03 to 1.09)
MET + DUL		1.33 (0.05 to 2.66)
MET + LIX		1.27 (0.28 to 2.27)
MET + PIO		5.09 (4.13 to 6.06)
MET + ROS		4.47 (3.18 to 5.80)
MET + IAS		6.19 (-5.81 to 18.43)
MET + IGA		4.47 (3.24 to 5.78)
MET + IND		5.05 (3.22 to 6.93)
MET + DSP		4.50 (2.61 to 6.47)
MET + LIR	MET + EMP	0.70 (-0.45 to 1.86)
MET + EXE		0.04 (-1.01 to 1.09)
MET + DUL		1.35 (0.06 to 2.66)
MET + LIX		1.28 (0.28 to 2.28)
MET + PIO		5.10 (4.15 to 6.05)
MET + ROS		4.48 (3.19 to 5.79)
MET + IAS		6.20 (-5.72 to 18.36)
MET + IGA		4.48 (3.25 to 5.76)
MET + IND		5.06 (3.22 to 6.92)
MET + DSP		4.51 (2.62 to 6.47)
MET + EXE	MET + LIR	-0.66 (-1.79 to 0.41)
MET + DUL		0.65 (-0.38 to 1.65)
MET + LIX		0.58 (-0.37 to 1.52)
$\mathrm{MET}+\mathrm{PIO}$		4.40 (3.31 to 5.45)
MET + ROS		3.79 (2.43 to 5.15)
MET + IAS		5.50 (-6.48 to 17.64)
MET + IGA		3.78 (2.51 to 5.06)
MET + IND		4.36 (2.51 to 6.21)
MET + DSP		3.81 (1.89 to 5.74)

Treatment	Reference	MD (95\% Crl)
MET + DUL	MET + EXE	1.31 (0.08 to 2.57)
MET + LIX		1.24 (0.39 to 2.09)
MET + PIO		5.06 (4.17 to 5.95)
MET + ROS		4.45 (3.17 to 5.76)
MET + IAS		6.17 (-5.75 to 18.27)
MET + IGA		4.45 (3.46 to 5.48)
MET + IND		5.02 (3.37 to 6.72)
MET + DSP		4.48 (2.72 to 6.28)
MET + LIX	MET + DUL	-0.07 (-1.25 to 1.10)
MET + PIO		3.75 (2.52 to 4.96)
MET + ROS		3.14 (1.69 to 4.62)
MET + IAS		4.85 (-7.19 to 17.00)
MET + IGA		3.14 (1.74 to 4.55)
MET + IND		3.71 (1.77 to 5.67)
MET + DSP		3.17 (1.15 to 5.19)
MET + PIO	MET + LIX	3.82 (2.93 to 4.72)
MET + ROS		3.21 (1.97 to 4.47)
MET + IAS		4.92 (-7.00 to 17.02)
MET + IGA		3.20 (2.10 to 4.36)
MET + IND		3.78 (2.05 to 5.56)
MET + DSP		3.24 (1.42 to 5.09)
MET + ROS	MET + PIO	-0.62 (-1.83 to 0.63)
MET + IAS		1.10 (-10.82 to 13.25)
MET + IGA		-0.62 (-1.73 to 0.57)
MET + IND		-0.04 (-1.79 to 1.76)
MET + DSP		-0.59 (-2.39 to 1.30)
MET + IAS	MET + ROS	1.72 (-10.31 to 13.97)
MET + IGA		0.00 (-1.44 to 1.45)
MET + IND		0.58 (-1.40 to 2.54)
MET + DSP		0.03 (-2.02 to 2.09)
MET + IGA	MET + IAS	-1.72 (-13.76 to 10.08)
MET + IND		-1.14 (-13.16 to 10.74)
MET + DSP		-1.69 (-13.88 to 10.21)
MET + IND	MET + IGA	0.58 (-0.78 to 1.93)
MET + DSP		0.03 (-1.43 to 1.47)
MET + DSP	MET + IND	-0.55 (-2.54 to 1.44)
Random-effects model		
	Residual deviance	148.4 vs. 152 data points
	Deviance information criteria	311.804

ALO = alogliptin; CAN = canagliflozin; Crl = credible interval; DAP = dapagliflozin; DSP = insulin deludec/insulin aspart mix; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLC = glicazide; GLI = glipizide; GLL = gliclazide; GLM = glimepiride; GLY = glyburide; IAS = insulin aspart; IGA = insulin glargine; IND = insulin degludec; $\mathrm{LIN}=$ linagliptin; $\mathrm{LIR}=$ liraglutide; $\mathrm{LIX}=$ lixisenatide; $\mathrm{MD}=$ mean difference; $\mathrm{MET}=$ metformin; $\mathrm{MIT}=$ mitiglinide; $\mathrm{NAT}=$ nateglinide; $\mathrm{PIO}=$ pioglitazone; REP = repaglinide; ROS = rosiglitazone; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

Figure 41: Consistency Plot for Weight (Individual-Drug Case Analysis)

Appendix 12: Sensitivity Analyses - Reference Case

Glycated Hemoglobin (A1C)

Table 62: Sensitivity A1C: Mean Difference for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	MD (95\% Crl)
MET + SUL	MET	-0.93 (-1.24 to -0.62)
MET + MEG		-0.51 (-1.17 to 0.17)
MET + DPP-4		-0.92 (-1.23 to -0.62)
MET + SGLT-2		-0.60 (-1.26 to 0.07)
MET + GLP-1		-0.73 (-1.15 to -0.29)
MET + TZD		-1.02 (-1.33 to -0.71)
MET + INS-BA		-0.93 (-1.76 to -0.09)
MET + INS-BI		-1.27 (-2.37 to -0.15)
MET + MEG	MET + SUL	0.42 (-0.31 to 1.17)
MET + DPP-4		0.00 (-0.34 to 0.35)
MET + SGLT-2		0.33 (-0.40 to 1.06)
MET + GLP-1		0.20 (-0.28 to 0.70)
MET + TZD		-0.09 (-0.39 to 0.21)
MET + INS-BA		0.00 (-0.87 to 0.87)
MET + INS-BI		-0.35 (-1.47 to 0.81)
MET + DPP-4	MET + MEG	-0.42 (-1.17 to 0.32)
MET + SGLT-2		-0.09 (-1.04 to 0.85)
MET + GLP-1		-0.22 (-1.01 to 0.58)
MET + TZD		-0.51 (-1.25 to 0.22)
MET + INS-BA		-0.42 (-1.48 to 0.66)
MET + INS-BI		-0.77 (-2.05 to 0.54)
MET + SGLT-2	MET + DPP-4	0.33 (-0.40 to 1.05)
MET + GLP-1		0.20 (-0.31 to 0.72)
MET + TZD		-0.09 (-0.49 to 0.29)
MET + INS-BA		0.00 (-0.89 to 0.87)
MET + INS-BI		-0.35 (-1.48 to 0.82)
MET + GLP-1	MET + SGLT-2	-0.13 (-0.91 to 0.66)
MET + TZD		-0.42 (-1.15 to 0.31)
MET + INS-BA		-0.33 (-1.39 to 0.74)
MET + INS-BI		-0.68 (-1.95 to 0.62)
MET + TZD	MET + GLP-1	-0.29 (-0.81 to 0.21)
MET + INS-BA		-0.20 (-0.92 to 0.50)

Treatment	Reference	MD (95\% CrI)	
MET + INS-BI		$-0.55(-1.57$ to 0.49$)$	
MET + INS-BA	MET + TZD	$0.09(-0.80$ to 0.98$)$	
MET + INS-BI	MET + INS-BA	$-0.26(-1.39$ to 0.90$)$	
MET + INS-BI	$-0.35(-1.07$ to 0.40$)$		
Random-effects model	Residual deviance	48.77 vs. 55 data points	
	Deviance information criteria	-25.194	

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MD = mean difference; MEG = meglitinide; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Nonsevere Hypoglycemia

Table 63: Diabetes Outcomes - Sensitivity Nonsevere Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
MET + SUL	MET	13.49 (8.26 to 23.20)	11.88 (7.56 to 19.26)	11.70 (7.34 to 18.33)
MET + MEG		9.88 (4.70 to 20.84)	9.01 (4.50 to 17.52)	8.65 (3.87 to 16.73)
MET + DPP-4		0.97 (0.62 to 1.56)	0.97 (0.63 to 1.55)	-0.03 (-0.49 to 0.51)
MET + SGLT-2		1.22 (0.68 to 2.12)	1.21 (0.68 to 2.09)	0.23 (-0.40 to 1.08)
MET + GLP-1		0.93 (0.57 to 1.56)	0.93 (0.57 to 1.55)	-0.08 (-0.54 to 0.55)
MET + TZD		0.99 (0.36 to 2.55)	0.99 (0.36 to 2.51)	-0.01 (-0.76 to 1.55)
MET + INS-BA		4.56 (2.57 to 8.25)	4.39 (2.52 to 7.70)	3.64 (1.68 to 6.96)
MET + INS-BI		10.81 (5.33 to 21.66)	9.76 (5.07 to 18.07)	9.41 (4.53 to 17.55)
MET + MEG	MET + SUL	0.74 (0.34 to 1.49)	0.76 (0.38 to 1.41)	-2.96 (-10.13 to 4.58)
MET + DPP-4		0.07 (0.05 to 0.10)	0.08 (0.06 to 0.11)	-11.75 (-18.09 to -7.50)
MET + SGLT-2		0.09 (0.04 to 0.17)	0.10 (0.05 to 0.19)	-11.46 (-18.05 to -7.07)
MET + GLP-1		0.07 (0.04 to 0.11)	0.08 (0.05 to 0.13)	-11.79 (-18.22 to -7.49)
MET + TZD		0.07 (0.02 to 0.19)	0.08 (0.03 to 0.21)	-11.62 (-18.21 to -7.22)
MET + INS-BA		0.34 (0.21 to 0.55)	0.37 (0.23 to 0.58)	-8.01 (-13.38 to -4.22)
MET + INS-BI		0.80 (0.44 to 1.41)	0.82 (0.48 to 1.34)	-2.28 (-7.89 to 4.14)
MET + DPP-4	MET + MEG	0.10 (0.05 to 0.22)	0.11 (0.06 to 0.23)	-8.67 (-16.72 to -3.88)
MET + SGLT-2		0.12 (0.05 to 0.30)	0.13 (0.06 to 0.31)	-8.41 (-16.53 to -3.55)
MET + GLP-1		0.09 (0.04 to 0.22)	0.10 (0.05 to 0.23)	-8.73 (-16.78 to -3.90)
MET + TZD		0.10 (0.03 to 0.32)	0.11 (0.03 to 0.34)	-8.56 (-16.75 to -3.62)
MET + INS-BA		0.46 (0.21 to 1.09)	0.48 (0.23 to 1.08)	-4.96 (-12.80 to 0.49)
MET + INS-BI		1.08 (0.45 to 2.79)	1.07 (0.49 to 2.51)	0.69 (-7.74 to 9.67)
MET + SGLT-2	MET + DPP-4	1.25 (0.67 to 2.20)	1.25 (0.67 to 2.17)	0.26 (-0.43 to 1.10)
MET + GLP-1		0.95 (0.58 to 1.56)	0.95 (0.59 to 1.55)	-0.05 (-0.55 to 0.51)
MET + TZD		1.03 (0.35 to 2.58)	1.03 (0.36 to 2.54)	0.03 (-0.80 to 1.53)
MET + INS-BA		4.68 (2.87 to 7.65)	4.50 (2.80 to 7.18)	3.67 (1.82 to 6.80)
MET + INS-BI		11.10 (5.94 to 19.93)	10.03 (5.62 to 16.81)	9.44 (4.64 to 17.43)

Treatment	Reference	OR (95\% CrI)	RR (95\% Crl)	RD\% (95\% Crl)
MET + GLP-1	MET + SGLT-2	0.76 (0.38 to 1.59)	0.76 (0.39 to 1.58)	-0.31 (-1.23 to 0.53)
MET + TZD		0.82 (0.27 to 2.38)	0.82 (0.27 to 2.34)	-0.23 (-1.34 to 1.39)
MET + INS-BA		3.74 (1.85 to 8.06)	3.61 (1.83 to 7.56)	3.38 (1.36 to 6.73)
MET + INS-BI		8.88 (4.00 to 20.71)	8.03 (3.79 to 17.52)	9.15 (4.26 to 17.30)
MET + TZD	MET + GLP-1	1.08 (0.37 to 2.89)	1.08 (0.37 to 2.85)	0.07 (-0.81 to 1.59)
MET + INS-BA		4.92 (2.87 to 8.20)	4.73 (2.81 to 7.74)	3.71 (1.87 to 6.76)
MET + INS-BI		11.63 (5.92 to 22.49)	10.48 (5.57 to 19.02)	9.49 (4.70 to 17.45)
MET + INS-BA	MET + TZD	4.55 (1.63 to 13.82)	4.37 (1.60 to 13.02)	3.57 (1.26 to 6.93)
MET + INS-BI		10.84 (3.71 to 34.73)	9.75 (3.49 to 30.07)	9.34 (4.34 to 17.48)
MET + INS-BI	MET + INS-BA	2.38 (1.43 to 3.80)	2.23 (1.40 to 3.40)	5.72 (1.88 to 11.97)
Random-effects model	Residual deviance	94.33 vs. 98 data points		
	Deviance information criteria	463.356		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; $\mathrm{MEG}=$ meglitinide; $\mathrm{MET}=$ metformin; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; SGLT-2 = sodium-glucose cotransporter- 2 inhibitor; SUL $=$ sulfonylurea; TZD $=$ thiazolidinedione; vs. $=$ versus .

Appendix 13: Research Question 2 - Detailed Network Meta-Analysis Results for the Reference-Case Analysis

Major Adverse Cardiovascular Events (MACE)

Table 64: Major Adverse Cardiovascular Events: Hazard Ratio for All Treatment
Comparisons - Random-Effects Model

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; HR = hazard ratio;
SGLT-2 = sodium-glucose cotransporter-2 inhibitor; vs. = versus.

Cardiovascular Death (CV)

Table 65: Cardiovascular Death: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

[^15]
All-Cause Mortality

Table 66: All-Cause Mortality: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; HR = hazard ratio; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; TZD = thiazolidinedione; vs. = versus.

Hospitalization for Unstable Angina

Table 67: Hospitalization for Unstable Angina: Hazard Ratio for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	HR (95\% Crl)	
DPP-4	Placebo	$1.03(0.05$ to 20.01)	
SGLT-2		$0.96(0.01$ to 62.12$)$	
GLP-1		$0.97(0.02$ to 68.10$)$	
SGLT-2	DPP-4	$0.92(0.01$ to 141.88$)$	
GLP-1		$0.94(0.01$ to 175.04$)$	
GLP-1	SGLT-2	$1.02(0.00$ to 410.76$)$	
Random-effects model	Total residual deviance	3.995 vs. 4 data points	

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; HR = hazard ratio;
SGLT-2 = sodium-glucose cotransporter-2 inhibitor; vs. = versus.

Hospitalization for Heart Failure

Table 68: Hospitalization for Heart Failure: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	HR (95\% Crl)
DPP-4	Placebo	$1.13(0.43$ to 2.93)
SGLT-2		$0.68(0.18$ to 2.75$)$
GLP-1		$0.91(0.35$ to 2.40$)$
SGLT-2	DPP-4	$0.60(0.12$ to 3.35$)$
GLP-1		$0.80(0.21$ to 3.13)
GLP-1	SGLT-2	$1.34(0.24$ to 6.86)
Random-effects model	Total residual deviance	5.03 vs. 5 data points
-3.26		

CrI = credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; HR = hazard ratio;
SGLT-2 = sodium-glucose cotransporter-2 inhibitor; vs. = versus.

Total Adverse Events

Table 69: Total Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% CrI)	RD\% (95\% Crl)
DPP-4	Placebo	1.08 (0.40 to 2.85)	1.01 (0.76 to 1.15)	1.14 (-18.83 to 12.02)
SGLT-2		0.86 (0.33 to 2.33)	0.97 (0.71 to 1.13)	-2.53 (-23.26 to 10.31)
GLP-1		1.07 (0.41 to 2.97)	1.01 (0.78 to 1.15)	1.03 (-17.84 to 12.25)
SGLT-2	DPP-4	0.80 (0.20 to 3.36)	0.96 (0.69 to 1.30)	-3.60 (-26.05 to 19.10)
GLP-1		1.00 (0.25 to 4.11)	1.00 (0.76 to 1.33)	-0.06 (-20.71 to 21.49)
GLP-1	SGLT-2	1.24 (0.31 to 5.02)	1.05 (0.78 to 1.45)	3.54 (-18.39 to 26.05)
Random-effects model	Residual deviance	6.006 vs. 6 data points		
	Deviance information criteria	59.719		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; vs. = versus.

Withdrawals Due to Adverse Events

Table 70: Withdrawals Due to Adverse Events: Odds Ratios, Relative Risks and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
MET	Placebo	$0.33(0.05$ to 1.76$)$	$0.35(0.06$ to 1.66$)$	$-5.22(-7.61$ to 5.24$)$
SUL		$0.67(0.21$ to 1.98$)$	$0.69(0.22$ to 1.84$)$	$-2.49(-6.27$ to 6.66$)$
DPP-4		$0.97(0.50$ to 1.87$)$	$0.97(0.52$ to 1.74$)$	$-0.23(-3.85$ to 5.97$)$
GLP-1		$1.49(0.96$ to 2.39$)$	$1.44(0.96$ to 2.15$)$	$3.49(-0.30$ to 9.21$)$
TZD		$1.19(0.60$ to 2.28$)$	$1.17(0.62$ to 2.07$)$	$1.36(-3.05$ to 8.56$)$

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
SUL	MET	2.01 (0.58 to 8.24)	1.95 (0.61 to 7.76)	2.35 (-3.87 to 8.56)
DPP-4		2.95 (0.48 to 20.04)	2.79 (0.51 to 18.08)	4.82 (-5.76 to 11.16)
GLP-1		4.54 (0.81 to 29.39)	4.13 (0.83 to 25.47)	8.53 (-2.16 to 14.63)
TZD		3.63 (0.76 to 18.98)	3.38 (0.78 to 17.22)	6.30 (-2.47 to 12.22)
DPP-4	SUL	1.44 (0.40 to 5.54)	1.41 (0.44 to 5.03)	2.21 (-7.34 to 9.22)
GLP-1		2.23 (0.70 to 7.77)	2.09 (0.73 to 6.86)	5.91 (-3.67 to 12.58)
TZD		1.78 (0.73 to 4.54)	1.70 (0.75 to 4.20)	3.71 (-3.04 to 8.76)
GLP-1	DPP-4	1.54 (0.70 to 3.54)	1.48 (0.73 to 3.14)	3.69 (-3.30 to 10.38)
TZD		1.23 (0.48 to 3.11)	1.20 (0.51 to 2.81)	1.58 (-5.78 to 9.49)
TZD	GLP-1	0.80 (0.34 to 1.72)	0.82 (0.38 to 1.60)	-2.12 (-9.33 to 5.60)
Random-effects model	Residual deviance	12.14 vs. 12 data points		
	Deviance information criteria	99.864		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

Serious Adverse Events

Table 71: Serious Adverse Events: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
SUL	Placebo	0.81 (0.37 to 1.77)	0.87 (0.48 to 1.39)	-4.66 (-18.55 to 13.88)
DPP-4		0.92 (0.58 to 1.47)	0.95 (0.68 to 1.26)	-1.88 (-11.38 to 9.20)
SGLT-2		0.94 (0.58 to 1.50)	0.96 (0.68 to 1.27)	-1.52 (-11.38 to 9.76)
GLP-1		0.95 (0.68 to 1.33)	0.97 (0.77 to 1.19)	-1.17 (-8.30 to 6.68)
TZD		0.92 (0.57 to 1.49)	0.94 (0.67 to 1.27)	-1.99 (-11.70 to 9.58)
DPP-4	SUL	1.13 (0.46 to 2.83)	1.09 (0.62 to 2.11)	2.71 (-17.52 to 20.63)
SGLT-2		1.15 (0.46 to 2.85)	1.10 (0.62 to 2.11)	3.12 (-17.30 to 20.40)
GLP-1		1.17 (0.50 to 2.72)	1.11 (0.66 to 2.08)	3.42 (-16.10 to 19.07)
TZD		1.13 (0.61 to 2.11)	1.08 (0.74 to 1.72)	2.58 (-11.51 to 14.05)
SGLT-2	DPP-4	1.02 (0.52 to 1.97)	1.01 (0.65 to 1.55)	0.40 (-14.34 to 14.82)
GLP-1		1.03 (0.58 to 1.81)	1.02 (0.71 to 1.50)	0.72 (-12.13 to 12.89)
TZD		0.99 (0.51 to 1.94)	1.00 (0.64 to 1.54)	-0.12 (-14.70 to 14.42)
GLP-1	SGLT-2	1.02 (0.57 to 1.83)	1.01 (0.70 to 1.51)	0.38 (-13.00 to 12.92)
TZD		0.98 (0.50 to 1.96)	0.99 (0.64 to 1.55)	-0.47 (-15.05 to 14.82)
TZD	GLP-1	0.96 (0.54 to 1.73)	0.98 (0.66 to 1.42)	-0.85 (-12.87 to 12.36)
Random-effects model	Residual deviance	11.8 vs. 12 data points		
	Deviance information criteria	117.501		

[^16]
Severe Hypoglycemia

Table 72: Severe Hypoglycemia: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
DPP-4	Placebo	1.18 (0.91 to 1.54)	1.18 (0.91 to 1.53)	0.18 (-0.09 to 0.51)
SGLT-2		0.82 (0.45 to 1.47)	0.82 (0.46 to 1.47)	-0.18 (-0.55 to 0.44)
GLP-1		0.71 (0.49 to 0.99)	0.71 (0.49 to 0.99)	-0.28 (-0.51 to 0.00)
TZD		2.05 (1.11 to 3.98)	2.03 (1.10 to 3.88)	1.00 (0.11 to 2.53)
SGLT-2		0.69 (0.36 to 1.33)	0.69 (0.37 to 1.33)	-0.35 (-0.86 to 0.33)
GLP-1	DPP-4	0.60 (0.38 to 0.92)	0.60 (0.38 to 0.92)	-0.45 (-0.87,-0.08)
TZD		1.74 (0.89 to 3.51)	1.72 (0.89 to 3.43)	0.82 (-0.15 to 2.37)
GLP-1	SGLT-2	0.87 (0.43 to 1.70)	0.87 (0.44 to 1.69)	-0.10 (-0.76 to 0.34)
TZD		2.52 (1.07 to 5.98)	2.49 (1.07 to 5.83)	1.16 (0.08 to 2.71)
TZD	GLP-1	2.89 (1.44 to 6.24)	2.86 (1.43 to 6.06)	1.27 (0.36 to 2.81)
Random-effects model	Residual deviance	13.86 vs. 16 data points		
	Deviance information criteria	114.457		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; TZD = thiazolidinedione; vs. = versus.

Pancreatitis

Table 73: Pancreatitis: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; vs. $=$ versus.

Bone Fractures

Table 74: Bone Fractures: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
DPP-4	Placebo	$1.00(0.39$ to 2.47$)$	$1.00(0.40$ to 2.38$)$	$-0.01(-1.59$ to 3.64$)$
SGLT-2		$0.95(0.37$ to 2.48$)$	$0.95(0.37$ to 2.39$)$	$-0.13(-1.67$ to 3.66$)$
TZD		$1.39(0.50$ to 3.65$)$	$1.37(0.50$ to 3.41$)$	$0.98(-1.34$ to 6.23$)$

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; vs. = versus.

Pancreatic Cancer

Table 75: Pancreatic Cancer: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% Crl)	RR (95\% Crl)	RD\% (95\% Crl)
DPP-4	Placebo	0.53 (0.19 to 1.46)	0.53 (0.19 to 1.46)	-0.06 (-0.14 to 0.05)
GLP-1		1.09 (0.34 to 3.10)	1.09 (0.34 to 3.09)	0.01 (-0.10 to 0.27)
TZD		0.13 (0.01 to 0.75)	0.13 (0.01 to 0.75)	-0.11 (-0.18 to -0.03)
GLP-1	DPP-4	2.04 (0.44 to 9.01)	2.04 (0.44 to 8.99)	0.07 (-0.08 to 0.33)
TZD		0.24 (0.02 to 1.89)	0.24 (0.02 to 1.89)	-0.05 (-0.17 to 0.04)
TZD	GLP-1	0.12 (0.01 to 0.97)	0.12 (0.01 to 0.97)	-0.12 (-0.38 to 0.00)
Random-effects model	Residual deviance	16.92 vs. 12 data points		
	Deviance information criteria	64.97		

$\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; OR = odds ratio; RD = risk difference; RR = relative risk; TZD $=$ thiazolidinedione; vs. $=$ versus.

Bladder Cancer

Table 76: Bladder Cancer: Odds Ratios, Relative Risks, and Risk Difference for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	OR (95\% CrI)	RR (95\% CrI)	RD\% (95\% CrI)
GLP-1	Placebo	$1.25(0.44$ to 3.78$)$	$1.25(0.44$ to 3.76$)$	$0.05(-0.14$ to 0.56$)$
TZD		$1.86(0.75$ to 4.67$)$	$1.85(0.75$ to 4.64$)$	$0.19(-0.07$ to 0.62$)$
TZD	GLP-1	$1.50(0.36$ to 5.84$)$	$1.49(0.36$ to 5.81$)$	$0.13(-0.45$ to 0.61$)$
Random-effects model	Residual deviance	5.652 vs. 6 data points		
	Deviance information criteria	35.228		

[^17]
Appendix 14: Research Question 2 - Detailed Network Meta-Analysis Results FOR THE Individual Drug Analysis

Hospitalization for Heart Failure

Table 77: Hospitalization for Heart Failure: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

$\mathrm{CrI}=$ credible interval; $\mathrm{HR}=$ hazard ratio; vs. = versus.
Note: number denotes amount in milligrams unless otherwise indicated.

Hospitalization for Unstable Angina

Table 78: Hospitalization for Unstable Angina: Hazard Ratio for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	HR (95\% CrI)
Saxagliptin 5	Placebo	1.18 (0.00 to 560.04)
Sitagliptin 100		$0.89(0.00$ to 460.36$)$
Empaglaflozin 25		$0.97(0.00$ to 466.85$)$
Liraglutide 1.8		0.97 (0.00 to 485.90)
Sitagliptin 100	Saxagliptin 5	0.76 (0.00 to 4,870.73)
Empaglaflozin 25		0.81 (0.00 to 5,602.68)

Treatment	Reference	HR (95\% CrI)
Liraglutide 1.8		$0.82(0.00$ to $6,335.98)$
Empaglaflozin 25	Sitagliptin 100	$1.08(0.00$ to $6,995.34)$
Liraglutide 1.8		$1.10(0.00$ to $7,331.97)$
Liraglutide 1.8	Empaglaflozin 25	$1.02(0.00$ to $7,201.18)$
Random-effects model	Total residual deviance	3.983 vs. 4 data points
	Deviance information criteria	-0.163

$\mathrm{CrI}=$ credible interval; $\mathrm{HR}=$ hazard ratio; vs. = versus.
Note: number denotes amount in milligrams unless otherwise indicated.

All-Cause Mortality

Table 79: All-Cause Death: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	HR (95\% Crl)
Saxagliptin 5	Placebo	1.11 (0.00 to 541.31)
Alogliptin 25		0.88 (0.00 to 464.98)
Sitagliptin 100		1.02 (0.00 to 513.89)
Empaglaflozin 25		0.67 (0.00 to 335.63)
Liraglutide 1.8		0.85 (0.00 to 421.15)
Lixisenatide 0.02		0.94 (0.00 to 440.98)
Rosiglitazone 8		0.86 (0.00 to 431.38)
Pioglitazone 45		0.96 (0.00 to 508.77)
Alogliptin 25	Saxagliptin 5	0.79 (0.00 to 5,469.81)
Sitagliptin 100		0.93 (0.00 to 5,404.57)
Empaglaflozin 25		0.61 (0.00 to 4,048.09)
Liraglutide 1.8		0.76 (0.00 to 4,870.73)
Lixisenatide 0.02		0.86 (0.00 to 4,438.18)
Rosiglitazone 8		0.77 (0.00 to 4,875.61)
Pioglitazone 45		0.87 (0.00 to 5,585.90)
Sitagliptin 100	Alogliptin 25	1.17 (0.00 to 8,014.44)
Empaglaflozin 25		0.77 (0.00 to 4,500.75)
Liraglutide 1.8		0.97 (0.00 to 6,542.01)
Lixisenatide 0.02		1.07 (0.00 to 7,302.70)
Rosiglitazone 8		0.98 (0.00 to 6,118.06)
Pioglitazone 45		1.09 (0.00 to 8,299.91)
Empaglaflozin 25	Sitagliptin 100	0.65 (0.00 to 3,920.60)
Liraglutide 1.8		0.85 (0.00 to 6,173.37)
Lixisenatide 0.02		0.92 (0.00 to 5,399.17)
Rosiglitazone 8		0.84 (0.00 to 5,324.11)
Pioglitazone 45		0.94 (0.00 to 6,118.06)
Liraglutide 1.8	Empaglaflozin 25	1.26 (0.00 to 7,638.83)

$\mathrm{CrI}=$ credible interval; $\mathrm{HR}=$ hazard ratio; vs. = versus.
Note: number denotes amount in milligrams unless otherwise indicated.

Major Adverse Cardiovascular Events

Table 80: Major Adverse Cardiovascular Events: Hazard Ratio for All Treatment Comparisons - Random-Effects Model

Treatment	Reference	HR (95\% Crl)
Saxagliptin 5	Placebo	1.00 (0.00 to 506.74)
Alogliptin 25		0.98 (0.00 to 470.13)
Sitagliptin 100		0.98 (0.00 to 500.20)
Empaglaflozin 25		0.86 (0.00 to 479.14)
Liraglutide 1.8		0.87 (0.00 to 407.89)
Alogliptin 25	Saxagliptin 5	0.97 (0.00 to 5,790.65)
Sitagliptin 100		0.98 (0.00 to 6,463.98)
Empaglaflozin 25		0.86 (0.00 to 7,237.27)
Liraglutide 1.8		0.87 (0.00 to 6,148.72)
Sitagliptin 100	Alogliptin 25	1.01 (0.00 to 5,530.31)
Empaglaflozin 25		0.89 (0.00 to 6,707.62)
Liraglutide 1.8		0.88 (0.00 to 5,350.79)
Empaglaflozin 25	Sitagliptin 100	0.88 (0.00 to 7,172.43)
Liraglutide 1.8		0.89 (0.00 to 5,329.43)
Liraglutide 1.8	Empaglaflozin 25	1.00 (0.00 to 6,057.18)
Random-effects model	Total residual deviance	4.988 vs. 5 data points
	Deviance information criteria	-7.292

[^18]
Cardiovascular Death

Table 81: Cardiovascular Death: Hazard Ratio for All Treatment Comparisons -Random-Effects Model

Treatment	Reference	HR (95\% Crl)
Saxagliptin 5	Placebo	1.03 (0.00 to 452.14)
Alogliptin 25		0.88 (0.00 to 502.20)
Empaglaflozin 25		0.59 (0.00 to 315.13)
Liraglutide 1.8		0.78 (0.00 to 407.48)
Lixisenatide 20 mcg		0.97 (0.00 to 456.23)
Rosiglitazone 8		0.84 (0.00 to 492.26)
Alogliptin 25	Saxagliptin 5	0.86 (0.00 to 6,747.99)
Empaglaflozin 25		0.57 (0.00 to 4,129.87)
Liraglutide 1.8		0.76 (0.00 to 5,074.58)
Lixisenatide 20 mcg		0.94 (0.00 to 5,636.40)
Rosiglitazone 8		0.83 (0.00 to 6,399.66)
Empaglaflozin 25	Alogliptin 25	0.67 (0.00 to 4,934.47)
Liraglutide 1.8		0.88 (0.00 to 5,843.00)
Lixisenatide 20 mcg		1.11 (0.00 to 7,093.97)
Rosiglitazone 8		0.95 (0.00 to 6,849.97)
Liraglutide 1.8	Empaglaflozin 25	1.31 (0.00 to 8,857.32)
Lixisenatide 20 mcg		1.66 (0.00 to 10,270.18)
Rosiglitazone 8		1.43 (0.00 to 8,604.15)
Lixisenatide 20 mcg	Liraglutide 1.8	1.25 (0.00 to 6,836.29)
Rosiglitazone 8		1.09 (0.00 to 7,646.47)
Rosiglitazone 8	Lixisenatide 20 mcg	0.87 (0.00 to 5,223.90)
Random-effects model Total residual deviance 5.988 vs. 6 data points		

$\mathrm{CrI}=$ credible interval; HR = hazard ratio; vs. = versus.
Note: number denotes amount in milligrams unless otherwise indicated.

Appendix 15: Results of Pharmacoeconomic Sensitivity Analyses

Table 82: Base-Case Results (Using Cost of NPH Insulin for Basal Insulin)

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.8369		$\$ 38,643$
SU	$\$ 39,251$	8.8784	$\$ 100,459$	$\$ 38,643$
SGLT-2 inhibitors	$\$ 49,308$	8.9530	$\$ 119,997$	$\$ 182,861$
GLP-1 agonists	$\$ 55,946$	8.9894	$\$ 178,127$	$\$ 23$
DPP-4 inhibitors	$\$ 48,859$	8.8998	$\$ 324,968$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 54,852$	8.8898	$\$ 268,496$	Dominated b
Biphasic insulin	$\$ 63,719$	8.9340	Dominated $^{\text {c }}$	

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; NPH = neutral protamine Hagedorn; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2.
${ }^{\text {c }}$ Dominated by SGLT-2, GLP-1.
Table 83: Using Price of a More Costly and Widely Utilized Sulfonylurea (\$0.0931 per Gliclazide 30 mg SR Tablet, Instead of Price for Glyburide 5 mg Tablet \$0.0574) With Ontario Drug Benefit Blood Glucose Test Strip Limits

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 36,408$	8.8369		$\$ 73,417$
SU	$\$ 39,455$	8.8784	$\$ 73,417$	$\$ 100,341$
SGLT-2 inhibitors	$\$ 48,055$	8.9530	$\$ 119,871$	$\$ 115,325$
GLP-1 agonists	$\$ 54,687$	8.9894	$\$ 178,035$	$\$ 182,113$
DPP-4 inhibitors	$\$ 47,614$	8.8998	$\$ 281,615$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 54,886$	8.8898	$\$ 349,027$	Dominated $^{\text {b }}$
Biphasic insulin	$\$ 63,753$	8.9340		Dominated $^{\text {c }}$

[^19]Table 84: Lower Disutility for Mild or Moderate Hypoglycemia (-0.0052 Instead of $\mathbf{- 0 . 0 1 4}$) Based on NICE Guidance on Insulin Analogues

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.8388		$\$ 36,733$
SU	$\$ 39,251$	8.8824	$\$ 10,441$	$\$ 36,733$
SGLT-2 inhibitors	$\$ 49,308$	8.9549	$\$ 119,974$	$\$ 182,221$
GLP-1 agonists	$\$ 55,946$	8.9913	$\$ 178,102$	Extended dominance $^{\text {a }}$
DPP-4 inhibitors	$\$ 48,859$	8.9017	$\$ 298,188$	Dominated $^{\text {b }}$
Basal insulin	$\$ 54,852$	8.8965	$\$ 255,897$	Dominated $^{\text {c }}$
Biphasic insulin	$\$ 63,719$	8.9407		

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; NICE = National Institute for Health and Care Excellence; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2.
${ }^{\text {c }}$ Dominated by GLP-1, SGLT-2.

Table 85: Lower Disutility for Severe Hypoglycemia (-0.01 Instead of -0.047) Based on NICE Guidance for Type 2 Diabetes

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.8371		$\$ 35,539$
SU	$\$ 39,251$	8.8822	$\$ 100,457$	$\$ 141,746$
SGLT-2 inhibitors	$\$ 49,308$	8.9532	$\$ 119,994$	$\$ 182,259$
GLP-1 agonists	$\$ 55,946$	8.9896	$\$ 178,124$	$\$ 172,423$
DPP-4 inhibitors	$\$ 48,859$	8.9000	$\$ 180,893$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 54,852$	8.9369	8.9812	
Biphasic insulin	$\$ 63,719$	8	Dominated $^{\text {b }}$	

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; NICE = National Institute for Health and Care Excellence; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by SGLT-2.
${ }^{\text {c }}$ Dominated by GLP-1.
Table 86: Lower Disutility for Hypoglycemia (-0.0052 for Mild and Moderate; -0.01 for Severe Hypoglycemia)

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.8390		$\$ 33,917$
SU	$\$ 39,251$	8.8863	$\$ 33,917$	$\$ 146,148$
SGLT-2 inhibitors	$\$ 49,308$	8.9551	$\$ 100,439$	$\$ 182,217$
GLP-1 agonists	$\$ 55,946$	8.9915	$\$ 119,971$	

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
DPP-4 inhibitors	$\$ 48,859$	8.9019	$\$ 178,099$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 54,852$	8.9435	$\$ 164,580$	Dominated $^{\text {b }}$
Biphasic insulin	$\$ 63,719$	8.9879	$\$ 175,085$	Dominated $^{\text {c }}$

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by SGLT-2.
${ }^{\text {c }}$ Dominated by GLP-1.
Table 87: Utility Estimates for Diabetes Complications from Clarke et al. (2004)

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.7058		$\$ 38,561$
SU	$\$ 39,251$	8.7474	$\$ 93,724$	$\$ 121,422$
SGLT-2 inhibitors	$\$ 49,308$	8.8302	$\$ 115,749$	$\$ 197,121$
GLP-1 agonists	$\$ 55,946$	8.8639	$\$ 165,693$	$\$ 300,671$
DPP-4 inhibitors	$\$ 48,859$	8.7735	$\$ 256,172$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 54,852$	8.7630	8.8076	$\$ 63,719$

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY=quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2.
${ }^{\text {c }}$ Dominated by SGLT-2, GLP-1.
Table 88: Cost for Mild or Moderate Hypoglycemia (\$93 Per Event Instead of
Zero Cost) Based on Brod et al. (2011) Zero Cost) Based on Brod et al. (2011)

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,668$	8.8369		$\$ 39,192$
SU	$\$ 39,294$	8.8784	$\$ 00,461$	$\$ 39,192$
SGLT-2 inhibitors	$\$ 49,328$	8.9530	$\$ 19,998$	$\$ 134,558$
GLP-1 agonists	$\$ 55,966$	8.9894	$\$ 178,128$	Extended dominance $^{\text {a }}$
DPP-4 inhibitors	$\$ 48,879$	8.8998	$\$ 325,916$	Dominated $^{\text {b }}$
Basal insulin	$\$ 54,922$	8.8898	$\$ 269,015$	Dominated $^{\text {c }}$
Biphasic insulin	$\$ 63,789$	8.9340		

[^20]Table 89: Base-Case Results Using Cost of Insulin Glargine for Basal Insulin

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 37,648$	8.8369		$\$ 38,643$
SU	$\$ 39,251$	8.8784	$\$ 38,643$	$\$ 100,459$
SGLT-2 inhibitors	$\$ 49,308$	8.9530	$\$ 119,997$	$\$ 134,861$
GLP-1 agonists	$\$ 55,946$	8.9894	$\$ 178,127$	$\$ 182,263$
DPP-4 inhibitors	$\$ 48,859$	8.8998	$\$ 424,272$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 60,109$	8.8898	$\$ 268,496$	Dominated $^{\text {b }}$
Biphasic insulin	$\$ 63,719$	8.9340		Dominated $^{\text {c }}$

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2, GLP-1.
${ }^{c}$ Dominated by SGLT-2, GLP-1.

Table 90: Base-Case Results Using Costs for Fatal Events for Ischemic Heart Disease and Heart Failure

Treatment	Costs	QALYs	ICUR (Versus Metformin Monotherapy)	Sequential ICUR
MET	$\$ 38,107$	8.8369		$\$ 39,177$
SU	$\$ 39,732$	8.8784	$\$ 100,468$	$\$ 39,177$
SGLT-2 inhibitors	$\$ 49,768$	8.9530	$\$ 119,919$	$\$ 134,578$
GLP-1 agonists	$\$ 56,393$	8.9894	$\$ 178,795$	$\$ 181,906$
DPP-4 inhibitors	$\$ 49,360$	8.8998	$\$ 325,156$	Extended dominance $^{\text {a }}$
Basal insulin	$\$ 55,321$	8.8898	$\$ 268,519$	Dominated $^{\text {b }}$
Biphasic insulin	$\$ 64,180$	8.9340	Dominated $^{\text {c }}$	

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY = quality-adjusted life year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2.
${ }^{\mathrm{c}}$ Dominated by SGLT-2, GLP-1.

[^0]: ACA = acarbose; $\mathrm{AE}=$ adverse event; $\mathrm{ALB}=$ albiglutide; $\mathrm{ALO}=$ alogliptin; b.i.d. $=$ twice daily; CAN = canagliflozin; DAP = dapagliflozin; DSP = insulin degludec/insulin aspart mix; DUL = dulaglutide; DUT = dutaglutide (PHX1149); EMP = empagliflozin; EXE = exenatide; IAM = insulin aspart/aspart protamine mixture; IAS = insulin aspart; IGA = insulin insulin glargine; IPR = ipragliflozin; GLC = glicazide / glicazide MR; GLI = glipizide;

 SOT = sotagliflozin; SU = sulfonylurea; TAS = taspoglutide; TEN = tenegliptan; VIL = vildagliptin; XR = extended release.
 Note: All doses are given in milligrams, unless otherwise indicated.

[^1]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; $M E G=$ meglitinide; $M E T$ = metformin; $O R=$ odds ratio; RD = risk difference; $R R=$ relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^2]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; MEG = meglitinide; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea;
 TZD $=$ thiazolidinedione; vs. $=$ versus.

[^3]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; MD = mean difference; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^4]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; MD = mean difference; MEG = meglitinide; MET = metformin; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^5]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; INS-BA = basal insulin; INS-BI = biphasic insulin; $M E G=$ meglitinide; $M E T$ = metformin; $O R=$ odds ratio; $R D=$ risk difference; $R R=$ relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL $=$ sulfonylurea; TZD $=$ thiazolidinedione; vs. $=$ versus.

[^6]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^7]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^8]: $\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; - $\mathrm{H}=$ high-dose; $-\mathrm{L}=$ low-dose; $\mathrm{MET}=$ metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; $-\mathrm{T}=$ titrated; $\mathrm{TZD}=$ thiazolidinedione; vs. = versus.

[^9]: $\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; $-\mathrm{H}=$ high-dose; $-\mathrm{L}=$ low-dose; $\mathrm{MD}=$ mean difference; MET = metformin; SGL = sodium-glucose cotransporter-2 inhibitor; $-\mathrm{T}=$ titrated; TZD = thiazolidinedione; vs. = versus.

[^10]: $\mathrm{CrI}=$ credible interval; DPP = dipeptidyl peptidase-4 inhibitor; GLP = glucagon-like peptide-1 agonist; -H = high-dose; INS-BA = basal insulin; -L = low-dose; MET = metformin; OR = odds ratio; RD = risk difference; RR = relative risk; SGL = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; - T = titrated; TZD = thiazolidinedione; vs. = versus.

[^11]: $\mathrm{CrI}=$ credible interval; DSP = insulin degludec/insulin aspart mix; DUL = dulaglutide; $\mathrm{IAS}=$ insulin aspart; $\mathrm{IGA}=$ insulin glargine; $\mathrm{MET}=\mathrm{metformin} ; \mathrm{OR}=\mathrm{odds}$ ratio; $R D=$ risk difference; RR = relative risk; SIT = sitagliptin; vs. = versus.

[^12]: $\mathrm{CrI}=$ credible interval; EXE = exenatide; GLM = glimepiride; $\mathrm{IGA}=$ insulin glargine; $\mathrm{MD}=$ mean difference; $\mathrm{MET}=$ metformin; $\mathrm{PIO}=$ pioglitazone; ROS = rosiglitazone; SAX = saxagliptin; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

[^13]: CAN = canagliflozin; CrI = credible interval; DAP = dapagliflozin; DUL = dulaglutide; EMP = empagliflozin; EXE = exenatide; GLM = glimepiride; GLY = glyburide; LIR = liraglutide; LIX = lixisenatide; MD = mean difference; MET = metformin; PIO = pioglitazone; ROS = rosiglitazone; SIT = sitagliptin; VIL = vildagliptin; vs. = versus.

[^14]: $\mathrm{CrI}=$ credible interval; DUL = dulaglutide; GLM = glimepiride; $\mathrm{MET}=$ metformin; $\mathrm{LIN}=$ linagliptin; $\mathrm{LIR}=$ liraglutide; $\mathrm{OR}=$ odds ratio; $\mathrm{PIO}=$ pioglitazone;

[^15]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; HR = hazard ratio;
 SGLT-2 = sodium-glucose cotransporter-2 inhibitor; TZD = thiazolidinedione; vs. = versus.

[^16]: $\mathrm{CrI}=$ credible interval; DPP-4 = dipeptidyl peptidase-4 inhibitor; GLP-1 = glucagon-like peptide-1 agonist; OR = odds ratio; RD = risk difference; RR = relative risk; SGLT-2 = sodium-glucose cotransporter-2 inhibitor; SUL = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

[^17]: $\mathrm{CrI}=$ credible interval; GLP-1 = glucagon-like peptide-1 agonist; $\mathrm{OR}=$ odds ratio; $\mathrm{RD}=$ risk difference; $\mathrm{RR}=$ relative risk; $\mathrm{TZD}=$ thiazolidinedione; vs. $=$ versus.

[^18]: $\mathrm{CrI}=$ credible interval; $\mathrm{HR}=$ hazard ratio; vs. = versus.
 Note: number denotes amount in milligrams unless otherwise indicated.

[^19]: DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY = quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SR = slow release; SU = sulfonylurea; vs. = versus.

 Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
 ${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
 ${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2, GLP-1.
 ${ }^{c}$ Dominated by SGLT-2, GLP-1.

[^20]: DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 receptor; ICUR = incremental cost-utility ratio; MET = metformin; QALY= quality-adjusted life-year; SGLT-2 = sodium-glucose cotransporter-2; SU = sulfonylurea; vs. = versus.
 Note: A dominated strategy is associated with more costs and less benefits than the previous most effective strategy. An extendedly dominated strategy has an ICUR higher than that of the next most effective strategy; therefore, an extendedly dominated strategy produces additional gains in effectiveness at incremental costs higher than those of the next most effective strategy.
 ${ }^{\text {a }}$ Subject to extended dominance through MET and SGLT-2, SU and SGLT-2, MET and GLP-1, SU and GLP-1.
 ${ }^{\mathrm{b}}$ Dominated by DPP-4, SGLT-2.
 ${ }^{\text {c }}$ Dominated by SGLT-2, GLP-1.

